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Abstract
We survey work of Sakuma related to two-bridge links and tunnel numbers, and some subse-

quent developments. We see that themain classical tools are automorphisms ofHeegaard splittings
and disc complexes. We attempt to find a common large-scale picture that explains why there is
an isosophy between the study of simple unknotting tunnels and the representation theory of rank
two Kleinian groups.
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§1. Maximum in interior
(1.1) Proposition. Let 𝐿 be a 2-bridge link with at least two twist regions. Then the volume map 𝑉 ∶
𝐴(𝑇) cannot have a maximum on 𝜕𝐴(𝑇) for special choice of 𝑇 as given earlier talk.

Proof is technical and relies on following argument. First restrict tetrahedra shapes that can occur
using certain algebraic restrictions. On remainder show that there exist paths from boundary into
the interior along which 𝑉 is strictly increasing.

§2. Unknotting tunnels
In this section we survey work of Kobayashi [Kob99], Morimoto and Sakuma [MS91], Adams and
Reid [AR96], and Kuhn [Kuh96], following in part the nice survey of Sakuma [Sak98].

Let 𝑘 be a link in 𝕊3, and let𝑀 be its complement (topological) manifold. The tunnel number
𝑡(𝑘) is the smallest number of properly embedded arcs in𝑀 (i.e. endpoints on 𝑘) such that the com-
plement of a tubular neighbourhood of the arcs in𝑀 is a handlebody. We are particularly interested
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Figure 1: The six unknotting tunnels for a two-bridge knot. For a two-bridge link only 𝜏1 and 𝜏2 (the
upper and lower tunnels) are unknotting tunnels. Figure 1.1 of [Kob99].

(a) Genus 0 2-bridge presentation. (b) Genus 1 1-bridge presentation.

(c) Genus 2 0-bridge presentation.

Figure 2: Heegaard splittings of 𝕊3 ∖ 𝑘 occuring in the proof of Kobayashi’s theorem

in the case 𝑡(𝑘) = 1. A properly embedded arc 𝜏 in𝑀 such that𝑀 ∖𝑁(𝜏) is a handlebody is called an
unknotting tunnel. Since the complement of a handlebody in𝕊3 is also a handlebody, we see that if
𝑘 admits an unknotting tunnel then it is either a knot or a two-component link with the components
joined by 𝜏.

(2.1) Theorem (Kobayashi, 1999). Every unknotting tunnel for a non-trivial two-bridge knot is isotopic
(in the knot complement) to one of the six shown in figure 1.

Sketch of proof. Let 𝑘 ⊂ 𝕊3 be 2-bridge and fix a sphere 𝑃 in 𝕊3 which cuts the knot complement𝑀
into two Conway balls 𝐴 = 𝔹3 ∖ 𝑎1 ∪ 𝑎2 and 𝐵 = 𝔹3 ∖ 𝑏1 ∪ 𝑏2, figure 2a. Consider 𝐴 ∪ 𝑁(𝑏1, 𝐵): this
is a solid torus with an arc drilled out and its complement in𝑀 is also a solid torus with an arc (𝑏2)
drilled out, figure 2b. This is called a genus 1 one-bridge presentation of 𝑘.

Given such a decomposition there are two obvious unknotting tunnels 𝜇1 and 𝜇2. In addition it
is easy to see from the construction that one of the visible unknotting tunnels is 𝜏1 or 𝜏2 and the other
is one of 𝜌1, 𝜌′1, 𝜌2, 𝜌′2.

A result of Kobayashi and Saeki [KS00] is that every genus 1 one-bridge presentation of a two-
bridge knot is obtained from a rational splitting as above. Hence the result is shown if we can show
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Figure 3: The hyperelliptic involution.

that every unknotting tunnel arises as the unknotting tunnel of a genus 1 one-bridge splitting, for
then by the Kobayashi–Saeki theorem it is one of the six known tunnels.

Suppose 𝑘 admits an unknotting tunnel 𝜎 and the induced genus two Heegaard splitting of 𝕊3 is
𝑉1 = 𝑁(𝑘 ∪ 𝜎), 𝑉2 = 𝕊3 ∖ 𝑉1, c.f. figure 2c. We say the splitting isweak if there exist 𝑘-compressing
discs 𝐷1 and 𝐷2 respectively properly embedded in 𝑉1 and 𝑉2 with disjoint boundaries 𝜕𝐷1 and 𝜕𝐷2.
If there are no such discs then the splitting is strong.

If the splitting is weak, it can be shown that the discs 𝐷1 and 𝐷2 can be choosen to be non-
separating in their respective handlebodies1 There are two possibilities now: either 𝐷1 intersects
𝑘 or it doesn’t (c.f. the two dotted discs in figure 2c).

• If 𝐷1 does not intersect 𝑘, then cut the handlebody along 𝐷1 to give a solid torus 𝑇. Since 𝐷2
is non-separating in 𝑉2, 𝜕𝐷2 cannot bound a disc in 𝑇 for then the union of this disc with 𝐷2
would be a non-separating 2-sphere in 𝕊3. We see that 𝜕𝐷2must be a latitude of 𝑇, because if it
was more twisted then we would be able to construct a lens space inside 𝕊2 from a piece of 𝑉2
and 𝑇. Hence 𝜕𝐷2 is isotopic in𝑀 to the knot 𝑘, in particular 𝑘 is the boundary of an embedded
disk, and 𝑘 is trivial.

• If𝐷1 intersects𝑘, then let𝑁 be a regular neighbourhood of𝐷1 in𝑉1. Set𝑇1 = 𝑉1 ∖ 𝑁,𝑇2 = 𝑉2∪𝑁.
Then 𝑇2 is a solid torus with 𝑁 ∩ 𝑘 a trivial embedded arc2 (i.e. it is of the form the left image
of figure 2b with 𝑏2 = 𝑁 ∩ 𝑘), and 𝑇1 ∪ 𝑇2 is a genus 1 one-bridge presentation for 𝑘 with 𝜎 the
unknotting tunnel associated with 𝑇1 in the one-bridge presentation.

If the splitting is strong, then a detailed study of the embedded discs in 𝑉1 (carried out in §4 of
[Kob99]) shows that if 𝜎 is not isotopic to 𝜏1 or 𝜏2, then there is an essential annulus in the manifold
𝑀. Roughly speaking, the idea of this analysis is to consider the interaction between the sphere 𝑃
inducing the rational decomposition and the genus two surface 𝑄 that induces the genus two Hee-
gaard splitting arising from 𝑘 ∪ 𝜎: the simple closed curves of 𝑃 ∩ 𝑄 bound a number of discs which
intersect 𝑘 in various configurations and the proof proceeds by (i) induction on the number of discs
and (ii) cases on the different combinatorics of the discs.

Once it is known that there is an essential annulus then the knot is a torus knot, for which the
result is known due to Boileau, Rost, and Zieschang [BRZ88] (and in fact the six unknotting tunnels
reduce to only three up to isotopy). Since these are not hyperbolic we ignore this case. mAk

(2.2) Theorem (Adams and Reid, 1996; Kuhn, 1996). Every unknotting tunnel for a non-trivial two-
bridge two-component link is isotopic (in the knot complement) to either 𝜏1 or 𝜏2 shown in figure 1.

