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§1. Mostow–Prasad rigidity theorem
Historical note. The result was proved for cocompact lattices by Mostow (1973) and improved to
general (cofinite) lattices by Marden (1974). The full theorem was independently proved by Prasad
(1973). See the introduction of [Mos73] for further historical context.
(1.1) Theorem (General statement, [Mos73, Theorem A’]). Let 𝐺 be a semisimple Lie group with
𝑍(𝐺) = 1 and no nontrivial compact normal subgroups. Let Γ ≤ 𝐺 be discrete and cofinite (i.e. Γ is a
lattice).

Given any two such pairs (𝐺, Γ) and (𝐺′, Γ′) equipped with an isomorphism 𝜃 ∶ Γ → Γ′, there exists
a global isomorphism ̃𝜃 ∶ 𝐺 → 𝐺′ which extends 𝜃, provided thaat there is no factor 𝐺𝑖 of 𝐺 which is
isomorphic to PSL(2, ℝ) and such that Γ𝐺𝑖 is closed in 𝐺.

Taking𝐺 = Isom(ℍ𝑛) (𝑛 ≥ 3), ̃𝜃 preserves themaximal compact subgroup of𝐺 and so descends to
the quotient spaceℍ𝑛 andwe find that ̃𝜃 induces Γ-invariant isometriesℍ𝑛 → ℍ𝑛. This is the content
of the hyperbolic version of the theorem. We will restrict to 𝑛 = 3 for simplicity of exposition, but
the proof which we outline goes through for arbitrary 𝑛.
(1.2) Theorem (Hyperbolic rigidity). Suppose that we have two complete finite volume hyperbolic 3-
manifolds𝑀 and 𝑁 and an isomorphism 𝜃 ∶ 𝜋1(𝑀) = Γ → Γ′ = 𝜋1(𝑁). Then there exists an isometry
𝑓 ∶ 𝑀 → 𝑁 such that 𝜃 = 𝑓∗ (i.e. 𝑓∗ ∶ Hom(𝕊1,𝑀) → Hom(𝕊1, 𝑁) is 𝑓∗(𝛾)(𝑧) = 𝑓(𝛾(𝑧))).

We sketch the proof following §8.5 of [Kap01]1. The proof is basically in two parts:
• Construct from 𝜃 a quasiconformal deformation which induces it at the level of the conformal
boundary.

• Show that this deformation is actually aMöbius transformation and so 𝜃 is induced by an inner
automorphism of Isom(ℍ3).

*School of Mathematics, Monash University, Melbourne
1actually I prefer the exposition in [MT98] if you can get hold of a copy, but it’s less accessible
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§1.1. Some simplifying observations.

We see first that Γ and Γ′ are geometrically finite (since geometric finiteness is equivalent to having a
finite volume convex core [Mar16, §3.11, fact (2)]). In particular, all parabolics are rank two [Mar16,
Theorem 3.3.4]. We may conclude that 𝜃 is type-preserving (if 𝛾 ∈ Γ is parabolic then it lies in an
abelian subgroup so is detectable by isomorphisms at the group level).

§1.2. Some hard theorems of Tukia.

We recall that a quasiconformal map is a homeomorphism 𝑓 ∶ 𝑈 → ℂ̂ which is differentiable a.e.
in the open set 𝑈 such that at points where it is defined the quotient 𝑓 ̄𝑧/𝑓𝑧 is uniformly bounded
by some 𝑀 < ∞. These objects are familiar from Teichmüller theory, and if you are not familar
the following elementary textbook has a nice exposition: [IT87]. The idea is that 𝑓 ̄𝑧/𝑓𝑧 measures
the distorsion of circles into ellipses on each tangent space 𝑇𝑧𝑈 and so the condition is that the
infinitesimal action of 𝑓 sends circles to ellipses of uniformly bounded eccentricity.

We recall next that a map 𝑓 ∶ (𝑋, 𝜌) → (𝑌, 𝜚) (not necessarily cts) is a quasi-isometry if there
exist constants 𝐴 ≥ 1, 𝐵 ≥ 0, and 𝐶 ≥ 0 such that the following hold:

1. (coarsely isometric) for all 𝑥, 𝑥′ ∈ 𝑋 , 1
𝐴
𝜌(𝑥, 𝑥′) − 𝐵 ≤ 𝜚(𝑓(𝑥), 𝑓(𝑥′)) ≤ 𝐴𝜌(𝑥, 𝑥′) + 𝐵.

