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Abstract
Wewill discuss uniformisation of surfaces, deformations of Fuchsian groups, and the relation-

ship to 3-dimensional topology. Emphasis will be placed on the construction of beautiful examples
of these groups.

The theory of Kleinian groups was founded by Schottky, Poincaré, and Klein in the
19th century. For many years it was dormant, except, of course, for the important
special case of Fuchsian groups. The burst of activity during the last decade is based,
directly or indirectly, on the use of quasi-conformal mappings as a working tool in
complex function theory. L. Bers, 1974 [Ber74]

Contents

1 In the before times... 2

2 Fuchsian groups 3

3 Embeddings of quasi-Fuchsian groups 8

4 Knot complements 15

A Construction of a genus two Fuchsian group 16

B Computation of figure eight Seifert surface 18

References 18
*Alison Glenny. Bird collector, p. 62. Auckland: Compound Press, 2021.
†School of Mathematics, Monash University, Melbourne

1



§1. In the before times...
One of themost important insights of Riemannwas the idea thatmultiply-valued functions on𝑈 ⊆ ℂ
should be viewed as singly-valued functions on a covering space �̃� → 𝑈 . This is one of the pivotal
moments in 19th century mathematics and was an essential point in the birth of manymodern fields
(algebraic curve theory, geometric function theory, analytic number theory...).

Suppose you take a multiply-valued function on 𝑈 , or in more modern language a function de-
fined on a Riemann surface �̃� , and you invert it. The result is a function from ℂ to your Riemann
surface �̃� . Themost classical examples are the so-called elliptic functions, which are the functions
𝑓 ∶ ℂ → ℂ that are doubly periodic in the sense that there exists a latticeΛ ⊂ ℂwith 𝑓(𝑧+𝜆) = 𝑓(𝑧)
for all 𝜆 ∈ Λ: in other words, they are defined on the torus ℂ/Λ. [The term elliptic comes from the
fact that their inverses arise in the computation of arc lengths on ellipses. This is the etymology of the
term ‘elliptic curve’: elliptic curves are exactly the algebraic curves uniformised by elliptic functions.]

The construction of functions ℂ → 𝑆 for arbitrary Riemann surfaces is called the (classical) uni-
formisation problem. In modern language, we ask for groups Γ < Aut(ℂ) which act on 𝑈 ⊂ ℂ
such that 𝑆 = 𝑈/Γ and the desired uniformisation function is the projection function 𝑧 ↦ Γ𝑧; we say
that Γ uniformises 𝑆.

The fundamental result in the study of uniformisation by groups is the famous

(1.1) Theorem (Riemann mapping theorem). If 𝑅 is a simply connected Riemann surface, then 𝑅 is
biholomorphic to exactly one of the following:

1. The Riemann sphere ℂ̂ ≔ ℂ ∪ {∞}, if 𝜒(𝑅) = 2;

2. The plane ℂ, if 𝜒(𝑅) = 0;

3. The disc Δ = {𝑧 ∈ ℂ ∶ |𝑧| < 1}, if 𝜒(𝑅) < 0.

(For a proof, see the theorem of Paragraph IV.6.1 of [FK92] or Chapter 6 of [Ahl79].)
Here, the Euler characteristic of a Riemann surface 𝑅 of genus 𝑔 with 𝑛 punctures and deleted

discs is
𝜒(𝑅) = 2 − 2𝑔 − 2𝑛.

Note that each of the three cases corresponds to the three surface geometries: spherical, Eu-
clidean, and hyperbolic. (We recall that the unit disc Δ is conformally equivalent to the upper half-
plane ℍ2 and both are models for the hyperbolic plane [Bea83, Chapter 7].)

We now state a weak version of the Klein-Koebe-Poincaré uniformisation theorem (we exclude
the torsion case, for simplicity; the more general theorem in the connected case can for example be
found as Theorem IV.9.12 of [FK92]).

(1.2) Theorem (Klein-Koebe-Poincaré uniformisation). Let𝑅 be a connectedRiemann surface. Then:

1. If 𝜒(𝑅) = 2, then 𝑅 is the sphere (so admits a metric of constant sectional curvature 1)

2. If 𝜒(𝑅) = 0 (so 𝑅 is either of genus 1 with no punctures, or is a sphere with one puncture), then
there is a group 𝐺 of Euclidean motions on ℂ such that 𝑅 = ℂ/𝐺 (so admits a metric of constant
sectional curvature 0);

3. If𝜒(𝑅) < 0, then there exists a discrete group Γ of conformalmappings ofℍ2 which acts as a group
of hyperbolic isometries, and 𝑅 = ℍ2/Γ.

(1.3) Definition. A discrete group of isometries of ℍ2 is called a Fuchsian group.
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Figure 1: Isometric circles of the group 𝐹.