Sketch of proof. We follow the proof in [AR96]whichuses hyperbolic geometry. Suppose first that the
link 𝑘 is not a closed 2-braid (i.e. it has at least two twist regions). Then the complement is hyperbolic.
Let 𝜄 be the hyperelliptic involution of the handlebody containing 𝑘∪𝜎, 𝜎 being the unknotting tunnel,
figure 3. Lifting to the universal cover ℍ3, the involution becomes a 𝜋1(𝑘)-invariant set of elliptic

1Claim 1 in the proof of Proposition 2.15 of [Kob99].
2Claim 2 in the proof of Proposition 2.15 of [Kob99].
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Figure 4: The symmetry group of [2𝑏0, 2𝑏1, 2𝑏2] is ℤ/2ℤ ⊕ ℤ/2ℤ. The hyperelliptic involution is the
rotation by 𝜋 around the horizontal line. Figure 1 of [AR96].

involutions of order 2 and the unknotting tunnel lifts to some subset of the axes of these involutions.
This shows that every unknotting tunnel is isotopic to a geodesic which ends on the cusps.

The link 𝑘 always has orientation preserving symmetry group ℤ/2ℤ⊕ℤ/2ℤ, figure 4. Only one of
the involutions preserves the two components. Hence the only possible unknotting tunnels are the
four arcs in the knot complement which make up the axis of this unique involution. Two of these
are the upper and lower tunnels. Let 𝛼 and 𝛽 be the other arcs, and suppose for a contradiction that
𝛼 is an unknotting tunnel. Let 𝑀 be the link complement. The hyperelliptic involution 𝜄 extends
to the whole of 𝕊3; let 𝑝 ∶ 𝕊3 → 𝕊3 be the quotient, and consider a small neighbourhood 𝑁 of
𝛼 ∪ 𝑘. By assumpution, this is a handlebody. Its complement 𝕊3 ∖ 𝑁 is also a handlebody. One
now shows that 𝑝(𝑁) is a ball (here we use that the involution is hyperelliptic, so e.g. the image of
the handlebody surface is a 6-marked sphere), hence its complement 𝑝(𝕊3 ∖ 𝑁) is a ball, and 𝑝(𝛽) is
unknotted in this ball. This means that 𝑝(𝛼 ∪ 𝑘 ∪ 𝛽) is unknotted (i.e. a trivially embedded genus
three trivalent graph). But consideration of the diagram figure 4 shows that the quotient is actually
𝑝(𝛼 ∪ 𝑘 ∪ 𝛽) = [𝑏0, 4𝑏1, 𝑏2, 4𝑏3, ...] which is knotted. mAk

§3. Kleinian groups generated by two parabolics
We now proceed to study the family of Kleinian groups ⟨𝑋, 𝑌⟩ where 𝑋 and 𝑌 are parabolic with
distinct fixed points. Suitable normalisation allows us to assume that our group is

Γ𝜌 = ⟨𝑋 = [1 1
0 1], 𝑌 = [1 0

𝜌 1]⟩ .

The fundamental questions are:

1. For what 𝜌 are these groups discrete? and,

2. When Γ𝜌 is discrete, what is the isometry type of ℍ3/Γ𝜌?

These questions have a long history (the earliest papers which I am aware of are by Sanov in
1947 [San47] and Brenner in 1955 [Bre55], see [EMS23]), but the modern point of view was initiated
by Riley [Ril72; Ril75a; Ril75b; Ril13; BJS13; Ril79] who found these groups from his study of the
hyperbolisation of two-bridge links. In the following, 𝔟(𝑞, 𝑝) denotes the 𝑞/𝑝 2-bridge link.

(3.1) Proposition ([Ril72, Proposition 1]). Fix a 2-bridge link 𝔟(𝑞, 𝑝). For any 𝑠 ≠ 𝑞 write ̄𝑠 for the
reprentative of 𝑠mod 2𝑞 in the interval (−𝑞, 𝑞). For each 𝑖 set 𝜀𝑖 = − sgn(𝑖𝑝). Define a word 𝑅𝑝/𝑞 in the
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symbols 𝑋 and 𝑌 by
𝑅𝑝/𝑞 = 𝑋𝜀1𝑌 𝜀2 ⋯(𝑋 or 𝑌 depending on 𝑞)𝜀𝑞−1 ,

so 𝑅𝑝/𝑞 is a word of length 𝑞 − 1. Then, if 𝑞 is odd (so the link is a knot) we have

𝜋1(𝔟(𝑞, 𝑝)) ≃ ⟨𝑋, 𝑌 ∶ 𝑅𝑝/𝑞𝑋 = 𝑌𝑅𝑝/𝑞⟩;

if 𝑞 is even (so the link has two components) then

𝜋1(𝔟(𝑞, 𝑝)) ≃ ⟨𝑋, 𝑌 ∶ 𝑅𝑝/𝑞𝑌 = 𝑌𝑅𝑝/𝑞⟩.

The essence of the proof of proposition (3.1) is to compute aWirtinger representation for the link
such that two of the generators are the bridge arcs, and then eliminate all other generators. The
single relator which remains is exactly the word which represents a loop around the upper unknotting
tunnel of the knot. We denote this formal word in 𝑋 and 𝑌 by𝑊𝑝/𝑞: under the actual representation
𝐹(𝑋, 𝑌) → Γ𝜌, the word𝑊𝑝/𝑞 is sent to the identity.

Thus we have a large family of discrete groups Γ𝜌: for each 2-bridge link 𝔟(𝑞, 𝑝) there is some 𝜌
(exactly four choices which give either the same knot or highly related knots) such that𝑊𝑝/𝑞 = 𝐼2, in
which case the group is not only discrete but ℍ3/Γ𝜌 is the 2-bridge link complement.3 This family of
groups all have representations

⟨𝑋, 𝑌 ∶ 𝑋∞ = 𝑌∞ = 𝑊𝑝/𝑞 = 1⟩

where the relation 𝐺∞ is to be read as “𝐺 is parabolic”.
Riley studied the representations of the strongly related groups

⟨𝑋, 𝑌 ∶ 𝑋∞ = 𝑌∞ = 𝑊𝑛
𝑝/𝑞 = 1⟩,

where 𝑛 ∈ ℤ. Geometrically these correspond to 2-bridge knot complements where the unknotting
tunnel is replaced by a cone arc (with endpoints on the knot) with cone angle 2𝜋/𝑛: the element𝑊𝑝/𝑞
is an elliptic of order 𝑛. He called these groupsHeckoid groups [Ril92].

