
A problem session for weeks 3 and 4

31 July 2023

1 Braids

1.1 4-plats and 2-bridge knots

1. What does β determine in a torsion diagram? Hint: start at 0 and walk along the curve u
according to its orientation. Where do you end up? Hence β is not the crossing number as in
‘number of crossings’, but in terms of ‘number of the crossing’. The exercise is to check that
this is actually what the homology number is measuring.

2. Show that the (α, β) torsion diagram with β even (so α is odd and the orientation of I2 is
reversed) is a diagram of the (α − β)/α knot. Hence if the assumption ‘β odd’ is deleted
then Schubert’s theorem (Theorem 3.5) should be modified to read .... and β±1 = ±β′... in
both cases. Hint: rotate I2 by an isotopy of R2. The corresponding presentation is now on X
and y−1 so to obtain the (α− β)/α Riley word from the β/α one swap Y and y; instead of
V X = Y V we also have V X = yV so the new Farey word is V xvy up to inverses.

3. Classify the 2-bridge links with α ∈ {0, 1}. Draw the corresponding 4-plats.

4. Draw the 3/4 torsion diagram and write down the corresponding word.

5. Give the rational number corresponding to the trefoil knot and the three knots below. Compute
the corresponding Farey words.

6. Verify that the 5/7 and the 3/7 knots are the same. What are the correspoding Riley words?
Conjecture a rule relating the p/q Riley word with the p−1/q Riley word (inverses taken mod
2q).

7. Compute the Riley word of an arbitrary 2-bridge link formally (i.e. prove Proposition 3.15).
Hint: in the case of a 2-component link the Wirtinger presentation will give you two relations.
These should correspond to the same relator, the Farey word.
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8. On lens spaces.

(a) π1(L(p, q)) = Z/pZ.

(b) A homeomorphism h : ∂U → ∂U extends to an autohomeomorphism of U iff h∗(β) =
[β]±1. (Here β is one of the loops in the standard basis, same notation as above.)

(c) L(1, 0) = S3 and L(0, 1) = S2 × S1. In fact, L(1, q) = S3 for all q.

(d) L(p, q) = L(p, q′) if and only if q ≡ ±q′ (mod p) or q ≡ ±q′−1 (mod p). Hint:- under
these conditions there is a homeomorphism h : Lp,q → Lp,q′ which preserves the two
handebodies in the first case and swaps them in the second case.

(e) Computer project. Draw pictures of lens spaces [Cou+22].

9. Use (4) of the previous exercise to prove that b(α, β) and b(α′, β′) are equivalent as unoriented
links iff α = α′ and β±1 = β′ (mod α). Then prove that they are equivalent as oriented links
iff α = α′ and β±1 = β′ (mod 2α).

10. If an n-braid is chosen with permutation π, as in the definition, then there exists a link with µ
components obtained by identifying the Pi with Qπ(i). Give a formal definition of this link
(the [closure!of a braid]closure of the braid). Prove (Alexander, 1928) that every link can be
obtained as the closure of some braid [BZ03, §2D].

11. (Bankwitz-Schumann) All 2-bridge knots are alternating.

12. All 2-bridge knots are amphichiral.

13. Show that the two embeddings (Thurston’s and Riley’s) of the figure eight group intoPSL(2,C)
are conjugate subgroups:

Π1 =

〈
ϕB =

i√
ω

[
1 1
1 −ω2

]
, ϕC =

[
1 ω
0 1

]
, ϕD =

[
2 −1
1 0

]〉
,

Π2 =

〈[
1 1
0 1

]
and Y 7→

[
1 0
−ω 1

]〉
.

14. Computer project. Plot
⋃

r∈Q Λ−1
r (0).

1.2 Braids in general and mapping classes

1. Write down the relevant fibre bundle and prove the generalised Birman exact sequence using
the same argument as the one-point version.

2. Supply a formal proof that π1(UConf(B2, n)) ≃ π1(UConf(C, n)).

3. Show that the (p, q) torus knot is the closure of the braid (σ1, . . . , σp−1)
q by embedding the

latter braid on the torus.

4. (The four-times punctured sphere.) Let S0,4 be the topological four-times punctured sphere.