Meanwhile, Klein continued to object to the name “Fuchsian functions,” on the
grounds that Fuchs had published nothing about them whereas Schwarz had. Nor
indeed had he, Klein, done anything on Kleinian functions except to bring one spe-
cial case to Poincaré’s attention, but Schottky’s name should be mentioned, along
with that of Klein’s former student Dyck, who had brought out the group-theoretic
aspects of the subject in his work. Klein even complained at length to his students
in his seminar about the name “Fuchsian,” and also about the fact that his journal,
Mathematische Annalen, was seemingly unknown in France. [Gra13, p. 233]

§2. Fuchsian groups
Wenowenter the era of Bers andAhlfors. Let us recall, aKleiniangroup is a discrete subgroup of the
group𝕄 of Möbius transformations of ℂ̂. That is, it is a discrete group of conformal automorphisms
of 𝕊2. If we take a conformal embedding of 𝕊2 into 𝕊3, e.g. the standard embedding {(𝑥, 𝑦, 0) ∶ 𝑥, 𝑦 ∈
ℝ}∪{∞}, then every 𝑔 ∈ 𝕄 extends uniquely to a conformal automorphism of𝕊3 which preserves the
two halves of 𝕊3 ∖𝕊2, each of which is a 𝔹3; and every conformal automorphism of 𝔹3 is a hyperbolic
isometry.

Similarly to how we just embedded 𝔹3 ↪ 𝕊3 and obtained Isom(𝔹3) as a subgroup of the con-
formal automorphisms of 𝕊3, we can embed 𝔹2 ↪ 𝕊2 = ℂ̂ and obtain Isom(𝔹2) as a subgroup of
conformal automorphisms of 𝕊2; this latter group is just 𝕄, which motivates the following defini-
tion, generalising definition (1.3):-

(2.1) Definition. A Fuchsian group is a pair (𝐺, Δ)where Δ ⊂ ℂ̂ is a round disc and 𝐺 is a Kleinian
group which preserves Δ.

Remark. This procedure works in all dimensions: Kleinian groups on 𝕊𝑛 (i.e. discrete groups of
conformal automorphisms of 𝕊𝑛) are Fuchsian groups in 𝕊𝑛+1 (i.e. discrete groups of conformal
automorphisms of 𝔹𝑛 ⊂ 𝕊𝑛+1) which are in turn discrete groups of isometries of the hyperbolic
metric on 𝔹𝑛, c.f. [KAG86; CNS13].

3



(2.2) Example. Wegive explicit matrices for a Fuchsian group acting on𝔹2 that uniformises a genus
two group:

𝐹 = ⟨[1 + √2 𝜔
𝜔 1 + √2

], [ 1 + √2 (1 + 𝑖)𝜔
(1 − 𝑖)𝜔 1 + √2

], [1 + √2 𝑖𝜔
−𝑖𝜔 1 + √2

], [ 1 + √2 (−1 + 𝑖)𝜔
(−1 − 𝑖)𝜔 1 + √2

]⟩ .

where

𝜔 =√−6 + 2√2 − 4𝑖√−2 + 2√2
The computation leading to this example may be found in appendix A. A fundamental domain

is shown in figure 1. Q|

(2.3) Lemma. Let 𝐺 be a Kleinian group. Then the following are equivalent:

1. 𝐺 is Fuchsian (i.e. there exists Δ a round disc preserved by 𝐺);

2. 𝐺 preserves an oriented round circle;

3. 𝐺 is conjugate in PSL(2, ℂ) to a subgroup of PSL(2, ℝ).

Proof. Clearly (1) implies (2): the round circle is 𝜕Δ. To see that (2) implies (3) just conjugate the
round circle to ℝ̂. To get (1) from (3), take the round disc to be ℍ2. mAk

(2.4) Exercise. A Kleinian group ⟨𝑋, 𝑌⟩ is Fuchsian if and only if tr𝑋 , tr𝑌 , and tr𝑋𝑌 are real.

Clearly

(2.5) Λ(𝐺) ⊆ 𝜕Δ,

because the limit set is the closure of the set of attracting fixed points of elements of 𝐺, and if any
of these fixed points (say for an element 𝑔) lie in one of the components 𝑈 of ℂ̂ ∖ 𝜕Δ then the other
component 𝑈 ′ must be mapped into 𝑈 by some sufficiently high power of 𝑔. If we have equality
in equation (2.5) then we say that the group is of the first kind, otherwise it is of the second
kind. One is led to wonder about the etymology of this subtle and yet expressive terminology, clearly
created by some mathematician of great imagination... Compact Riemann surfaces with punctures
are uniformised by Fuchsian groups of the first kind. We should also mention at this point the Bers
uniformisation theorem which says that, given any two complex structures 𝑆, 𝑆′ on a hyperbolic
Riemann surface Σ, there exists a quasi-Fuchsian group (𝐺, Δ) such that 𝑆 = Δ/𝐺 and 𝑆′ = (ℂ̂ ∖
Δ)/𝐺. In fact this can be improved: given any sequence of hyperbolic Riemann surfaces there exists
a Kleinian group which simultaneously uniformises all of them [Mas87, VIII.B].

We give another example which at first glance seems more complicated but which is somewhat
easier to deal with for our purposes.