As 𝑛 → ∞ the cone angle decreases to zero, and in the limit we obtain free groups

⟨𝑋, 𝑌 ∶ 𝑋∞ = 𝑌∞ = 𝑊∞
𝑝/𝑞 = 1⟩

where 𝑊𝑝/𝑞 has gone parabolic. When these groups are discrete they correspond to cusp groups,
where the unknotting tunnel is deleted and replaced by a rank one cusp (the vertices where it meets
the knot are thrice-punctured spheres). When 𝜌 is increased further,𝑊𝑝/𝑞 becomes loxodromic and
the manifold ℍ3/Γ𝜌 is homeomorphic to a 3-ball with two drilled arcs.

The geometric procedure is shown in figure 5.
In 2002 Agol [Ago02] sketched an incomplete proof of the following theorem; two complete

proofs were given by Aimi, Lee, Sakai, and Sakuma [Aim+20], and Akiyoshi, Ohshika, Parker,
Sakuma, and Yoshida [Aki+21].

(3.2)Theorem. Anon-free non-FuchsianKleinian group𝐺 is generated by twonon-commuting parabolic
elements if and only if one of the following holds:

1. 𝐺 is conjugate to some hyperbolic 2-bridge link group; or

2. 𝐺 is conjugate to the Heckoid group ⟨𝑋, 𝑌 ∶ 𝑊𝑛
𝑝/𝑞 = 1⟩ for some 𝑝/𝑞 ∈ ℚ and some 𝑛 ∈ ℤ>1; or

3It is a theorem of Riley which can be found in [Ril72; Ril75b] and [KAG86, Problem 86] that so long as a knot group
representation is faithful and has parabolics in the correct places then it is actually giving the correct action on ℍ3, for some
examples and applications see [KAG86, Examples 59, 60].
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𝑛 ∞

Figure 5: The four kinds of orbifolds found along an extended pleating ray. Left to right: a 2-bridge
link or knot complement; a Heckoid orbifold; a cusp group; and a Riley group. In the elliptic case,
all can occur and the two cone orders 𝑎 and 𝑏 correspond to the two arcs of the link separated by
the unknotting tunnel. If 𝑎 ≠ 𝑏 and the ray corresponds to a knot then the procedure must stop at

the Heckoid group with unknotting tunnel a cone arc of order 2. From [EMS24].

3. 𝐺 is conjugate to the orbifold holonomy of a quotient of a Heckoid manifold by order two involu-
tions of the 𝑝/𝑞-knot.

If𝐺 is a hyperbolic 2-bridge link group then it has exactly two parabolic generating pairs, up to conjugacy.
If 𝐺 is a Heckoid group then it has a unique parabolic generating pair up to conjugacy. mAk

In other words, all the non-free non-Fuchsian groups on two parabolic generators arise by taking
a two-bridge link, replacing the upper unknotting tunnel with a singular locus of some order, and
possibly taking an order two quotient as in theorem (2.2).
Remark. The characterisation of groups Γ𝜌 with quotients cusped finite-volume manifolds as hyper-
bolic 2-bridge link groups is due to Adams [Ada96]. The Fuchsian groups generated by two non-
commuting parabolics are fully classified by Knapp [Kna68]. The case that 𝑋 and 𝑌 are allowed
to be finite order is qualitatively very similar, and has been fully studied by Chesebro, Martin, and
Schillewaert [CMS24].

The Kleinian groups that are freely generated by parabolic elements are called Riley groups and
have been studied in detail by awide range of people as they are the easiest example of quasi-Fuchsian
groups of the second kind. The primary sources in this direction are the work of Keen and Series
[KS94], Komori and Series [KS98], and Ohshika and Miyachi [OM10]. Additional work is surveyed
in [EMS23].

The study of theRiley groups is still essentially derived from the 2-bridge link structures: although
anunknotting tunnel has beendeleted, the data associated to the knot (encoded in the family ofwords
𝑊𝑝/𝑞) is still visible in the conformal structure of the four-times punctured sphere on the conformal
boundary. One point of view is that the conformal structure comes from the way that a braid group
acts on the Conway ball to produce a rational tangle: this action extends to the bounding sphere 𝑆0,4
and hence induces a twisting of the conformal structure. Details may be found in [Elz23, §3.1].
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Figure 6: Rough map of the Kleinian groups generated by a pair of parabolics.

A full picture of the entire deformation space of 𝜌 is seen in figure 6. It should be noted that
this is only heuristic and in fact the boundary is highly non-circular (one can show it is not even a
quasicircle).

§4. The enumeration of unknotting tunnels
Another unifying point of view, this time from 2-bridge knots to arbitrary knots with tunnel number
1, may be found in work of Cho and McCollough [CM09]. Roughly speaking their point of view is
similar to the proof of theorem (2.1) outlined above: knot tunnels are detected by using complexes of
embedded discs in the genus twoHeegaard splitting. This point of view is philosophically isomorphic
(isosophic?) to an extension of the study of upper/lower unknotting tunnels of two-bridge knots as
carried out by Sakuma et. al., indeed one can view the enumeration of two-generatedKleinian groups
as an enumeration of non-separating discs in genus two surface if two compressing discs have already
been chosen (dual to the bridges). In [CM09] this setting is the setting of ‘simple tunnels’. Just like
how the isolated groups (the non-free ones, i.e. two-bridge link groups, Heckoid groups, and certain
quotients) in the space of discrete representations are indexed by vertices of the Farey triangulation
and permuted around semi-transitively (transitive on triangles not vertices) by SL(2, ℤ) ≈ Mod(𝑆0,4)
where the indeterminacy comes from some global symmetry (the ℤ/2ℤ ⊕ ℤ/2ℤ group which is the
symmetry group of the knot complement), in general there is a large complex of discs called the disc
complex𝒟(𝐻) and some large group 𝒢 acting on𝒟(𝐻) such that𝒟(𝐻)/𝒢 is a complex indexing all
the possible tunnels. There is even a natural spanning tree akin to the Stern-Brocot tree. One can
extend this picture to define combinatorial structures onwhich to hang trace polynomials for general
Schottky groups and general function groups.
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§5. Skein algebras, character varieties, and unknotting tunnels

A certain novice monk in Inaba was rumoured to have a beautiful daughter, and
many men came asking for her hand. But the girl ate nothing but chestnuts and
never touched grains, so her father declared that she was too eccentric to be mar-
riagable, and rejected them all. [Ken13, No. 40]

Now it dawned on me that what shocked me most—shocked me as an insult: not a
word was there about our resemblance; not only was it not criticized (for instance
they might have said, at least: ‘Yes, an admirable resemblance, yet such and such
markings show it to be not his body) but it was not mentioned at all—which left one
with the impression that it was somewretchwhose appearancewas quite different to
mine... This affected ignorance of what, to me, wasmost precious and all-important,
struck me as an extremely cowardly trick, implying as it did that, from the very first,
everybody knew perfectly well that it was not I, that it simply could not have entered
anybody’s head to mistake the corpse for mine. [Nab16, p. 142]

We have now observed that there is a strong link between the representation theory of Kleinian
groups and the study of unknotting tunnels. It is a priori surprising that the classification of all
Kleinian groups on two parabolic generators (and in fact on two elliptic generators, after applying
some qualitatively simple deformations [EMS24; CMS24]) essentially follows from considering the
nature of this class of knots.