(a) Show that Mod(T2) = SL(2,Z). [Hint: write T2 as the quotient of C by some lattice Λ,
and show that SL(2,Z) is the maximal group which permutes all the different lattices
that produce the same complex structure—see [IT87, §1.2] for details and pictures.]
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(b) Observe that §0,4 and T2 are both produced by quotients of a quadrilateral in C and
conclude that there is an induced surjective homomorphism Mod(S0,4) → SL(2,Z) given
by topological lifting; show that the kernel of this homomorphism is generated by two
rotations by π of S0,4:

(c) Conclude that Mod(S0,4) = SL(2,Z)⋊ (Z/2Z)2.

(d) Describe the maps in the spherical Birman exact sequence, 1 → Z/2Z → π1(UConf(S2, 4)) →
Mod(S0,4) → 1.

(e) Recall that SL(2,Z) is generated by R = (1, 1 | 0, 1) and Q = (0,−1 | 1, 0). Write
L = (1, 0 | 1, 0). Show that SL(2,Z) = ⟨R,L⟩⋊ ⟨Q⟩.

(f) Let Γ1 = ⟨L,R⟩. Describe the action of Γ1 as a subset of the mapping class group on
the curves γ0 and γ∞ shown here:

(g) Compare with the discussion of the previous lecture on 2-bridge knots and links.

5. Prove that
Bn = ⟨σ1, . . . σn−1 : ∀|i−j|>1σiσj = σjσi,

∀iσiσi+1σi = σi+1σiσi+1⟩.

is a presentation of the braid group.

6. Recall that S1
1 denotes the torus with a single boundary component. Prove that Mod(S1

1) ≃ B3.
(Hint: Take the quotient of S1

1 by the hyperelliptic involution).

7. (The Birman exact sequence, revisited) Here we outline an alternative proof of the Birman
exact sequence, using only hyperbolic geometry and Alexander’s method, avoiding appealing
to the long exact sequence in homotopy and deep results about the contractibility of spaces of
homeomorphisms of surfaces.

Let S be a hyperbolic surface. Fix a point x in the interior of S.

(a) Prove that π1(S, x) has trivial center (Hint: Use the representation π1(S, x) → Isom+(H2)
and the classification of isometries of H2).
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(b) Recall that if G is a group with Z(G) = 1, then, we have a short exact sequence,

1 → G → Aut(G) → Out(G) → 1.

(c) Show that the canonical homomorphism Mod(S, x) → Aut(π1(S, x)) is injective. (Hint:
use Alexander’s method [FM12, p. 59] applied to a suitable collection of curves based at
the point x).

(d) Show that there is a natural, well-defined injection Mod(S) → Out(π1(S, x)) (use the
fact that S has contractible universal cover to see injectivity). What about surjectivity?
See the Dehn–Nielsen–Baer Theorem [FM12, Chapter 8].

(e) Consider the diagram

Mod(S, x) Mod(S)

1 π1(S, x) Aut(π1(S, x)) Out(π1(S, x)) 1

Forget

Show that the image of π1(S, x) is contained in the image of Mod(S, x) as follows: Let
α be a simple loop in S, based at x. Push α to the left a bit, to get α+, and to the right a
bit to get α−. Show that the composition of Dehn twists Tα+T−1

α− acts as conjugation by
α on π1(S, x). Conclude that the image of π1(S, x) lies within the kernel of Forget.

(f) Verify that the map π1(S, x) → Mod(S, x) is actually the push map, and complete the
statement.

8. This exercise comes from a paper of Farb [Far22]. It provides a geometric explanation for
the existence of an exceptional surjection.

(a) Let n > m > 2, and denote by Σn the symmetric group on n letters. Show that there
exists an epimorphism Σn → Σm if and only if (n,m) = (4, 3). (Hint: If n ≥ 5, then An

is simple).

(b) Find a lift of the homomorphism Σ4 → Σ3 obtained above to B4 → B3, where Bn denotes
the braid group on n strands.

(c) Recall thatBn = π1(Polyn(C)) = Mod(Dn), where Polyn(C) denotes the space of monic,
degree n, square free polynomials over C. There is a map Fer : Poly4(C) → Poly3(C),
called the resolving quartic map, induced via the following: send a configuration of 4
distinct points (q1, q2, q3, q4) to 3 distinct points (z1, z2, z3) where,

z1 = (q1 − q2 − q3 + q4)
2/4

z2 = (q1 − q2 + q3 − q4)
2/4

z3 = (q1 + q2 − q3 − q4)
2/4

Investigate the induced map Fer∗ : B4 → B3.