(2.6) Example (Grandma’s groups, [MSW02, p. 229]). Let 𝑡𝑎, 𝑡𝑏 ∈ ℂ be two parameters and choose
𝑡𝑎𝑏 to be a solution of theMarkoff equation

𝑡2𝑎 + 𝑡2𝑏 + 𝑡2𝑎𝑏 = 𝑡𝑎𝑡𝑏𝑡𝑎𝑏.

Set 𝑧0 = (𝑡𝑎𝑏 − 2)𝑡𝑏/(𝑡𝑏𝑡𝑎𝑏 − 2𝑡𝑎 + 2𝑖𝑡𝑎𝑏) and define the matrices

𝑏 = [
𝑡𝑏−2𝑖
2

𝑡𝑏
2𝑡𝑏

2
𝑡𝑏+2𝑖
2

] , 𝑎𝑏 = [
𝑡𝑎𝑏
2

𝑡𝑎𝑏−2
2𝑧0

(𝑡𝑎𝑏+2)𝑧0
2

𝑡𝑎𝑏
2

]
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(so the matrix 𝑎 = (𝑎𝑏)𝑏−1 has trace 𝑡𝑎). One can check that under all these conditions the commu-
tator [𝑎, 𝑏] is parabolic with fixed point 1.

Let 𝐺 = ⟨𝑏, 𝑎𝑏⟩. By exercise (2.4) 𝐺 is Fuchsian if and only if 𝑡𝑎, 𝑡𝑏, and 𝑡𝑎𝑏 are all real, and this
occurs (for example) whenever 𝑡𝑎 and 𝑡𝑏 are both real and sufficiently large. We show six examples
in figure 2, which should be read as stills from a film where we have moved (𝑡𝑎, 𝑡𝑏) smoothly around
ℂ2. Q|

(2.7) Exercise. When 𝑡𝑎 = 𝑡𝑏 = 3, the group 𝐺 of example (2.6) preserves 𝔹2 and the quotient 𝔹2/𝐺
is a once-punctured torus (hint: apply the Poncaré polyhedron theorem to the isometric circles of 𝑎,
𝑏, and 𝑎𝑏).

What is going on here? We take small deformations of the entries of our generator matrices, and
we obtain fractal deformations of the limit set. This in itself is fairly easy to understand: the limit set
is (the closure of) the set of fixed points of the group, and these fixed points are obtained by solving
quadratic equations in the entries of the matrices, and these entries are all algebraic functions of the
parameters of the generators—so it makes sense that small deformations of the parameters induce
small (or at least controlled) motions of the limit set.

The behaviour of the deformed groups as Kleinian groups is a little harder to understand, and the
most conceptual path to enlightenment is via the 𝜆-lemma. In the following, aholomorphicmotion
of a set 𝐴 ⊂ ℂ is like a complex-analytic version of a homotopy: it is a map Φ ∶ 𝔹2 ×𝐴 → ℂ̂which is
holomorphic in the first parameter (which plays the role of the time parameter in a homotopy, with
Φ(0, −) being the identity on 𝐴) and injective in the second parameter.
(2.8) Theorem (The 𝜆-lemma). Let Γ be a non-elementary Kleinian group and let Γ𝜆 be some family
of groups obtained by small deformations of matrix entries of generators of Γ in some open set. If these
deformations induce holomorphic motions of Λ(Γ) (the only thing to check here being injectivity), then
these holomorphic motions extend to ℂ̂ in an equivariant way: that is, we obtain a holomorphic motion

Φ̃ ∶ 𝔹2 × ℂ̂ → ℂ̂

which is the same as the original motion on Λ(Γ) but such that the maps

Φ̃(𝜆, −) ∶ ℂ̂ → ℂ̂

are quasiconformal with maximal dilatation controlled only by |𝜆|.
(A full technical discussion of the 𝜆-lemma, which is due to Mañé, Sad, and Sullivan [MSS83],

extended by Słodkowski [Sło91; Sło97], and equivarianced by Earle, Kra, and Krushkal’ [EKK94]
may be found in the surprisingly readable monograph of Astala, Iwaniec, and Martin [AIM09].)

The upshot is the following corollary/slogan:

(2.9) Corollary. If (𝐺, Δ) is a Fuchsian group and small holomorphic deformations are made to the
matrix entries of 𝐺 to form a new group ̃𝐺, then so long as the limit set does not collide with itself there
is a quasiconformal map 𝑓 ∶ ℂ̂ → ℂ̂ such that ̃𝐺 = 𝑓𝐺𝑓−1; in particular ̃𝐺 preserves 𝑓Δ, which is a
quasicircle. Since 𝑓Δ moves quasiconformally, the quotient surfaces also vary quasiconformally, and
so give different elements of the Teichmüller space of𝐺/Δ. In fact one can show that they are in bijection
with the entire Teichmüller space, [MT98, §5.3]. In particular by the Marden–Tukia isomorphism the-
orem [Mar74; Tuk85] the resulting 3-manifolds are all the 3-manifolds quasi-isometric to the original
manifold ℍ3/𝐺 by homeomorphisms.