In this section, wewill show that skein theory as developed originally by Jones,Witten, Lickorish,
Turaev, and many others provides a unifying theme between Heegaard splitting theory, representa-
tions of surface groups, and the combinatorics of the curve complex.

We follow first a paper of Przytycki and Skiora [PS00]. Let 𝑅 be a ring (with unit 1), let 𝓆 ∈ 𝑅 be
invertible. Let𝑀 be a (connected oriented) 3-manifold. TheKauffman skeinmodule 𝒮(𝑀, 𝑅, 𝓆) is
the algebra defined by taking the 𝑅-module generated freely by isotopy classes of framed links in𝑀
(for notion of a frame on a link see e.g. [PS97] but roughly speaking it is a choice of infinitesimally
wide ribbon in𝑀 which follows the link) and quotienting by the ideal 𝔰 generated by the relations

⤬ = 𝓆≍+ 𝓆−1 ≍ and 𝐷 ∪◯ = −(𝓆2 + 𝓆−2)𝐷.

Remark. In the important case 𝓆 = −1, the image 𝐷 + 𝔰 of a framed link in the skein module is
independent of the framing on 𝐷.

More generally, we allow𝑀 to have boundary and we take only framed links which match some
specified configuration on the boundary. This is the setting that is studied by Lickorish, Yokota, and
others. In papers of Yokota in particular [MSY96; Yok95] skein theory is done on subsurfaces of 𝕊2
with marked points on the boundary and the reconciliation with the 3-manifold theory was slightly
unclear to the author at first glance; in this matter a paper of Lickorish [Lic93] was the kindler of
True Understanding.
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§5.1. Optional background in character theory

For later use we relate this discussion to representation theory. We recall that a representation of
a group 𝐺 over a vector space 𝑉 is a homomorphism 𝜌 ∶ 𝐺 → Aut(𝑉). We will restrict to the setting
𝑉 = ℂ2 and ask for images 𝜌(𝐺) to lie in SL(2, ℂ). Suppose 𝐺 is finitely presented on the generators
𝑔1, ..., 𝑔𝑛 and relators 𝑅1 = ⋯ = 𝑅𝑚 = 1. Then a map ̌𝜌 ∶ {𝑔1, ..., 𝑔𝑛} → SL(2, ℂ) extends to a
representation if and only if for every relator 𝑅𝑗 = ∏ℓ𝑗

𝑖=1 𝑔𝑘𝑗 the equation∏
ℓ𝑗
𝑖=1 ̌𝜌(𝑔𝑘𝑗 ) = 𝐼2 for all

𝑗. This sets up three polynomial equations (one entry is determined by the determinant condition)
on the entries of the ̌𝜌(𝑔𝑘) for all relators, giving a total of 3𝑚 equations in a space of dimension 3𝑛.
The set of all representations is therefore generically dimension 3(𝑛−𝑚). For example take a surface
group which has 2𝑔 generators and one relation and look at representations in SL(2, ℝ); we end up
with final dimension 3(2𝑔 − 1) = 6𝑔 − 3. This is three too many since we recall from Teichmüller
theory that the correct number of real dimensions should be 6𝑔 − 6. The remaining three are lost if
we mod out conjugacy in PSL(2, ℝ).

Given a representation 𝜌 ∶ 𝐺 → SL(2, ℂ) the character is the map 𝜒𝜌 ∶ 𝑔 ↦ tr 𝜌(𝑔). If we know
the value of sufficiently many characters, this gives us a number of polynomial equations in the pa-
rameters of the representation 𝜌. It is intuitive then that the character map should determine the
representation fully. This is not always the case4 but it is true in this setting. Again the group presen-
tation gives us a number of polynomial equations in the entries of the images of the generators (that
this is true is a consequence of the famous theorem that all traces in a finitely generated subgroup of
SL(2, ℂ) are integer polynomials in the traces of words in the generators of some bounded length, c.f.
[MR03, §3.5]). The subvariety of ℂ3𝑛 cut out by these equations, (GIT) quotient by the conjugation
action of SL(2, ℂ), is called the character variety 𝑋(𝐺). The seminal work on these varieties is the
work of Culler and Shalen [CS83].

It is easy to see [GMM98] that exactly three traces determine the representations of a group on
two generators ⟨𝑋, 𝑌⟩: tr𝑋 , tr𝑌 , and tr[𝑋, 𝑌]. (We have two generators and no relations and indeed
3(2 − 0) = 6 minus 3 for conjugacy gives that we should only need three traces). In the case of
the knot groups above, tr𝑋 = tr𝑌 = 2 and so we have exactly one complex dimension of freedom,
tr[𝑋, 𝑌] = 𝜌2 + 2. (This reflects the fact that the groups Γ𝜌 and Γ−𝜌 are indistinguishable, differing
only in choice of generators).
Warning. As the audience of this note is not composed solely of algebraic geometers, we assume all
things that we see are varieties even when they are blatently not (e.g. they might be non-reduced,
certainly we have already taken a GIT quotient without asking theological questions). In the cases
of interest to us, everything will turn out to be a variety (i.e. reduced over ℂ, though maybe not
irreducible).

§5.2. Representation theory

Let 𝐺 be a group and define Ten𝑅[𝐺] to be the tensor algebra over the group ring 𝑅[𝐺]. Define an
ideal 𝓊 ⊲ Ten𝑅[𝐺] generated by the elements

id𝐺 − 2, 𝑔 ⊗ ℎ − 𝑔ℎ − 𝑔ℎ−1, and 𝑔 ⊗ ℎ − ℎ ⊗ 𝑔

where 𝑔, ℎ ∈ 𝐺. Observe the formal similarity with the trace identities in SL2(ℂ)

tr 𝐼2 = 2, (tr 𝑔)(trℎ) = tr 𝑔ℎ + tr 𝑔ℎ−1, and (tr 𝑔)(trℎ) = (trℎ)(tr 𝑔).

Set 𝒮(𝐺, 𝑅) ≔ Ten𝑅[𝐺]/𝔲; this is the skein module of 𝐺. Let [⋅] ∶ 𝐺 → 𝒮(𝐺, 𝑅) be the natural
inclusion-projection map. Then [𝑔] = [𝑔−1] (c.f. tr 𝑔 = tr 𝑔−1). The map 𝒮(⋅, 𝑅) is functorial in the

4for a counterexample with a linear group see https://en.wikipedia.org/wiki/Character_variety#Variants
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sense that any group homomorphism 𝑓 ∶ 𝐺 → 𝐻 induces a map 𝑓∗ ∶ 𝒮(𝐺, 𝑅) → 𝒮(𝐻, 𝑅), and 𝑓∗ is
an epimorphism if 𝑓 is an epimorphism.