9. (Capping and realizing B3 as homeomorphisms) This exercise involves the braid group on
3 strands, and in particular, some consequences of viewing it as the mapping class group
Mod(D3). Is there a section to the projection Homeo+(D3, ∂D) → B3? That is, can you
realise the braid group on 3 strands as a group of homeomorphisms? The answer is yes,
proven by Thurston (https://mathoverflow.net/q/55555).
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The following discussion might be helpful regarding the above. We can cap the boundary of
D3 with a disk. If this disk is marked, then one has the following capping exact sequence
[FM12, p. 82]:

1 → Z → B3 → Mod(S0,4) → 1

The homomorphism Mod(D3) → Mod(S0,4) is simply given by extending as the identity, and
the kernel is a Dehn twist about the boundary of D3 (which, as you should check, generates
the center of B3). We show in another exercise that Mod(S0,4) ≃ PSL(2,Z)⋊ (Z2 × Z2).

Switching gears a bit, suppose we cap the boundary component of D3 with just a disk (no
marked point). It can be shown (see for example [FM12, p. 104]) that one has an exact
sequence,

· · · → π1(Diff+(S2)) → π1(UTS2) → B3 → Mod(S0,3) → 1

where UTS2 is the unit tangent bundle of S2. Recall also that Diff+(S2) has the homotopy
type of SO(3). Now, the unit tangent bundle of the 2-sphere UTS2 can be identified with
R¶3, so, in particular, π1(UTS2) = Z/2Z. One can try and place this exact sequence into the
context of the Birman exact sequence for the 3-stranded spherical braid group and obtain a
similar picture to the four-punctured sphere case.

2 Knot polynomials

2.1 The Alexander–Conway polynomial

1. Draw a Seifert surface for the (3, 4, 3) pretzel knot.

2. Show that the skein relations are invariant under Reidemeister moves.

3. Give the genera for the following two Seifert surfaces:

4. Let L be the link consisting of two parallel trefoil knot complements. Construct a surface
spanned by L by taking a narrow rectangular strip of paper and tying it up in a trefoil knot
with the two short ends suitably identified. Show that this surface is non-orientable. Draw a
Seifert surface for L.

5. Show that for any oriented link L, ∆L(t) = ∆L(t
−1); and for any oriented knot k, ∆k(1) = ±1.
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6. In this long exercise, we will compute the Alexander–Conway polynomials (or ‘A–C polyno-
mials’ for short) for all 2-bridge knots, following [BZ03, §12C].

Define the Fibonacci polynomials fibn(z) by

fib0(z) = 0, fib1(z) = 1,

fibn+1(z) = z fibn(z) + fibn−1(z),

fib−n(z) = (−1)n+1 fibn(z) for n ≥ 0.

(a) Show that the Fibonacci polynomials for n ≥ 0 are of the form

f2n−1 = 1 + a1z
2 + a2z

4 + · · ·+ an−1z
2n−2

f2n = z(b0 + b1z
2 + b2z

4 + · · ·+ bn−1z
2n−2)

for some ai, bi ∈ Z, with an−1 = bn−1 = 1.

Let k = b(α, β) be a two-bridge knot—so α ≡ β ≡ 1 (mod 2). Represent this knot by the
braid

σa1
2 σ−2b1

1 · · ·σak
2

where k = (m+1)/2. (There is always a unique generalised Euclidean algorithm of this form,
[BZ03, Proposition 12.7].)

(b) Using the skein relations, show that the A–C polynomial of the 4-plat defined by σa
2 for

a > 0 is ∆a(z) = (−1)a+1 fiba(z).

(c) Show that ∆−a = (−1)a+1∆a.

(d) Assume that a > 0, b > 0, and c ̸= −1. Show that the A–C polynomial of the 4-plat
defined by σa

2σ
−2b
1 σc

2 is

∆abc(z) = ∆a−1(z)∆c(z) + ∆a(z)∆c+1(z)− bz∆a(z)∆c(z).

Hint: use the skein relations on the double points of σa
2 from top to bottom.