2. (coarsely surjective) for all 𝑦 ∈ 𝑌 , there exists some 𝑥 ∈ 𝑋 such that 𝜚(𝑓(𝑥), 𝑦) ≤ 𝐶.

A good reference for Gromov-type things is [BH99]. The point is that just as isometries of ℍ3 extend
to conformal maps on ℂ̂, quasi-isometries on ℍ3 extend to quasi-conformal maps on ℂ̂.

(1.3) Theorem ([Kap01, Theorem 8.16]). If 𝜃 ∶ Γ → Γ′ is a type-preserving isomorphism of ge-
ometrically finite groups uniformising manifolds 𝑀, 𝑁 respectively, then there exists a 𝜃-equivariant
quasiconformal map ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛−1. In particular 𝜃(𝛾) = ℎ𝛾ℎ−1 for all 𝛾 ∈ Γ so Γ′ = ℎΓℎ−1.

Sketch of proof. Fix 𝑥, 𝑥′ ∈ ℍ3. Consider:

Γ Γ𝑥 ℍ3

Γ′ Γ′𝑥′ ℍ3

𝜃 ̂𝜃

By Gromov hyperbolicity theory, the horizontal maps sending group elements to their vertices
in the embedded Cayley graphs are quasi-isometries. Since Γ and Γ′ are isomorphic they are quasi-
isometric in the Gromov (path) metric via 𝜃. Hence the induced map ̂𝜃 given by ̂𝜃(𝛾𝑥) = 𝜃(𝛾)𝑥 for
𝛾𝑥 ∈ Γ𝑥 is a quasi-isometry and we get a 𝜃-equivariant quasiisometry ℍ3 → ℍ3 which extends to a
𝜃-equivariant quasiconformal map ℂ̂ → ℂ̂. mAk

We have seen therefore that Γ and Γ′ are quasiconformal conjugates. We now observe that they
must be conjugate in Isom(ℍ3). SinceΛ(𝑧) is uncountable but there are only countablymanyparabolic
fixed points in Γ we can pick an element of 𝑧 ∈ Λ(Γ) which is not a parabolic fixed point and such
that the quasiconformal map is differentiable and nonsingular at 𝑧.

(1.4) Theorem ([Kap01, Theorem 8.34], [MT98, Theorem 3.34]). If Γ ≤ Isom(ℍ3) is discrete, non-
elementary, and geometrically finite, 𝜁 ∈ Λ(Γ) is a non-parabolic fixed point2, and 𝑓Γ𝑓−1 is a quasi-
conformal conjugate of Γ such that 𝑓 is differentiable at 𝑧 with 𝑑𝜁𝑓 ≠ 0, then 𝑓 ∈ 𝕄.

2Kapovich and others require 𝜁 to be a point of approximation: if you are worried see [Mas87, §VI.C.3].
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Sketch of proof. Without loss of generality, 𝜁 = 0 and 𝑓(0) = 0 and 𝑓(∞) = ∞. Let 𝛾𝑛 be a sequence
of elements such that 𝛾𝑛(𝑗) → 0 with accumulation occuring inside a conical neighbourhood of the
vertical axis (this is where we use that 𝜁 is a point of approximation). For each 𝑛 let 𝜆𝑛 be the vertical
coordinate of 𝛾𝑛(𝑗). Then the hyperbolic distance 𝑑(𝛾𝑛(𝑗), 𝜆𝑛𝑗) is bounded. from above. Consider
the sequence of Möbius transformations 𝑧 ↦ 𝛾−1𝑛 (𝜆𝑛𝑧); this sequence is relatively compact in 𝕄 (it
is closed and has bdd norm) so we can choose a convergent subsequence that goes to an element of
𝕄.