(5.1) Theorem ([PS00, Theorem 2.8]). For any 3-manifold𝑀 and any ring 𝑅 there exists an isomor-
phism

̂𝜉 ∶ 𝒮(𝑀, 𝑅,−1) → 𝒮(𝐺, 𝑅)
such that for any knot 𝑘 in𝑀, ̂𝜉(𝑘) = −[𝛾] where 𝛾 is an element of 𝜋1 representing 𝑘.

(5.2) Slogan. The classical limit of the skein algebras in a manifold𝑀 is a trace algebra of representa-
tions 𝜋1(𝑀) → SL2(𝑅).

Theway to formalise this is via work of Brumfiel andHilden (Contemp. Math. 1995) summarised
in [PS00, §3]. For the time being let 𝐺 be any group and let 𝑅 be a ring. Define an ideal 𝔟𝔥 ⊲ 𝑅[𝐺]
generated by elements of the form

𝑔(ℎ + ℎ−1) − (ℎ + ℎ−1)𝑔

for 𝑔, ℎ ∈ 𝐺. We define the Brumfiel–Hilden algebra to be the 𝑅-algebra 𝐻𝑅(𝐺) = 𝑅[𝐺]/𝔟𝔥. The
point of these algebras is the following observation. Let 𝜄 ∶ 𝐻𝑅(𝐺) → 𝐻𝑅(𝐺) be the involution
[𝑔] ↦ [𝑔−1]. Let 𝜄 ∶ 𝑀2(𝑅) → 𝑀2(𝑅) be the involution (𝑎, 𝑏|𝑐, 𝑑) ↦ (𝑑, −𝑏| − 𝑐|𝑎) (so 𝜄 restricts
to inversion in the special linear group). Then any homomorphism 𝑓 ∶ 𝐺 → SL2(𝑅) extends to a
homomorphism ̂𝑓 ∶ 𝐻𝑅(𝐺) → 𝑀2(𝑅) such that 𝜄 ̂𝑓 = ̂𝑓𝜄, and every homomorphism 𝐻𝑅(𝐺) → 𝑀2(𝑅)
that is involution-preserving is an extension of an SL2(𝑅) representation of 𝐺 in this way.

Let 𝑇𝐻𝑅(𝐺) be the subalgebra of 𝐻𝑅(𝐺) generated by elements [𝑔] + [𝑔−1] for 𝑔 ∈ 𝐺.

(5.3) Theorem ([PS00, Theorem 3.2, Corollary 3.5, Theorem 3.6, Corollary 3.7]). The map 𝜓 ∶
𝒮(𝐺, 𝑅) → 𝑇𝐻𝑅(𝐺) defined by extending 𝜓([𝑔]) = [𝑔] + [𝑔−1] linearly is well-defined and an epi-
morphism. If one of the following holds:

1. 𝐺 is Abelian

2. 𝐺 is free

3. 𝐺 is a surface group

4. 𝐺 is a (2, 2𝑘 + 1) torus knot group for 𝑘 ≥ 0

then 𝜓 is an isomorphism and both 𝒮(𝐺, 𝑅) and 𝑇𝐻𝑅(𝐺) are free 𝑅-modules. If 1/2 ∈ 𝑅 then 𝜓 is an
isomorphism but we get no information about freeness.

Observe that the groups in theorem (5.3) are exactly the (torsion free) groups which can arise as
representations in the Riley slice,

Fix now an oriented surface 𝑆. Later wewill restrict to the two-punctured disc in analogywith the
decomposition of every Riley group into a pair of Fuchsian groups uniformising such discs (equiva-
lently decomposition of the corresponding knot-with-deleted-unknotting-tunnel into two cleanpieces
along a disc with either zero or two deleted points). Let 𝐼 = [−1, 1]. We will consider 𝒮(𝑆 × 𝐼, 𝑅, 𝓆).
Observe first that these modules admit an algebra structure, where for two framed links 𝐷1 and 𝐷2,
𝐷1 ⋅ 𝐷2 is defined to be ‘embed 𝐷1 in 𝑆 × [0, 1] and 𝐷2 in 𝑆 × [−1, 0] and concatenate’. This is clearly
associative but not necessarily commutative and it extends bilinearly to the whole skein module.

(5.4) Proposition ([PS00, Fact 4.1, Lemma 4.2, Corollary 4.3]). For any surface 𝑆, any ring 𝑅, and
any 𝓆 ∈ 𝑅 invertible:
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1. (𝑅-module structure) 𝒮(𝑆 × 𝐼, 𝑅, 𝓆) is free over 𝑅 with basis ℬ(𝑆) that is one representative from
every isotopy class of link in 𝑆 with no homotopically trivial components with the framing parallel
to 𝑆.

2. (𝑅-algebra structure) If 𝑆 is not the annulus and has the 𝑑 boundary components 𝜕1𝑆, ..., 𝜕𝑑𝑆, then
there is a natural isomorphism of 𝑅-algebras5

𝑅[𝜕1, ..., 𝜕𝑑] → 𝒮(𝑁1 ⋊ 𝐼 ∪⋯ ∪ 𝑁𝑑 × 𝐼, 𝑅, 𝓆)

where each𝑁 𝑖 is a regular neighbourhood of 𝜕𝑖𝑆 in 𝑆, which is defined by sending 𝜕𝑖 to the knot in
𝑁 𝑖 which is parallel to 𝜕𝑖𝑆. The inclusion𝑁1⋊𝐼 ∪⋯∪𝑁𝑑 × 𝐼 ⊂ 𝑆 × 𝐼 induces a monomorphism

𝑅[𝜕1, ..., 𝜕𝑑] → 𝒮(𝑆 × 𝐼, 𝑅, 𝓆)

3. A basis for 𝒮(𝑆 × 𝐼, 𝑅, 𝓆) over 𝑅[𝜕1, ..., 𝜕𝑑] is the set of all links in ℬ(𝑆) which have no boundary-
parallel components.

4. If 𝓆 is not a root of unity, then the image of 𝑅[𝜕1, ..., 𝜕𝑑] in 𝒮(𝑆, 𝑅, 𝓆) is the centre of the algebra.

We now come slowly to the first point. We are now in §7 of [PS00].

(5.5) Theorem. Suppose that 𝒮(𝐺,ℂ) has no nilpotent elements.6 In particular this is true when 𝐺:

1. is free non-Abelian; or

2. is the knot group of a 2-bridge knot.

Then there is an isomorphism of ℂ-algebras 𝒮(𝐺,ℂ) → ℂ[𝑋(𝐺)], where ℂ[𝑋(𝐺)] denotes the affine
coordinate ring of 𝑋(𝐺), that arises from the map

𝑇𝐻ℂ(𝐺) ∋ [𝑔] + [𝑔−1] ↦ (𝜒 ↦ 𝜒(𝑔)) ∈ ℂ[𝑋(𝐺)]

and theorem (5.3).