(e) Use (1) to show that if c > 0,

deg∆abc = a+ c− 1 and |LC(∆abc)| = |b+ 1|

and if c < 0 then
deg∆abc = a− c− 1 and |LC(∆abc)| = |b|.

One can also show that if a < 0, b < 0, and c ̸= 1 then

∆abc = ∆a+1∆c +∆a∆c−1 − bc∆a∆c

and so deg∆abc = |a|+ |c| − 1, C(∆abc) = |β|+1− η where η = 1 or 0 according to whether
c > 0 or c < 0. But the proof is boring so just take it for granted. We continue.

(f) Suppose that β = σa1
2 σ−2b1

1 β′ and β′ = σa2
2 σ−2b2

3 · · · where a1 > 0 and a2 > 0. Show
that the A–C polynomial of β is

∆β = ∆a1∆σ2β′ +∆a1−1∆β′ − b1z∆a1∆β′

and deg∆β = deg∆a1
∆σ1β′ .
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(g) Conclude by induction that

deg∆k = |a1| − 1 +
∑
j>1

|aj | and |LC(∆k)| =
k−1∏
j=1

(|bj |+ 1− ηj).

(h) It is a classical theorem that the genus of an alternating knot is (d+ 1)/2 where d is the
degree of its A–C polynomial. Compute the genus of every 2-bridge knot. Conclude also
that there are infinitely many knots of positive genus.

2.2 Quantum invariants

1. Show that if c ∈ Aut(V ⊗ V ) is an R-matrix then so are λc, c−1, and τ ◦ c ◦ τ where τ is the
flipping map and λ is a scalar.

2. Show that the map c ∈ Aut(V ⊗ V ) defined by

c(ei ⊗ ei) := qei ⊗ ei

c(ei ⊗ ej) :=

{
rjiej ⊗ ei if i < j;
rjiej ⊗ ei + (q − pq−1)ei ⊗ ej if i > j.

is an R-polynomial and verify that it satisfies the quadratic polynomial

c2 − (q − pq−1)c− p idV⊗V = 0.

3. (a) Show that the dual vector space of a coalgebra C is an algebra: consider the map
λ : C∨ ⊗ C∨ → (C ⊗ C)∨ defined by (f ⊗ g)(u⊗ v) := g(v)⊗ f(u) and define A = C∨,
µ = ∆∨ ◦ λ and η = ε∨.

(b) Show that the algebra of functions structure defined on k{X}∨ is indeed the natural one
arising from the coalgebra structure on k{X} via the construction of (a) above.

(c) Show that the dual vector space of a finite dimensional algebra is a coalgebra. Hint: in
the finite dimensional setting, λ is an isomorphism.

4. Define cocommutativity of a bialgebra A. Show that the flip τV,W : V ⊗ W → W ⊗ V
is an isomorphism of A-modules when A is cocommutative. Show that addition in A1 is
cocommutative in k[x].

5. (Fun for 334 students.) Let (H,µ, η,∆, ε) be a bialgebra. Define a convolution operation on
Hom(H,H) by the composition

H H ⊗H H ⊗H H.∆ f⊗g µ

An endomorphism S ∈ Hom(H,H) is a antipode for the bialgebra H if S∗idH = idH ∗S = η◦ε.
A Hopf algebra is a bialgebra with an antipode. Define the commutative algebras

M(2) = k[a, b, c, d]

GL(2) = M(2)[t]/((ad− bc)t− 1)

SL(2) = GL(2)/(t− 1) = M(2)/(ad− bc− 1).
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(a) Show that for any commutative algebra A there are bijections Hom(GL(2), A) ≃ GL2(A)
and Hom(SL(2), A) ≃ SL2(A), where GL2 and SL2 are the classical matrix algebras
over A.

(b) Define ∆ : M(2) → M(2)⊗M(2) ≃ k[a′, a′′, b′, b′′, c′, c′′, d′, d′′] by

∆(a) = a′a′′ + b′c′′, ∆(b) = a′b′′ + b′d′′

∆(c) = c′a′′ + d′c′′, ∆(d) = c′b′′ + d′d′′.

Show that for any commutative algebra A, ∆ corresponds to usual matrix multiplication
in M2(A).