(2.10)Definition. AKleinian group𝐺 is calledquasi-Fuchsian if there exists somequasiconformal
homeomorphism 𝑓 ∶ ℂ̂ → ℂ̂ that induces an isomorphism 𝜙 ∶ 𝐺 → 𝑓−1𝐺𝑓 such that (i) 𝜙(𝐺) is
Fuchsian; and (ii) 𝑔 ∈ 𝐺 is parabolic iff 𝜙(𝑔) is parabolic.
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(a) 𝑡𝑎 = 3, 𝑡𝑏 = 3 (b) 𝑡𝑎 = 3 + 0.9𝑖, 𝑡𝑏 = 3

(c) 𝑡𝑎 = 2.44 + 0.9𝑖, 𝑡𝑏 = 2.19 (d) 𝑡𝑎 = 1.96 + 0.9𝑖, 𝑡𝑏 = 2.19

(e) 𝑡𝑎 = 1.96 + 0.9𝑖, 𝑡𝑏 = 2.19 + 0.46𝑖 (f) 𝑡𝑎 = 1.96 + 1.25𝑖, 𝑡𝑏 = 2.58 + 0.95𝑖

Figure 2: Limit sets for six of Grandma’s groups.
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(2.11) Example. The groups 𝐺(𝑡𝑎, 𝑡𝑏) of example (2.6) are quasi-Fuchsian if you start at 𝑡𝑎 = 𝑡𝑏 = 3
and take the parameter space to be maximal open set 𝒬ℱ in ℂ2 containing this point such that the
domain of discontinuity Ω(𝐺(𝑡𝑎, 𝑡𝑏)) does not split into more components or collapse to a single
component. This is the quasi-Fuchsian space of punctured tori. Q|

(2.12) Exercise. Classical Schottky groups are quasi-Fuchsian (of the second kind).

(2.13) Theorem (Alternative characterisations). Let 𝐺 be finitely generated Kleinian. The following
are equivalent.

1. 𝐺 is quasi-Fuchsian (i.e. is a quasiconformal conjugate of a Fuchsian group);

2. there exist two disjoint quasidiscs Δ and Δ′, both invariant under 𝐺, such that ℂ̂ = Δ ∪ Δ′ and
Λ(𝐺) ⊂ 𝜕Δ = 𝜕Δ′;

3. there exist two disjoint topological discs Δ and Δ′, both invariant under 𝐺, such that ℂ̂ = Δ ∪ Δ′
and Λ(𝐺) ⊂ 𝜕Δ = 𝜕Δ′.

Proof. The only surprising thing is that we can lighten the condition on the domain from quasidisc
to topological disc, which is a theorem of Bers [Ber70]. (It is this theorem which requires ‘finitely
generated’. As far as I am aware the result is not known for general Kleinian groups, and I would be
surprised if it were true.) mAk

(2.14) Example. One should carefully note that we need to specify that there are two quasidiscs
preserved in Ω(𝐺): we can deduce (as we could in the Fuchsian case) that if there is one quasidisc
preserved then the limit set is contained in its boundary (and is ofmeasure zero, but this is a very deep
result [Mar16, Theorem 5.6.8]), but we can no longer expect its complement to be a quasidisc, or even
non-empty(!). Indeed, there exist many groups 𝐺 which have a single simply connected component
of Ω(𝐺) that is conformally a disc; these groups are called degenerate groups in the literature, c.f.
[Mas87, Chapter IX], and cannot be obtained by quasiconformally deforming Fuchsian groups; they
are much harder to understand, for instance no explicit constructions of these groups are known,
only existence results and limiting processes. In some sense they are the obstruction to a complete
classification of Kleinian groups.

Emily Dumas has produced (2007) images of limit sets of degenerate groups on the boundary of
𝒬ℱ [Dum07], and we reproduce some of these in figure 3. The circular components which seem to
appear inside the limit set are horodiscs corresponding to parabolic fixed points and will eventually
be filled in by tendrils of the limit set. A similar image appears in Marden [Mar16, p. 313, fig. 5.8]
for 𝒬ℱ; Marden also gives examples of groups obtained by gluing degenerate groups (i.e. degenerate
groups on the boundary of function group space) [Mar16, §5.12]. The construction of such examples,
at least those in Marden’s book, is studied by Brock [Bro01b; Bro01a]; see also §3.7 of McMullen
[McM96] who references preprints of Mumford, McMullen, andWright which I have been unable to
track down (though I have put in no effort to do so). Q|

(2.15) Proposition. Every parabolic in a finitely generated quasi-Fuchsian group ̃𝐺 = 𝑓𝐺𝑓−1 (where
𝐺 is Fuchsian and 𝑓 is a quasiconformal map as in the definition) represents a double cusp on the
surfaces 𝑓(Δ)/ ̃𝐺 and 𝑓(ℂ̂ ∖ Δ)/ ̃𝐺.