Let us recall some algebraic geometry in a hand-wavy way. If 𝑉 is a variety over ℂ, then its coor-
dinate ring ℂ[𝑉] is the ring of polynomial maps 𝑉 → ℂ. There is a duality whereby algebraic maps
𝜙 ∶ 𝑉 → 𝑊 translate to ℂ-algebra homomorphisms 𝜙∗ ∶ ℂ[𝑊] → ℂ[𝑉]: if 𝑓 ∶ 𝑊 → ℂ is a map
then 𝜙∗(𝑓)(𝑣) = 𝑓(𝜙(𝑣)) is the corresponding element of ℂ[𝑉]. Homomorphisms ℂ[𝑉] → ℂ are in
duality with inclusion maps of points into 𝑉 , since ℂ is the coordinate ring of a single point. Details
may be found e.g. in [Sha13].

Now suppose 𝜒 ∶ 𝐺 → ℂ is some SL(2, ℂ)-character of 𝐺, i.e. a point of 𝑋(𝐺). By the dualities
just described, we obtain a homomorphism ℂ[𝑋(𝐺)] → ℂ, and therefore a homomorphism ℎ𝜒 ∶
𝒮(𝐺, ℂ) → ℂ,

ℎ𝜒(𝑔) = 𝜒(𝑔).
Conversely every homomorphism 𝒮(𝐺,ℂ) → ℂ arises from a character of 𝐺. This really formalises
slogan (5.2).

Let Γ𝜌 = ⟨𝑋, 𝑌⟩ be free and represented in SL(2, ℂ) with tr𝑋 = tr𝑌 = 2. We claimed above that
the geometry of ℍ3/Γ𝜌 is dependent only on the combinatorial data {(𝑝/𝑞, tr𝑊𝑝/𝑞) ∶ 𝑝/𝑞 ∈ ℚ}. It
follows from the theory of Keen and Series that for each 𝑝/𝑞 there is a smooth real curve 𝒫𝑝/𝑞 such

5The right-hand algebra here is over a non-connected manifold. If𝑀 = 𝑀1∐𝑀2 then 𝒮(𝑀,𝑅,𝓆) = 𝒮(𝑀1, 𝑅, 𝓆) ⊗
𝒮(𝑀2, 𝑅, 𝓆).

6If there are nilpotents, we don’t get an affine cordinate ring, and instead we get the non-reduced coordinate ring of the
character scheme.
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Figure 7: Pushing 𝛾1/2 onto a twice-punctured disc gives a projection of the trefoil knot (but wrong
crossing choices to be a diagram).

that for 𝜌 ∈ 𝒫𝑝/𝑞, tr𝑊𝑝/𝑞 ∈ ℝ and the group Γ𝜌 decomposes into two Fuchsian groups 𝑃1 and 𝑃2, each
generated by two parabolics 𝑃1 = ⟨𝑓1, 𝑔1⟩ and 𝑃2 = ⟨𝑓2, 𝑔2⟩, with 𝑊𝑝/𝑞 = 𝑓1𝑔1 = 𝑓2𝑔2. Each of these
groups acts on some round disc inΩ(Γ𝜌) to glue it up into a twice-punctured disc, c.f. §2.3 of [EMS24]
for details. Let 𝑆 be the topological disc with two holes. We aremotivated to study 𝒮(𝑆×𝐼, ℂ, 𝓆) since
the manifold 𝑆 × 𝐼 is homeomorphic to ℍ3/Γ𝜌 for all 𝜌 in the Riley slice. Since Γ𝜌 ≃ 𝜋1(𝑆 × 𝐼) ≃ 𝐹(2)
is free we may utilise all the theory above without hassle. We find that

𝒮(𝑆 × 𝐼, ℂ, −1) = 𝒮(𝐹(2), ℂ) = ℂ[𝑋(𝐹(2))].

That is, formalℂ-linear combinations of framed links in 𝑆×𝐼 are in bijectionwithmaps𝑋(𝐹(2)) → ℂ.
As described above a basis for 𝒮(𝑆 × 𝐼, ℂ, −1) over ℂ comes from links in 𝑆 with non homotopi-
cally trivial components. The corresponding maps 𝑋(𝐹(2)) → ℂ are the maps ‘write down a 𝐹(2)-
representative in 𝜋1 and take its character map’. Observe that the Farey words in general cannot be
pushed onto a single surface 𝑆. In figure 7 we show the example of the 1/2 word.

It does not work to take the vertical framing. Does taking the frame normal to 𝑆0,4 give the
Farey word out of the formal skein algebra (we should, the simple closed curves on the disc are
[𝑋], [𝑌], [𝑋𝑌])?

Anyway the Farey words do not appear special here. This makes sense because we are working
purely topologically, we are not detecting any of the residual knot structure. We also have not got
any information about discreteness. We need to therefore impose more structure than just the topo-
logical/compression disc decomposition, and it seems like looking at skein algebras related to the
2-punctured disc is somehow not carrying enough data to recover the Riley slice. Perhaps we need to
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Figure 8: The unit element 1 ∈ 𝑅 and the four generators of 𝑇𝐿5(𝓆).
Kilom691, CC BY-SA 3.0, via Wikimedia Commons.

consider all the structure carried in Teich(𝑆0,4). Alternatively, instead of projecting to the disc per-
haps we should be studying the piece of 𝛾𝑝/𝑞 which actually lies on the disc and fix the combinatorial
structure of the intersections with the boundary—of course this only recovers 𝑞 and not 𝑝.

§5.3. Unknotting tunnels

Enigmatic remarks of Sakuma [Sak98] together with hints in other parts of the literature [Elz+24;
DT24; MOV24; BS22] suggest that there is a concrete pathway between the representation theory
outlined above and the quantum invariants of 3-manifolds obtained from unknotting tunnels of 2-
bridge links and that there should be some equivalence with the theory of closed 3-braids [Bir85].
More precisely, quantum knot invariants should be explicitly obtained in terms of the words 𝑊𝑝/𝑞
via the latter’s interpretation as unknotting tunnels. Sakuma points us in particular towards work of
Yokota, and we begin by following [MSY96]. However, at this stage I have been unable to identify
much representation theory out of this direction.

Let 𝐷𝑙 denote an oriented disc with an even number 𝑙 of distinguished points. More generally
𝐷𝑙1+⋯+𝑙𝑛 denotes a disc with 𝑛 distinct arcs on its boundary ordered according to the orientation,
each with the specified number of points. We can now study the skein algebra 𝒮(𝐷𝑙, 𝑅, 𝓆) where we
allow not just multicurves with loops in 𝐷𝑙 but also those with framed arcs which begin and end at
the specified boundary points. Yokota requires 𝑅 = ℂ and 𝓆 to be norm one.

The Temperley-Lieb algebra 𝑇𝐿𝑛(𝓆) is the algebra 𝒮(𝐷𝑛,𝑛, 𝑅, 𝓆) where 𝑅 is commutative. It is
generated by 𝑛 − 1 elements 𝑒1, ..., 𝑒𝑛−1 (shown for 𝑇𝐿5(𝓆) in figure 8) satisfying the relations

• 𝑒2𝑖 = 𝓆𝑒𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 − 1;

• 𝑒𝑖𝑒𝑖+1𝑒𝑖 = 𝑒𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 − 2;

• 𝑒𝑖𝑒𝑖−1𝑒𝑖 = 𝑒𝑖 for all 2 ≤ 𝑖 ≤ 𝑛 − 1;

• 𝑒𝑗𝑒𝑖 = 𝑒𝑖𝑒𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 with |𝑖 − 𝑗| ≠ 1.