Now observe that for all 𝑛, 𝑓𝛾𝑛𝑓−1 ∈ 𝕄 and so is

𝜂𝑛(𝑧) =
𝑓𝛾𝑛𝑓−1(𝑧) − 𝑓(0)

𝜆𝑛
But

𝜂𝑛𝑓(𝛾−1𝑛 𝜆𝑛(𝑧)) = 𝜂𝑛𝑓𝛾−1𝑛 𝑓−1𝑓(𝜆𝑛(𝑧)) =
𝑓(𝜆𝑛𝑧) − 𝑓(0)

𝜆𝑛
where as 𝜆𝑛 → 0 the right hand side converges to the linear map 𝑧 ↦ 𝑑0𝑓(𝑧) while in the left
hand side 𝛾−1𝑛 𝜆𝑛 goes to an element of 𝕄 and hence 𝑓 goes to a linear map modulo pre- and post-
composition by elements of𝕄 (since the right hand side converges 𝜂𝑛 converges and elements of𝕄
can converge only to constant maps or Möbius transformations): we conclude that 𝑓 is an element
of𝕄. mAk

§1.3. Volume as a knot invariant

(1.5) Corollary. If two finite-volume hyperbolic 3-manifolds are homeomorphic, then they are isomet-
ric. In particular volume is a homeomorphism invariant. mAk

Recall that a knot is prime if it does not decompose under connected sum, i.e. 𝑘 is prime iff
whenever 𝑘 = 𝑘′⊕𝑘″ one of 𝑘′ or 𝑘″ is the unknot, and a knot is tame if it is isotopic to a knot which
is made up of finitely many straight line segments.

(1.6) Theorem (Gordon–Luecke, 1989 [GL89]).

1. Complements are link invariants: If 𝑘 and 𝑘′ are links and 𝑘 ∼ 𝑘′, then (𝕊3 ∖𝑘) ≃homeo. (𝕊3 ∖𝑘′).

2. Knots are determined by their complement: If 𝑘 and 𝑘′ are tame knots, then (𝕊3 ∖ 𝑘) ≃homeo.
(𝕊3 ∖ 𝑘′) if and only if 𝑘 ∼ 𝑘′.

3. Prime knots are determined by their fundamental group: If 𝑘 and 𝑘′ are tame prime knots, and
𝜋1(𝑘) ≃ 𝜋1(𝑘′), then 𝑘 ∼ 𝑘′. mAk

Remark. The Gordon–Luecke theorem does not hold for links [Rol03, §9.H].

(1.7) Corollary. If 𝑘 and 𝑙 are hyperbolic links and the volumes of 𝕊3 ∖ 𝑘 and 𝕊3 ∖ 𝑙 are different, then
𝑘 and 𝑙 are not isotopic.

It’s natural to ask if the is converse true — do hyperbolic volumes determine the knots? (Clearly
there is no hope for links.)

(1.8) Theorem. 1. Given some 𝑣 ∈ ℝ>0, the number of hyperbolic 3-manifolds with volume 𝑣 is
finite.

2. The set of all volumes ℱ3 is a well-ordered (in the induced order) non-discrete subset of ℝ>0.

3. Given any 𝑛 ∈ ℕ there exists some volume 𝑣 ∈ ℱ3 such that ||Vol−1(𝑣)|| = 𝑛. (Wielenberg, 1981)
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This theorem follows fromThurston’sDehn filling theorem (togetherwith a lot ofwork) by taking
sequences of Dehn surgeries ofmanifolds and looking at the convergence behaviour of their volumes.
The motivation behind this is the classification of incomplete hyperbolic structures on hyperbolic
manifolds, of which there are infinitely many.

§1.4. Generalisations of Mostow rigidity

Mostow rigidity is the statement that cofinite Kleinian groups (in particular they are of the first kind,
Λ(Γ) = 𝕊2) are quasiconformally rigid. The proof sketched above used the following: (i) all such
groups are geometrically finite; (ii) geometrically finite groups support no nontrivial quasiconformal
deformations of their limit set; (iii) the entire deformation (which is quasi-isometric on themanifold)
is detected by the action on the sphere as a quasiconformal motion.

The classical generalisation of (ii) is:

(1.9) Theorem (Sullivan rigidity, [Kap01, §8.6]). If𝐺 is a finitely generated (not necessarily geometri-
cally finite) Kleinian group, then any𝐺-equivariant quasiconformalmap supported onΛ(𝐺) (i.e. which
is conformal everywhere except on some positive measure subset of Λ(𝐺)) is conformal on ℂ̂. mAk

(Of course if Λ(𝐺) has measure zero this is not useful, but there exist groups which are infinite
volume but have positive measure limit sets, for example degenerate B-groups.) As a consequence,
any Kleinian group of the first kind is quasiconformally rigid.
Remark. What is the set of groups covered by Sullivan’s rigidity theorem but not Mostow’s? These
are groups with empty conformal boundary but which are not finite volume, and they are groups
uniformising manifolds where all ends are geometrically infinite ends [Mar16, §5.5].