(c) Show that ∆(ad− bc) = (a′′d′′ − b′′c′′)(a′′d′′ − b′′c′′).
(d) Observe that ∆ induces maps GL(2) → GL(2)⊗GL(2) and SL(2) → SL(2)⊗ SL(2).
(e) Define suitable morphisms GL(2) → k and SL(2) → k corresponding to units, and

suitable automorphisms of GL(2) and SL(2) corresponding to inversions. Check that
you now have a Hopf algebra structure on GL(2) and SL(2).

6. (Fun for 334 students who also like quantum field theory.) The affine plane is the algebra
generated freely by x and y modulo the relation yx = xy. The quantum commutation relation
is the relation yx = qxy, where q ∈ k∗. Let Iq be the two-sided ideal of the free algebra k⟨x, y⟩
generated by yx− qxy, and let the quantum plane be the quotient kq[x, y] := k⟨x, y⟩/Iq.

(a) Let R be an algebra without zero divisors. If α is an algebra endomorphism of R,
then an α-derivation of R is a linear map δ : R → R such that for all a, b ∈ R,
δ(ab) = α(a)δ(b) + δ(a)α(b). Given an injective algebra endomorphism α : R → R and
an α-derivation δ of R there exists a unique algebra structure on the free module of
polynomials R[t] such that the natural inclusion R → R[t] is an algebra morphism and
ta = α(a)t+ δ(a). This algebra structure is called the Ore extension R[t, α, δ]. (A proof
of existence and uniqueness is [Kas95, Theorem I.7.1].) If R is (left) Noetherian, then
so is the Ore extension [Kas95, Theorem I.8.3].
Show that if α is the automorphism of k[x] determined by α(x) = qx, then kq[x, y] is
isomorphic to the Ore extension k[x][y, α, 0]. Conclude that kq[x, y] is Noetherian with
no zero divisors and has basis {xiyj}i,j≥0.

(b) Show also that for any pair (i, j) of nonnegative integers, yixj = qijxjyi and for any
k-algebra R there is a natural bijection between Hom(kq[x, y], R) and {(X,Y ) ∈ R×R :
Y X = qXY }. These pairs are [points of the quantum plane]R-points of the quantum
plane.

(c) Let A be the algebra of smooth complex functions on C\{0}. Let q ∈ C\{0, 1}. Consider
the elemenets of R = Endlin.(A) given by

τq(f)(x) = f(qx) and δq(f)(x) =
f(qx)− f(x)

qx− x
.

Show that (τq, δq) is an R-point of kq(x, y) and justify the equation limq→1 δq = d/dx.

7. (a) Compute the HOMFLY polynomial of the trefoil knot and the Hopf link.
(b) Show that if L is a link and L′ is its mirror image then PL′(x, y) = PL(x

−1, y−1).
Conclude that the trefoil knot is not amphichiral.

8. Show that the HOMFLY polynomial is invariant under mutation, hence does not distinguish
between the Kinoshita–Terasaka and Conway knots.
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9. Let (L+, L−, L0) be a Conway triple. Show that there exist tangles L1, L2, L3, L4 such that

L+ = L1 ◦ (L2 ⊗X+ ⊗ L3) ◦ L4

L− = L1 ◦ (L2 ⊗X− ⊗ L3) ◦ L4

L0 = L1 ◦ (L2 ⊗X0 ⊗ L3) ◦ L4.

10. On representations of Bn, [Kas95, §X.6.2]. Let V be a vector space, c ∈ Aut(V ⊗ V ), and
n > 1 an integer. For 1 ≤ i ≤ n− 1 define ci ∈ Aut(V ⊗n) by

ci =


c⊗ idV ⊗n−2 if i = 1

idV ⊗n−1 ⊗c⊗ idV ⊗n−i−1 if 1 < i < n− 1

idV ⊗n−2 if i = n− 1.

(a) Show that if |i− j| > 1 then cicj = cjci.

(b) Show that cici+1ci = ci+1cici+1 for all i if and only if c is an R-matrix (i.e. a solution of
the Yang-Baxter equation).

(c) Let c ∈ Aut(V ⊗ V ) be an R-matrix. Show that for any n > 0 there exists a unique
group morphism ρcn : Bn → Aut(V ⊗n) such that ρcn(σi) = ci for 1 ≤ i ≤ n − 1. (In
other words, R-matrices manufacture representations from Bn onto V ⊗n for all n ≥ 2.)
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