Remark. The image of a discrete, faithful representation 𝜌 ∶ 𝐺 → 𝕄 where 𝐺 is Fuchsian is said to
have a accidental parabolic if there exists 𝑔 ∈ 𝐺 that is not parabolic but such that 𝜌(𝑔) is parabolic.
The propositionwehave just stated is slightly stronger but essentially says that quasi-Fuchsian groups
have no accidental parabolics and neither ‘end’ of the parabolic is pinched to nothing (which can
occur e.g. in a degenerate group).
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Figure 3: Dendrite limit sets of singly degenerate punctured torus groups drawn by E. Dumas.

Proof. There are no rank twoparabolic groups in aFuchsian group, sowemay assume every parabolic
in 𝐺 generates a rank one parabolic group. A finitely generated Fuchsian group is geometrically fi-
nite [Mas87, V.G.14], hence every rank one parabolic group in 𝐺 uniformises a double cusp [Mas87,
VI.A.10]. Every parabolic ̃𝐺 is obtained from such a parabolic since the isomorphism 𝑔 ↦ 𝑓𝑔𝑓−1
is type-preserving; and 𝑓 is a homeomorphism so if 𝐷1 ∪ 𝐷2 is the cusp region for 𝑔 ∈ 𝐺 then
𝑓(𝐷1) ∪ 𝑓(𝐷2) is a cusp region for 𝑓𝑔𝑓−1 ∈ ̃𝐺. mAk

§3. Embeddings of quasi-Fuchsian groups
Let (𝐺, Δ) be Fuchsian. Then𝐺 acts onΔ as a group of hyperbolic isometries in the hyperbolic metric
ofΔ. However, if we view𝐺 as a Kleinian group this is not totally helpful: a Kleinian group in general
acts only as a group of conformal maps on 𝜕ℍ3, and the reason that we get hyperbolic isometries is
essentially that when𝐺 is Fuchsian the quotientmanifoldℍ3/𝐺 is just a product (−1, 1)×𝑆where 𝑆 is
a hyperbolic surface. There is a second disc on which 𝐺 naturally acts, and this does have hyperbolic
structure in ℍ3: it is the dome 𝐻 = h-conv 𝜕Δ ⊂ ℍ3 erected upon the boundary of the disc; the
restriction of the metric of ℍ3 to𝐻 gives it the structure of a hyperbolic plane. It is easy to see e.g. by
Poincaré extension that if𝐺 preservesΔ then𝐺 preserves𝐻, and in fact the action of𝐺 onℍ3 induces
an action by 𝐺 on 𝐻 as a subgroup of the group of hyperbolic plane isometries of 𝐻. In particular,
if Γ is some large ambient Kleinian group, and 𝐺 ≤ Γ is a Fuchsian subgroup preserving Δ, then
𝐺/h-conv(𝜕Δ) is a totally geodesic hyperbolic surface properly embedded into ℍ3/Γ.

Suppose now that 𝐺 ≤ Γ is quasi-Fuchsian. We may still construct h-conv𝐿, where 𝐿 is the
Jordan curve preserved by 𝐺, but it is no longer a geodesic ℍ2 inside ℍ3: we still obtain a subsurface
(h-conv𝐿)/𝐺 ⊂ ℍ3/Γ, but it is no longer a totally geodesic hyperbolic surface.

(3.1) Example. Consider the family of groups Γ𝜌 generated by

𝑋 = [1 1
0 1] , 𝑌 = [1 0

𝜌 1]

where 𝜌 ∈ ℂ is some parameter. We define four very special words in 𝑋 and 𝑌 :-

𝑈1 = 𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑋𝑌 𝑉1 = 𝑋
𝑈2 = 𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑋𝑌𝑋𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑥𝑌𝑋𝑦𝑥𝑦𝑋𝑌 𝑉2 = 𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑋𝑌𝑋𝑦𝑥𝑦𝑋𝑌.

The reader may check that 𝑈1𝑉1 = 𝑈2𝑉2. We ask for 𝜌 ∈ ℂ such that all five traces

tr𝑈1 tr𝑉1
tr𝑈1𝑉1 = tr𝑈2𝑉2
tr𝑈2 tr𝑉2

are real. It turns out that 𝜌 ≈ −0.777994 + 1.47962𝑖 works. We plot the limit sets of ⟨𝑋, 𝑌⟩, ⟨𝑈1, 𝑉1⟩,
and ⟨𝑈2, 𝑉2⟩ in figure 4. By exercise (2.4), both of the subgroups are Fuchsian. Small deformations
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(a) Limit set of ⟨𝑈1, 𝑉1⟩.

(b) Limit set of ⟨𝑈2, 𝑉2⟩.

Figure 4: Limit sets (black) of two Fuchsian subgroups of Γ𝜌 (blue) for 𝜌 ≈ −0.777994 + 1.47962𝑖.
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(a) Limit set of ⟨𝑈1, 𝑉1⟩.

(b) Limit set of ⟨𝑈2, 𝑉2⟩.

Figure 5: Limit sets (black) of two quasi-Fuchsian subgroups of Γ𝜌 (blue) for
𝜌 ≈ −0.721001 + 1.47962𝑖.

10



𝐴′

𝐴

𝐵′

𝐵

𝐶

𝐶′

(a) Fundamental domain for 𝐺1.

𝐵′

𝐵

𝐷′

𝐷

(b) Fundamental domain for 𝐺.