The classical generalisation of (iii) still requires the groups to be geometrically finite. The point is
that you now have some domain of discontinuity Ω(𝐺) which can be deformed along with the limit
set, but that this deformation is the only possible kind of flexibility.

(1.10) Theorem (Marden-Tukia isomorphism, [Tuk85, Theorem 4.2]). Let𝐺 and𝐺′ be geometrically
finite non-elementary Kleinian groups and let 𝑓 ∶ Ω(𝐺) → Ω(𝐺′) be a homeomorphism inducing an
isomorphism 𝜙 ∶ 𝐺 → 𝐺′. Then 𝑓 can be extended to a homeomorphism 𝐹 of ℍ3 inducing 𝜙 such that
𝐹 is a Möbius transformation if 𝑓 is conformal or ifΩ(𝐺) = ∅. mAk

In less formal language, if a homeomorphism from one manifold to another restricts to a confor-
mal map on the boundary then the homeomorphism is globally Möbius and so induces an isometry.

The removal of the condition ‘geometrically finite’ in the Marden–Tukia isomorphism theorem
is known as the ending lamination theorem [Mar16, §5.7] and uses combinatorial techniques of an
entirely different flavour to the classical quasiconformal theory.

§2. Dehn fillings
Much of this section follows parts of Chapter 5 of [Pur20].

(2.1) Definition. Let𝑀 be a manifold with torus boundary component 𝑇, and let 𝛾𝑝/𝑞 be an isotopy
class of simple closed curves on 𝑡. The manifold obtained by attaching a solid torus to 𝑇 such that
𝛾𝑝/𝑞 bounds a disc is called the Dehn filling of𝑀 along 𝛾𝑝/𝑞.

(2.2) Definition. Let 𝑀 be a manifold, let 𝑘 be a knot in 𝑀, and let 𝑝/𝑞 ∈ ℚ̂. The manifold 𝑀′

obtained from𝑀 by drilling out a solid torus neighbourhood of 𝑘 and performing a 𝑝/𝑞 Dehn filling
along the result is called the result of Dehn surgery along 𝑘.

(2.3) Example (Lens spaces). Let 𝑘 be the unknot in 𝕊3. Then:
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1. 0/1 surgery gives 𝕊1 × 𝕊2. Proof: we are gluing two solid tori 𝕊1 × 𝔹2 meridian-to-meridian
and latitude-to-latitude: gluing the boundaries of the 𝔹2’s gives an 𝕊2 in each level of the 𝕊1 so
we end up with 𝕊1 × 𝕊2.

2. 𝑝/𝑞 surgery gives the lens space 𝐿(𝑝/𝑞) by definition. This is the quotient of𝕊3 ⊂ ℂ2 by (𝑤, 𝑧) ≡
(𝑒2𝜋𝑖/𝑝𝑤, 𝑒2𝜋𝑖𝑞/𝑝𝑧): to see this we consider the Clifford torus

𝐶 = 1
√2

𝕊1 × 1
√2

𝕊1 = { 1
√2

(𝑒𝑖𝜃, 𝑒𝑖𝜙) ∶ 0 ≤ 𝜃, 𝜙 < 2𝜋} ⊆ ℂ2

which is preserved by the action of 𝜁 ∶ (𝑤, 𝑧) ↦ (𝑒𝑖2𝜋/𝑝𝑤, 𝑒𝑖2𝜋𝑞/𝑝𝑧) and the meridian and
latitude descend under the quotient to the 𝑝/𝑞 curve on a torus in 𝐿(𝑝/𝑞) = 𝕊3/⟨𝜁⟩. For details
see [Hem76, pp. 20–23].

3. ±1/𝑛 surgery gives 𝕊3. Proof: when 𝑛 = 0 this is the ‘do nothing’ meridian-to-latitude gluing;
more generally this is the 𝐿(±1, 𝑛) lens space, in which case setting 𝑝 = ±1we get the quotient
of 𝕊3 by (𝑤, 𝑧) ≡ (𝑒2𝜋𝑖𝑤, 𝑒2𝜋𝑖𝑛𝑧) = (𝑤, 𝑧).

We take the following example from [PS97, §18].