Observe the similarity with the braid relations.
We need to know that there exist such things as the Jones-Wenzel idempotents. These are the

unique non-zero elements 𝑓𝑛 ∈ 𝑇𝐿𝑛(𝓆) such that

𝑓2𝑛 = 𝑓𝑛 and 𝑒𝑖𝑓𝑛 = 0 = 𝑓𝑛𝑒𝑖 for all 𝑖.

The exact construction is not important, it can be found e.g. in [Yok95, p. 546]. In diagrams it is
represented by a box with 𝑛 inputs and outputs (of course, you line up a number of the elements 𝑒𝑖
and 1 next to each other).

Suppose you connect 𝑓𝑛 up to itself by 𝑛 parallel strands and embed the resulting diagram into §2
(left image of figure 9). The Kauffman bracket of the result is denoted by Δ𝑛, and one can compute
that it is

Δ𝑛 = (−1)𝑛𝓆
2(𝑛+1) − 𝓆−2(𝑛+1)

𝓆2 − 𝓆−2
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Figure 9: The diagrams for Δ𝑛 (left) and Γ(𝑥, 𝑦, 𝑧) (right). From figures 2 and 3 of [Lic93].

Figure 10: From weighted trivalent graphs to the Temperley-Lieb algebra. From figure 9 of [Yok95].

(this looks like the factor out the front of the Alexander polynomial of the closed braid, which is no
accident). If 𝑎, 𝑏, 𝑐 ∈ ℤ≥0 satisfy the admissibility condition that there exist 𝑥, 𝑦, 𝑧 ∈ ℤ≥0 with
𝑥 + 𝑦 = 𝑎, 𝑦 + 𝑧 = 𝑏, 𝑧 + 𝑥 = 𝑐, then we can connect up three Jones-Wenzel idempotents 𝑓𝑎, 𝑓𝑏, 𝑓𝑐
by three loops of 𝑥, 𝑦, 𝑧 parallel lines (right image of figure 9). The resulting Kauffman bracket is

Δ𝑎,𝑏,𝑐 = Γ(𝑥, 𝑦, 𝑧) =
Δ𝑥+𝑦+𝑧!Δ𝑥−1!Δ𝑦−1!Δ𝑧−1!
Δ𝑦+𝑧−1!Δ𝑧+𝑥−1!Δ𝑥+𝑦−1!

where Δ𝑛! = Δ𝑛Δ𝑛−1⋯Δ0 and Δ−1! = 0.
Now let Γ be a trivalent graph embedded in 𝕊3. Assign to each edge 𝑒 ∈ 𝐸(Γ) a weight 𝜔(𝑒) such

that for every vertex the weights 𝜔(𝑒1), 𝜔(𝑒2), 𝜔(𝑒3) assigned to the three incident edges 𝑒1, 𝑒2, 𝑒3
satisfy the admissibility condition. If this is done then every edge 𝑒 of Γ can be replaced by 𝜔(𝑒)
parallel curves passing through a copy of 𝑓𝑛 (figure 10). Applying the Kauffman bracket produces an
invariant 𝑌 Γ,𝜔(𝓆) of Γ called the Yamada invariant, defined up to multiplication by ±𝓆±𝑛.

Suppose that 𝑘 ⊂ 𝕊3 is a knot. We say that 𝑘 is strongly invertible if there is an involution ℎ
of 𝕊3 which preserves 𝑘 such that Fix(ℎ) is a circle intersecting 𝑘 in two points. (Compare with the
proof of theorem (2.2).) Let 𝑝 ∶ 𝕊3 → 𝕊3/ℎ = 𝕊3 be the projection map. Set◯ = 𝑝(Fix(ℎ)) and
𝛾 = 𝑝(𝑘);◯ is an unknot, 𝛾 is an arc which intersects◯ at its endpoints, and 𝛾 ∪◯ is the spine of
an unknotted genus two handlebody, a 𝜃-curve.

Figure 11: Left: half of a three-bridge presentation for a 𝜃-graph. Right: half of a two-bridge
presentation. From figure 1.1 of [MSY96].
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Figure 12: Left: a three-bridge presentation for a 𝜃-graph. Right: a two-bridge presentation.

Recall that a 𝑛-bridge presentation for a link 𝑘 ⊂ 𝕊3 is a genus zero Heegaard splitting 𝐴 ∪𝕊2 𝐵
of 𝕊3 which intersects 𝑘 transversely in exactly 2𝑛 points, such that 𝑘 ∩𝐴 (resp. 𝑘 ∩ 𝐵) can be moved
via an ambient isotopy of 𝐴 (resp. 𝐵) to 𝑛 disjoint curves on 𝜕𝐴 (resp. 𝜕𝐵). We define similar things
now for the quotient 𝜃-graphs of the previous paragraph.

• 𝛾 ∪◯ has a 3-bridge decomposition if 𝕊3 admits a genus zero Heegaard splitting which is a
3-bridge presentation for the unknot◯with the property that 𝛾 is embedded as an unknotted
arc inside one of the balls. That is, in one of the balls we get an isotopy of three disjoint arcs to
the boundary sphere like usual, but in the other ball we get an isotopy of an unknotted arc and
an ‘H’ to the boundary, c.f. left image of figure 11.

• 𝛾 ∪◯ has a 2-bridge decomposition if 𝕊3 admits a genus zero Heegaard splitting which is a 2-
bridge presentation for the unknot◯with the property that 𝛾 intersects𝕊2 transversely exactly
once and the two bridge isotopies also move the piece of 𝛾 inside each ball to the boundary; i.e.
in each ball we get an isotopy of an unknotted arc and a ‘T’ to the boundary, c.f. right image of
figure 11.

(5.6) Theorem ([MSY96, Theorems 1.2 and 3.2]). 1. A knot 𝑘 ⊂ 𝕊3 has tunnel number one if and
only if 𝑘 admits a strong inversion such that the corresponding 𝜃-curve𝐺 has a 3-bridge decompo-
sition. If the 𝜃 curve edges are labelled 𝛼, 𝛽, 𝛾 such that 𝛼∪𝛽 has an induced 1-bridge presentation
and𝛼∪𝛾 has an induced 2-bridge presentation (left of figure 12), and𝜔(𝛽) = 𝑏 and𝜔(𝛾) are fixed,
then

∑
𝑎

Δ𝑎
Δ2𝑎,𝑏,𝑐Δ𝑏Δ3𝑐

||𝑌 𝐺,𝜔(𝑒𝑖𝜓)||
2 ≤ 1

where 𝑎 = 𝜔(𝛼) ranges over all admissable values and where |𝜓| ≤ 𝜋/2(𝑏 + 2𝑐 + 1).