Figure 6: Fundamental domains for the groups in example (3.2).

of 𝜌 will produce quasi-Fuchsian subgroups. This procedure, which is studied in detail in [EMS23]
for this particular example, produces the groups shown in figure 5 where 𝜌 has been moved to some
𝜌 + 𝜀 such that the global group is still discrete. Q|

(3.2) Example. The following example is due to Wielenberg [Wie78, Example 3], see also [KAG86,
Example 61]. We take a configuration of lines and circles on ℂ̂ shown in figure 6a, and define the
group

𝐺1 = ⟨𝑇 = [1 2
0 1], 𝑈 = [1 2𝑖

0 1 ], 𝑊 = [ 1 0
−1 − 𝑖 1]⟩ ;

then 𝑇 and 𝑈 pair the sides of the square in the figure, 𝑊 sends 𝐵 to 𝐵′ (in fact these are the iso-
metric circles of𝑊), and 𝐴 (resp. 𝐶) and 𝐴′ (resp. 𝐶′) are paired by 𝑈−1𝑊𝑇 (resp. 𝑇𝑊𝑈−1). Direct
computation of angles (exercise) allows us to apply the Poincaré polyhedron theorem and find that
the quotient manifold is a pair of thrice punctured spheres with a rank two cusp drilled out. We can
also compute that the stabilisers of the thrice-punctured sphere components are

⟨𝑊,𝑈−1𝑊𝑇⟩ and ⟨𝑊, 𝑇𝑊𝑈−1⟩.

These two Fuchsian subgroups of 𝐺1 are in fact peripheral subgroups, and are shown in figures 7a
and 7b.

We now define a group extension 𝐺 = ⟨𝐺1, 𝑉⟩, where

𝑉 = [ 1 0
−1 + 𝑖 1] satisfies 𝑊𝑉 = 𝑉𝑊, and (𝑈−1𝑊𝑇)𝑉 = 𝑉(𝑌𝑊𝑈−1);

in other words, 𝑉 conjugates the two thrice-punctured spheres into each other and so ℍ3/𝐺 is ob-
tained fromℍ3/𝐺1 by gluing together the two boundary components. A fundamental domain for this
new group is shown in figure 6b, and one can see that the resulting manifold is finite volume; from
construction it is the complement of a linkmade up of four unknots cyclically chained together. This
manifold has a totally geodesic embedded thrice-punctured sphere, uniformised by the (conjugate
by 𝑉) Fuchsian subgroups whose limit sets are shown in figures 7c and 7d (of course, the limit set
of 𝐺 is dense in the plane, so the intricate patterns shown in this approximation are really reflect-
ing the symmetric manner in which the Cayley graph of 𝐺 in ℍ3 is approaching every point on 𝕊2).
This thrice-punctured sphere is a Seifert surface for the sublink of the three rank two cusps at the
punctures, figure 8. Q|
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(a) Limit set of ⟨𝑊, 𝑇𝑊𝑈−1⟩ < 𝐺1. (b) Limit set of ⟨𝑊,𝑈−1𝑊𝑇⟩ < 𝐺1.

(c) Limit set of ⟨𝑊, 𝑇𝑊𝑈−1⟩ < 𝐺. (d) Limit set of ⟨𝑊,𝑈−1𝑊𝑇⟩ < 𝐺.

Figure 7: Limit sets for the Fuchsian subgroups in example (3.2).

12



Figure 8: A Seifert surface for the alternating connect sum of two Hopf links and the additional
rank 2 parabolic in the supergroup.

(a) Seifert surface for the figure eight knot,
[Fra87, p. 156].

(b) Generators of the punctured torus.

Figure 9: Construction of a punctured torus subgroup of the figure eight knot group.
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Figure 10: The limit set of a punctured torus subgroup (warm colours) in a figure eight knot group
(cool colours).
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(3.3) Exercise. Draw a convincing cartoon of the gluing process in example (3.2).

The following non-example shows that there exist subsurfaces of 3-manifolds which are not
quasi-Fuchsian:

(3.4) Non-example. It is well-known [Ril75] that one pair of generators for the figure eight knot
group (corresponding to the loops around the two bridge arcs) is

𝑋 = [1 1
0 1] , 𝑌 = [ 1 0

−𝑒2𝜋𝑖/3 1] .

Let Γ = ⟨𝑋, 𝑌⟩. There exists a proper subsurface of ℍ3/𝐺 which is a once-holed torus Seifert
surface of the figure eight knot, figure 9a. We can explicitly write down generators for the meridian
and latitude of this torus, which are the red and green curves in figure 9b:

𝑈 = 𝑌𝑥𝑌𝑋𝑦𝑥𝑌𝑥 and 𝑉 = 𝑥𝑌𝑋𝑦.