(2.4) Example (Poincaré sphere). Consider the trefoil knot 𝑘 with the following diagram:

The Wirtinger presentation is

𝜋1(𝑘) = ⟨𝑥, 𝑦, 𝑧 ∶ 𝑥−1𝑧𝑥 = 𝑦, 𝑦−1𝑥𝑦 = 𝑧, 𝑧−1𝑦𝑧 = 𝑥⟩
= ⟨𝑥, 𝑦 ∶ 𝑥𝑦𝑥 = 𝑦𝑥𝑦⟩.

We pick a meridian (easy) and a longitude of the knot 𝑙 with linking number 1:

The 1/1 curve in this frame is easy to write down:

Hence the 1/1 Dehn surgery manifold 𝐷 has fundamental group

𝜋1(𝐷) = ⟨𝑥, 𝑦 ∶ 𝑥𝑦𝑥 = 𝑦𝑥𝑦, 1 = 𝑦𝑥𝑦−3𝑥𝑦⟩.
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Lemmista A. 𝐻1(𝐷, ℤ) = 0. Proof: The homology is the abelianisation:

𝐻1(𝐷, ℤ) = 𝜋1(𝐷)/[𝜋1(𝐷), 𝜋1(𝐷)] = ⟨𝑥, 𝑦 ∶ 𝑥𝑦𝑥 = 𝑦𝑥𝑦, 𝑦−2𝑥−1 = 𝑥𝑦−3, 𝑥𝑦 = 𝑦𝑥⟩.

The relators give us a system of two equations:

2𝑥 + 𝑦 = 𝑥 +2𝑦
−2𝑥 −2𝑦 = 𝑥 −3𝑦

− 𝑦 = 2𝑥 − 𝑦

i.e. 𝑥 = 0 and by back-substitution 𝑦 = 0. mAk
Lemmista B. 𝜋1(𝐷) ≃ 𝐴5. Proof: It is known that 𝐴5 = ⟨𝑎, 𝑏 ∶ 𝑎5 = 𝑏3 = (𝑏𝑎)2⟩; we may take

𝑎 = 𝑦 and 𝑏 = 𝑦𝑥 to obtain the change of variables and it is enough to show that the 𝜋1(𝐷) relations
hold in 𝐴5 and the 𝐴5 relations hold in 𝜋1(𝐷). mAk

As a corollary of the two lemmistae we have that the first homology of 𝐷 is trivial (agreeing
with 𝕊3) but the fundamental group is nontrivial (so 𝐷 is not homeomorphic to 𝕊3). We know that
dim𝐻1 = dim𝐻2 (Poincaré duality) and 0 = dim𝐻0 = dim𝐻3 so all homologies vanish. Therefore
𝐷 is a homology sphere, the Poincaré homology sphere.

The result of Dehn surgery in a hyperbolic manifold is usually hyperbolic. This follows from
the next theorem, which we first state in a rough sense: Let𝑀 be a 3-manifold homeomorphic to the
interior of a compactmanifoldwith boundary a single torus𝕋2 such that𝑀 admits a complete hyperbolic
structure. Then the space of all Dehn surgeries on𝑀 contains an open neighbourhood of the complete
structure.

More precisely, let 𝑀 be any 3-manifold with torus boundary 𝐶 (𝐶 is called a cusp torus) and
suppose that an incomplete hyperbolic structure is placed on𝑀, so the holonomy group 𝜋1(𝐶) is not
generated by parabolic elements. Then there is a natural map 𝐿 ∶ 𝜋1(𝐶) = 𝐻1(𝐶, ℤ) → ℂ given by
the complex length function, and this admits a canonical extension 𝐿 ∶ 𝐻1(𝐶, ℝ) → ℂ. (In other
words we extend from simple closed curves to arbitrary laminations of one leaf.) We must be very
careful here (and it is not explained very well in either [Pur20, Chapter 6] or the primary source
[Thu79, §4.5]) to define complex length not in the traditional way for PSL(2, ℂ) but exactly by linear
extension (so 𝐿(𝑝𝛼+𝑞𝛽) ∶= 𝑝𝐿(𝛼)+𝑞𝐿(𝛽)). The point is that this defines a lift of the usual complex
length function [Mar16, Exercise 7–20] from 𝜋1(𝐶) → ℝ + 𝑖[0, 2𝜋) to 𝜋1(𝐶) → ℝ + 𝑖ℝ.
Remark. Amore precise definition is given in Section 5 of [HK08], where the holonomy elements are
considered to come from the Euclidean development and not the hyperbolic development, in which
case the quantity of twisting is visible just in the same way as it is when defining Fenchel–Nielsen
coordinates for the Teichmüller space of the torus [FM12, §10.6]: it is physically a translation length
projected onto one axis of the torus, rather than a loxodromic element that picked up a twist while
walking along a path.