2. A knot 𝑘 ⊂ 𝕊3 admits a genus 1 one-bridge decompisition if and only if 𝑘 admits a strong inversion
such that the corresponding 𝜃-curve 𝐺 has a 2-bridge decomposition. If the 𝜃 curve edges are
labelled 𝛼, 𝛽, 𝛾 such that 𝛼 ∪ 𝛽 has an induced 1-bridge (right of figure 12), and 𝜔(𝛽) = 𝑏 and
𝜔(𝛾) are fixed, then

||𝑌 𝐺,𝜔(𝑒𝑖𝜓)|| ≤ Δ𝑎,𝑏,𝑐Δ𝑐
where 𝑎 = 𝜔(𝛼) is some admissable value and where |𝜓| ≤ 𝜋/(𝑎 + 𝑏 + 3𝑐 + 2).

The primary ingredient in the proof of this theorem is the introduction of a Hermitian form on a
space which we will now construct. Suppose we have a marked disc 𝐷 = 𝐷𝑙1+⋯+𝑙𝑛 . We can consider
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we can consider the subspaceℋ(𝑙1 +⋯+ 𝑙𝑛) constructed by taking elements of the skein algebra of
𝐷 and plumbing onto each arc a Jones-Wenzel idempotent 𝑓𝑙𝑖 . There is a natural isomorphism

(⋅)∗ ∶ 𝒮(𝐷𝑙1+⋯+𝑙𝑛 , ℂ, 𝓆) → 𝒮(𝐷𝑙𝑛+⋯+𝑙1 , ℂ, 𝓆)

which is obtained by taking a reflecton of 𝐷𝑙1+⋯+𝑙𝑛 (taking complex conjugates of coeffiecients and
reflections of diagrams on the interior). One may check using the definition of 𝑓𝑚 that 𝑓∗𝑚 = 𝑓𝑚.
Hence ∗ restricts to a map ℋ(𝑙1 + ⋯ + 𝑙𝑛) → ℋ(𝑙𝑛 + ⋯ + 𝑙1). Given any two elements 𝑢, 𝑣 ∈
ℋ(𝑙1 +⋯+ 𝑙𝑛), we may glue 𝑢 and 𝑣∗ along their boundaries identified in the natural way in order
to obtain a diagram in 𝕊2. Taking the Kauffman bracket gives a complex number. Multiplying by
𝑖𝑙1+⋯+𝑙𝑛 gives a Hermitian form 𝜃 ∶ ℋ(𝑙1 + ⋯ + 𝑙𝑛) × ℋ(𝑙1 + ⋯ + 𝑙𝑛) → ℂ. One can show that
it is positive definite. If 𝐵𝑛 is the Artin braid group on 𝑛 strands then 𝜉 ∈ 𝐵𝑛 induces a natural
isomorphismℋ(𝑙1 +⋯+ 𝑙𝑛) → ℋ(𝑙𝜉(1) +⋯ + 𝑙𝜉(𝑛)), and that 𝜃(𝜉(𝑢), 𝜉(𝑣)) = 𝜃(𝑢, 𝑣) for all 𝑢, 𝑣, 𝜉.

The connection with the Heegard splitting/bridge decomposition theory is that the bridge de-
composition induces an element of the (in the 3-bridge case) braid group 𝐵6. If the labelling is as in
figure 12 then this element 𝜉 ∈ 𝐵6 induces a unitary operator (introducing appropriate twists where
needed to make the vertex labels correctly ordered)

𝜉 ∶ ℋ(𝑏 + 𝑐 + 𝑏 + 𝑐 + 𝑐 + 𝑐) → ℋ(𝑏 + 𝑏 + 𝑐 + 𝑐 + 𝑐 + 𝑐).

The inequalities in the theorem statement come from explicitly computing the Yamada invariants,
which can be done in terms of a specific orthonormal basis for the Hermitian form 𝜃. This does not
motivate geometrically the exact choice of the Yamada invariant, unfortunately: maybe one is lead
to the Hermitian form first, and then one asks for an orthonormal basis, writes down the inequalities
𝜃(𝑢𝑖, 𝑢𝑗) = 𝑒𝑖,𝑗 , and then observes that this gives a graph invariant.

§5.4. Statistical algebraic geometry and the curve complex

We now introduce a basis of the skein algebra 𝒮(𝑀) due to D. Thurston [Thu14], but it seems to
have originally arisen in the world of cluster algebras. This basis is of interest to various people as
the expansions of all products of basis elements are conjectured to have positive coefficients over ℤ.7
This positivity is verified in some cases e.g. for the specialisation 𝓆 = 1 by Thurston and for 𝑆0,4 and
𝑆1,1 (the sporadic hyperbolic surfaces) by Bousseau [Bou23, Theorem 1.1].

Define the Chebyshev polynomials8 by

Ч0(𝑥) = 2, Ч1(𝑥) = 𝑥, and for𝑛 ≥ 2, Ч𝑛 = 𝑥Ч𝑛−1(𝑥) − Ч𝑛−2(𝑥).

One observes that Ч𝑛(𝜆 + 𝜆−1) = 𝜆𝑛 + 𝜆−𝑛 for all 𝑛. Let 𝛾 be an isotopy class of multicurve on 𝑆𝑔,𝑛.
Then in 𝒮(𝑀), 𝛾 = 𝛾𝑛11 ⋯𝛾𝑛𝑘𝑘 where all the 𝑛𝑗 are positive integers andwhere all the 𝛾𝑗 are connected.
Define Ч(𝛾) ≔ Ч𝑛1(𝛾1)⋯Ч𝑛𝑘(𝛾𝑘). Then the set of all Ч(𝛾) for all multicurves 𝛾 is a ℤ[𝓆±1]-basis for
𝒮(𝑀). In fact it is invariant under Mod(𝑆).

1. Quantised character variety of 𝜋1(𝑆0,4) → SL(2, ℂ): https://arxiv.org/pdf/1811.09293

2. This is related to the skein algebras through [Bou23] see also https://rheapalakbakshi.
com/wp-content/uploads/2020/10/bousseau_beamer_skein_gwu_2020.pdf.

7Positivity seems to be very important generally in this area e.g. in scattering theory many people now study the positive
Grassmannian and objects like amplitudihedra.

8We note in passing that the traces of the words 𝑊𝑝/𝑞 defined above seem to be very closely related to the Chebyshev
polynomials as well [EMS22].
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3. Should obtain in this way some kind of path from quantised rep spaces to skein algebras. Qn:
How are quantised character varieties related to the classical varieties?

4. We also cannot in this way see where 𝐵3 comes in. For this we should consider the Heegaard
splitting point of view, perhaps fromhttps://link.springer.com/chapter/10.1007/bfb0101200.
Using (1–3) we get a relation between rep theory and the skein algebra, does this book chapter
also give such a relation?

https://arxiv.org/pdf/1805.06062
Cluster algebras: https://www.youtube.com/watch?v=BfVTf-3HY2E
Blanchet talk on Jones polynomials: https://www.youtube.com/watch?v=fVF_Yls4v40&t=

2070s
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