The limit set of ⟨𝑈, 𝑉⟩ is laid over the limit set of ⟨𝑋, 𝑌⟩ in figure 10 (produced using Bella [Elz23],
appendix B). In this picture it appears that the limit set of ⟨𝑈, 𝑉⟩ is dense in ℂ̂, and in the following
lecture Emmawill prove that this follows from the fact that the figure eight knot fibres over the circle
with fibres exactly these Seifert surfaces. (The point essentially being that the group ⟨𝑈, 𝑉⟩ does not
have the correct ends—two surface ends—to be quasi-Fuchsian.) As a quick check of correctness
the reader can observe that [𝑈, 𝑉] is parabolic. Q|

§4. Knot complements
In the examples above, all the surfaceswhichwe constructedwere properly embedded but not closed.
That this is always the case in knot complements is a conjecture of Menasco and Reid [MR92]. They
prove that

(4.1) Theorem. The complement of an alternating hyperbolic link or hyperbolic closed 3-braid in 𝕊3
cannot contain either a quasi-Fuchsian or a geometrically infinite closed embedded incompressible sur-
face. mAk

Based on this, and various other results, they conjectured that

(4.2) Conjecture. The complement of a hyperbolic knot in 𝕊3 cannot contain an embedded totally
geodesic closed incompressible surface.

They also give a complicated (eight component) example of a hyperbolic link with such a surface
in its complement, so the restriction to the single component case is necessary.

In a following section we will require the following result, which shows that the (possibly non-
quasi-Fuchsian) groups corresponding to spanning surfaces of certain links do not contain accidental
parabolics. This is fairly strong because it implies that the 3-manifolds of these groups are not de-
generate with respect to algebraic limits.

(4.3) Theorem. Let 𝑘 be a link with a diagram that is connected, prime, and reduced alternating. Let
Σ be a surface obtained via splitting crossings, gluing in discs to the components, and then adding back
twist regions to glue the discs together so that the boundary of the result is a spanning surface (i.e. a
chessboard surface for the link). Let 𝐹 be a Fuchsian representative for Σ. Then the representation
𝐹 → 𝜋1(Σ) < 𝜋1(𝕊3 ∖ 𝑘) is type-preserving.

Sketch of proof. One first shows that if 𝜌 ∶ 𝐹 → 𝜋1(Σ) has an accidental parabolic 𝛾 then there is
an essential annulus spanned by a component of 𝑘 and the curve 𝑐 on Σ represented by 𝛾; this is the
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(a) A (purported) 𝜋/4-regular hexagon in ℍ2. (b) The triangle Δ.

(c) The images of Δ under 𝜌 and 𝜎.

Figure 11: The trigonometry needed to produce the octagon 𝑂 explicitly.

annulus along which 𝑐 (which is a curve of nonzero length on Σ by assumption) can be moved to a
parabolic fixed point. Now take a bounded polyhedral decomposition of 𝕊3 ∖ 𝑘 and move 𝐴 to be in
normal form. Show that the combinatorial area of 𝐴 is zero. Carry out a study of the combinatorial
possibilities for 𝐴 based on this information and conclude that 𝑘 is a (2, 𝑞) torus link and Σ is the
annulus spanning the two components; in particular 𝑐 is boundary parallel on Σ which means it is
isotopic to a parabolic point on Σ and hence 𝜌−1(𝛾) is parabolic (contradiction). mAk

§A. Construction of a genus two Fuchsian group
Wegive a Fuchsian group𝐹 which glues each half-plane to a genus two surface; this group is obtained
by writing down transformations in𝕄 which pair opposite sides of an octagon in ℍ2 with equal side
lengths and all interior angles equal to 𝜋/4.

Suppose such an octagon 𝑂 exists. Then it glues to a genus two compact hyperbolic surface 𝑇2.
By the Gauss-Bonnet theorem we have

Area𝑂 = Area𝑇2 = −∫(−1)𝑑𝐴 = −∫𝐾(𝑇2)𝑑𝐴 = −2𝜋𝜒(𝑇2) = 4𝜋.

Cut 𝑂 into right triangles (figure 11a). Such a triangle Δ has area 4𝜋/16 = 𝜋/4. By the hyperbolic

16



area formula, the third angle of Δ (the one at the centre) is 𝜋 − 𝜋/2 − 𝜋/8 − 𝜋/4 = 𝜋/8. We will now
find an explicit coordinate realisation for this triangle in ℍ2, and then rotate it around the 𝜋/8 angle
to form the hexagon.

Without loss of generality, we can assume that the three vertices of Δ lie at 𝑖, 𝑘𝑖, and 𝑠 + 𝑡𝑖 where
𝑠2+𝑡2 = 1, and that the right angle is at 𝑖 (figure 11b). By the trigonometry of hyperbolic right-angled
triangles [Bea83, §7.11], we can compute that

𝑘 = cot 𝜋8 +√cot2 𝜋8 − 1, 𝑠 = √1 − tan2 𝜋8 , and 𝑡 = tan 𝜋8 .

Now for simplicitywemove from the upper half-planemodelℍ2 to the discmodel𝔹2, conjugating
𝑠 + 𝑡𝑖 to 0. There is a standard map 𝑞 which sends ℍ2 ↦ 𝔹2 with 𝑖 ↦ 0, given by

𝑞(𝑧) = 2
𝑧 + 𝑖 + 𝑖;

we therefore precompose 𝑞 with a map sending 𝑠 + 𝑡𝑖 ↦ 𝑖, for instance

𝑟(𝑧) = 𝑧 − 𝑠
𝑡 .

