
Reproducibility of mathematical data: a
cheatsheet to take away

(Alex Elzenaar, 2/8/22)

We have colour coded some things: in bold red are lessons you can learn for your own papers to
make things easier for readers. In slanted fuchsia are some questions to think about. On the separate
sheet you will find in emerald a practical example to work on as you read this sheet. Everything is
also available online, at https://aelzenaar.github.io/tchng/repro.html

1 Work out what results you want to reproduce, and find them.
We need some results to reproduce. Usually of course we are coming from a paper, so hopefully
the authors included a clear link to a place where we can find their software and assorted pieces of
working for their published results, in a place that still exists; then we need to hope that the software
is actually in a form that we can run. (Sometimes this will involve trawling through the Wayback
Machine.)

Lesson: (1) Always put your software somewhere that has some kind of backing behind
it, won’t vanish without warning, and is easy to find via search engines (e.g. GitHub). (2)
Make sure your paper links to the place you put your data, and vice versa.

What kinds of bibliographic data should you include in your paper? Is it enough to just put a URL?
What are some bad ways to include mathematical code on your website?

Remark. Once you know what you want to reproduce, there are actually two things to do:

1. verify that the method and tools (e.g. computer programmes) which were used by the author(s)
do indeed produce the desired result(s);

2. verify that the process by which the results were produced are in fact correct (e.g. that the
computer tools were correct).

In general (2) is much harder: for computers, this involves checking the entire stack of software and
hardware1 used as well as the theoretical basis. (In practice, one does this by redoing everything from
scratch completely independently on an entirely different computer setup, without looking at the
original software.) We restrict ourselves to (1).

2 Get the tools that the authors used.
There are two kinds of tools: off-the-shelf tools, and bespoke tools. We need to get hold of any
software platforms and packages used. Different hardware and software combinations might produce
different results with the same input, so we should make sure that we are using the same version of
the software2, if possible.

Lesson: Document everything, including software versions, the computer you used (es-
pecially if you wrote your own low-level code that depends explicitly on hardware features),
and make sure it is always kept next to your software: best practice is in a file that is inside
the compressed file you are putting up for download on your website/other repository.

1Even the basic arithmetic hardware found in your computer might not be trustworthy: https://en.wikipedia.org/
wiki/Pentium_FDIV_bug

2To be more rigorous we would need to also match the hardware architecture, but practically speaking this is probably not
an issue except in niche cases.

1

https://aelzenaar.github.io/tchng/repro.html
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Pentium_FDIV_bug


3 Modify the tools so that they are in a form which we can
actually use.

Maybe it wasn’t possible to get the original tools that were used by the authors, for instance because
they wrote their software in a programming language that we can’t compile easily, or an old version
of the software platform which we don’t have access to. Then we need to be more clever, and the
problem becomes a software engineering problem. Document any changes you need to make to the
original software, especially if you plan to publish or teach something which depends on the paper in
question.

Lesson: try to pick software platforms with a large community around them that have
been around for a while (years). This is not a guarantee of continued accessibility but it
gives future readers a fighting chance. Of course this needs to be balanced against having
specialty features.

Here are some languages which various popular books use. Which were good choices and which
weren’t, taking into account the tradeoffs we mentioned and anything else you can think of?

1. Macaulay2 [Eisenbud, Commutative Algebra]

2. MATLAB [Waldron, An Introduction to Finite Tight Frames]

3. Fortran and BASIC (unspecified versions) [Strang, Linear Algebra and its Applications]

4. MIX [Knuth, Fundamental Algorithms (TAoCP I)] (←this one might be a trick question)

5. APL [Braun, Differential Equations and Their Applications]

6. FORTRAN-like pseudocode [Mumford, Series, and Wright, Indra’s Pearls]

2



4 Actually reproducing the results.
Now comes the ‘easy’ part: just run the code and make sure that it produces the same result. In
practice there are a few issues:

• The software might produce a mound of data, which you can’t check manually against the
original. This is now a software engineering problem, probably.

• The software might be producing data with some amount of randomness (for instance, it might
do a Monte Carlo integration). You might need to run a statistical analysis.

• The software might need additional input which isn’t documented. Lesson: It is not enough
to publish your computer programme, you also need all the information that’s needed
to run it—including any additional parameters that you used.

• What else might go wrong?

To try to reproduce Bogor’s experience in the third panel, you need three things: (1) the same off-the-
shelf or foundational platform (thewood and the saw); (2) the thing that is producedwith that platform
specifically for the project (the TV); and (3) the right environment (i.e. the landscape and skyscape). If
any of these were missing, the picture would probably look similar in some ways but would not be a
reproduction. [Picture: Burton Silver, Bogor 1977–78, p. 27. Whitcoulls Ltd, Christchurch (1977).]

5 What if you can’t reproduce the results?
1. Document everything you did. What kinds of things, explicitly, do you need to write down?

2. Are the results you are getting actually theoretically possible, or are they total rubbish?

3. Try to narrow down the problem to a particular place in the stack:

theory hardware off-the-shelf
software platform author software changes you made

4. Can you ask the original authors for help?

5. If you are sure that the results are wrong, what to do next depends on many factors: Are the
original authors still around? Was the original data published in a journal or other venue
backed by an editorial board or institute who you can contact? Can you correct the result or is it
irrecoverable? Etc.

3


	Work out what results you want to reproduce, and find them.
	Get the tools that the authors used.
	Modify the tools so that they are in a form which we can actually use.
	Actually reproducing the results.
	What if you can't reproduce the results?