The fundamental example is a homology class with complex length 2𝜋𝑖. This corresponds to a
curve which represents a meridian (since it has translation length zero along the core of the torus—
which is the projection of the shared axis of the generators—and holonomy 2𝜋 around the axis). In
the completion of𝑀 the curve 𝛾 bounds a smooth hyperbolic disc. Hence the completion of𝑀 with
this hyperbolic structure is a manifold homeomorphic to the Dehn filled manifold along 𝛾 and we
therefore get a complete hyperbolic structure. On the other hand if the imaginary part is 𝜃 ≠ 2𝜋, in
the completion the curve 𝛾 will bound a hyperbolic cone of angle 𝜃, the metric on the completion
is not smooth, and so we don’t get a structure. There is a unique 𝑐 ∈ 𝐻1(𝐶, ℝ) with 𝐿(𝑐) = 2𝜋𝑖,
and this 𝑐 is called the Dehn surgery coefficient of 𝐶. The subset of 𝐻1(𝐶, ℝ) ≃ ℝ2 consisting of
all Dehn filling coefficients for all possible hyperbolic structures (that is, 𝐻1(𝐶, ℝ) is a topological
invariant so does not depend on the incomplete structure on𝑀, but 𝐿 does depend on this structure,
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so we get different coefficients for each structure that all lie in the sameℝ2) is called the hyperbolic
Dehn filling space for 𝑀, and by convention we let∞ be the complete hyperbolic structure on 𝑀
if it exists.

(2.5) Theorem (Thurston’s Dehn filling theorem). Let𝑀 be a 3-manifold homeomorphic to the inte-
rior of a compact manifold with boundary a single torus 𝕋2 such that𝑀 admits a complete hyperbolic
structure. Then the Dehn filling space of𝑀 contains an open neighbourhood of∞. More generally if𝑀
is the interior of a compact manifold with torus boundary components 𝑇1,… , 𝑇𝑛 and if it admits a com-
plete structure, then for each 𝑇𝑖 the corresponding Dehn filling space contains an open neighbourhood
of∞.

Sketch of proof. Suppose 𝑀 admits a complete structure, and let 𝜌 ∶ 𝜋1(𝑋) → PSL(2, ℂ) be the
representation verifying this. The fundamental group of 𝕋2 has image 𝜌(𝜋1(𝕋2)) generated by two
parabolics with the same fixed point. Now show that 𝜌 admits a one-parameter family of deforma-
tions, and that each deformation sends these parabolics to a pair of loxodromics which share fixed
points. Now this gives a distance measure which induces an incomplete complex structure that has
Dehn filling coefficient varying continuously around ∞. In general, one can do high-dimensional
deformations to get the result for 𝑛 boundary components. mAk

(2.6) Corollary. Let𝑋 be a complete hyperbolicmanifoldwith𝑛 torus boundary components𝑇1,… , 𝑇𝑛.
For each 𝑇𝑖, exclude finitely many Dehn fillings. The resulting Dehn fillings yield a manifold with a
complete hyperbolic structure.

Proof. For every 𝑖 there are only finitely many elements of 𝐻1(𝐶, ℤ) that lie outside the open neigh-
bourhood of∞ in 𝐻1(𝐶, ℝ) given by the theorem. mAk

Conversely, all 3-manifolds arise by Dehn surgery:

(2.7) Theorem (Lickorish/Wallace, 1960–1962). Let𝑀 be a closed orientable 3-manifold. Then𝑀 is
the result of Dehn surgery along some link in 𝕊3.

A slightly stronger version of this is:

(2.8) Theorem (Jørgensen). Let 𝐶 > 0. Among all hyperbolic 3-manifolds𝑀 with volume at most 𝐶,
there are only finitely many homeomorphism types of𝑀𝜀. There is a universal link 𝐿𝐶 ⊆ 𝕊3 such that
every complete hyperbolic manifold with volume at most 𝐶 is obtained by some Dehn surgery along 𝐿.

The combination of corollary (2.6) and theorem (2.7) implies, roughly speaking, that most 3-
manifolds are hyperbolic.
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