Hence in the ball model 𝔹2 our desired triangle is the image of Δ under 𝑞 ∘ 𝑟. Let 𝜌 ∶ Δ → Δ be the
elliptic of order 8which fixes 0, and let 𝜎 ∶ Δ → Δ be the reflection across the geodesic joining 0 and
(𝑞𝑟)(𝑖) in the disc (figure 11c). Then we wish to find an isometry 𝑓 of 𝔹2 which sends the geodesic
segment joining (𝑞𝑟)(𝑘𝑖) to (𝜎𝑞𝑟)(𝑘𝑖) to the geodesic segment joining (𝜌4𝑞𝑟)(𝑘𝑖) to (𝜌4𝜎𝑞𝑟)(𝑘𝑖) (and
the other side-pairing transformations which we want will be 𝜌𝑛𝑓𝜌−𝑛 for 𝑛 ∈ {0, 1, 2, 3}). Of course,
𝑓 should be a hyperbolic element of 𝕄 which preserves Δ (so although 𝜌4 does send one arc to the
other it glues the endpoints in opposite order to that whichwewant). We can do this bywriting down
a Möbius transformation with real trace which fixes the two endpoints on the disc of the diameter
through (𝑞𝑟)(𝑖) (i.e. ±(𝑞𝑟)(𝑖)/|(𝑞𝑟)(𝑖)|), and then imposing the further condition that it sends (𝑞𝑟)(𝑖) ↦
(𝜌4𝑞𝑟)(𝑖) = −(𝑞𝑟)(𝑖). If the transformation is represented by𝐴 = [𝑎 𝑏

𝑐 𝑑], then the desired conditions
are

𝑎 𝜁
|𝜁| + 𝑏 = 𝑐 𝜁

2

|𝜁|2
+ 𝑑 𝜁

|𝜁|

−𝑎 𝜁
|𝜁| + 𝑏 = 𝑐 𝜁

2

|𝜁|2
− 𝑑 𝜁

|𝜁|
𝑎𝜁 + 𝑏 = −𝑐𝜁2 − 𝑑𝜁

where
𝜁 = (𝑞𝑟)(𝑖) = 1 − 𝑡 + 𝑖𝑠

(1 + 𝑡)𝑖 − 𝑠 .

Solving this system of equations, we find that one possibility is

𝐴 = [1 + √2 𝜔
𝜔 1 + √2

] where 𝜔 =√−6 + 2√2 − 4𝑖√−2 + 2√2.

(We could take ±𝐴 or ±𝐴−1 as well.) Now 𝜌 is represented by the matrix

𝑅 = [exp(𝜋𝑖/8) 0
0 exp(−𝜋𝑖/8)]
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so the desired Fuchsian group uniformising 𝑇2 is

𝐹 = ⟨[1 + √2 𝜔
𝜔 1 + √2

], [ 1 + √2 (1 + 𝑖)𝜔
(1 − 𝑖)𝜔 1 + √2

], [1 + √2 𝑖𝜔
−𝑖𝜔 1 + √2

], [ 1 + √2 (−1 + 𝑖)𝜔
(−1 − 𝑖)𝜔 1 + √2

]⟩ .

§B. Computation of figure eight Seifert surface
""" Example: plotting the figure eight knot limit set along with

the traces of elements in the group and the limit set of a
Seifert surface subgroup.

"""

from bella import riley,cayley
from mpmath import mp
import holoviews as hv
hv.extension('matplotlib')

omega = mp.exp(2*mp.pi*1j/3)
G = riley.ClassicalRileyGroup(mp.inf, mp.inf, -omega)

traces = []
for word in G.free_cayley_graph_dfs(6):

trace = cayley.simple_tr(G[word])
traces.append(trace)

print(len(traces))

numpoints = 4*10**7
seed = G.fixed_points((0,1))[0]
limset = G.coloured_limit_set_fast(numpoints, seed=seed)
scatter = hv.Scatter(limset, kdims = ['x'], vdims = ['y','colour'])\

.opts(marker = "d", s = .2,\
aspect=1, fig_size=1000,\
color = 'colour', cmap="glasbey_cool")\

.redim(x=hv.Dimension('x', range=(-2, 2)),\
y=hv.Dimension('y', range=(-2, 2)))

P = G.subgroup([ G.string_to_word("YxYXyxYx"), G.string_to_word("xYXy") ])
limsetP = P.coloured_limit_set_fast(numpoints, (P.fixed_points((1,1)))[0])
scatterP = hv.Scatter(limsetP, kdims = ['x'], vdims = ['y','colour'])\

.opts(marker = "d", s=.2, aspect=1, \
color = "colour", cmap="glasbey_warm")

scatter *= hv.Points([(float(z.real), float(z.imag)) for z in traces])\
.opts(color='black', s=5) * scatterP

hv.save(scatter, 'fig8lattice_mpl2.png', fmt='png')
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