
A problem session for weeks 1 and 2

17 July 2023

1 Classical knot theory

1.1 Basic definitions and first examples

1. Show that the figure eight knot is amphichiral.

2. Show that if k is any knot and π : k → R2 is some projection which induces a diagram then
there exists an alternating knot k′ with the same projection as a subset of R2 (Tait, late
1800s).

3. Define the writhe of a diagram δ of a knot k to be

w(δ) =
∑

v∈V (δ)

ε(v)

(compare the definition of linking number, where the sum is only over intersections of two
different components). Show that w is invariant under the second and third Reidemeister
moves, but not the first: in fact adding a single ‘loop’ (either over or under) to a knot diagram
adds 1 to the writhe. In fact the writhe is a topological invariant of the knot k together with a
choice of section of the unit normal bundle to k, or (equivalently) a ‘ribbon’ thickening of k.
This additional structure on k is called a framed knot (and has an obvious generalisation to
links).

4. Show that the only knot of crossing number 0 is the unknot; that there are no knots of crossing
number 1 or 2; that the only knot of crossing number 3 is the trefoil knot; that the only knot
of crossing number 4 is the figure eight knot. Conclude that the figure eight and trefoil knots
are distinct.

5. Show that the figure eight knot is amphichiral.

1.2 The fundamental group

1. Show that the Fox knot (fig. 1) is not the unknot. (See e.g. [Fox49] for one method)

2. Show that the fundamental groups of two separated rings and two linked rings (the Hopf
link) are not isomorphic. The Hopf link is so named because every pair of circles in the Hopf
fibration form a Hopf link in S3.

3. Exhibit 3-bridge presentations for the Kinoshita–Terasaka and Conway knots.

4. Find all presentations of the fundamental group of the trefoil knot onto A5.
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Figure 1: A wild knot, the Fox knot [CF08, p. 6]. Observe that this can somehow be unravelled,
but it is not isotopic to the unknot [Fox49]! See also [Kau87, p. 52].

Figure 2: The stevedore’s knot. Image by Jim.belk, released to public domain (see http://commons.
wikimedia.org/wiki/File:Blue_Stevedore_Knot.png)

5. Show that the fundamental group of the Klein bottle is π1(K) = ⟨x, y : y = xyx⟩. Show that
no knot group admits a surjective representation onto π1(K).

6. Show that tricolourability of k is equivalent to the existence of a surjective homomorphism
π1(k) → S3.

7. Show that the trefoil knot is the (2, 3) torus knot. Show that the (p, q) and (q, p) torus knots
are equivalent.

8. Show that the stevedore’s1 knot (fig. 2) is 2-bridge and give a two generator presentation for
its group.

9. Show that ⟨x, y : yxy = xyx⟩ ≃ ⟨a, b : a2 = b3⟩. Hint: b = xy and a = xyx. Observe that this
is a presentation for PSL(2,Z) [Ser02, Example 1.5.2 of Chapter I].

10. (Brauner’s theorem, [Mil69, p. 4]) The (p, q)-torus knot is cut out by intersecting a sufficiently
small 3-sphere in C2 with the algebraic curve V(zp + wq), i.e. it is an algebraic knot.

1“A workman employed either as overseer or labourer in loading and unloading the cargoes of merchant vessels.” (OED)
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2 Geometric knot theory

2.1 Geometric structures on knot complements

1. If you know Chapter VII of Maskit [Mas87]: write the figure eight group in terms of the
amalgamated products and HNN extensions of the cyclic groups generated by[

1 ω
0 1

]
and

[
2 −1
1 0

]
where ω = e2π/3.

2. Describe in SU(2), in terms of the group structures (where α denotes the upper-left-hand
element of a generic element, eq. (2.11)),

(a) the latitudes: the set of all U ∈ SU(2) such that Reα is some fixed value (hint: this was
already done for x = ±1);

(b) the longitudes: the set of U ∈ SU(2) cut out by any hyperplane (R3) in C2 which passes
through ±I.

3. Let T = R2/Z2 be the 2-torus.

(a) Show that the linear automorphism of R2 represented by [ 2 1
1 1 ] descends to T . The

resulting map on the torus is the Arnold’s cat map α.

(b) Draw the mapping torus of α, Mα := (T × [0, 1])/((x, 1) ∼ (α(x), 0)). This manifold is
a Sol-manifold.

4. [Thu97, Exercise 4.7.1] If ϕ is an isometry of S2 then the mapping torus Mϕ is an (S2 ×
E1)-manifold. In fact it is the quotient of S2 × E1 by the discrete group generated by the
transformation (v, t) 7→ (ϕv, t+ 1) where v ∈ S2. The manifold is diffeomorphic to S2 × S1
when ϕ is orientation-preserving and is non-orientable otherwise. What other manifolds
admit S2 × E1 structures?

(a) Any discrete subgroup of isometries of S2 ×E1 acts discretely (but not necessarily freely
or effectively) on E1.

(b) An infinite discrete group of isometries of E1 is isomorphic to Z or C2 ∗ C2.

(c) There are only three closed 3-manifolds, up to diffeomorphism, that admit (S2 × E1)-
structures. Two are orientable and one is not.

2.2 Hyperbolic invariants and computation

1. [Mar16, Exercise 3-46] (Halpern’s inequality) Suppose G is a torsion-free Fuchsian group (i.e.
discrete subgroup of PSL(2,R) ≃ Isom+(H2)) acting on the upper half-plane H2 = {x+ ti ∈
C : t > 0}. Assume G has a parabolic fixed point at ∞ and that the parabolic subgroup is
generated by T : z 7→ z + 1. Prove that for every A ∈ G that does not fix ∞, |c| ≥ 2 where c
is the lower-left-hand entry of A. (Hint: compute trTATA−1.)

2. [Mar16, Exercise 3-5] A Dirichlet region for a Kleinian group G with centre z ∈ H3 is the
closed convex hyperbolic polyhedron ⋂

g∈G

Hg
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where Hg is the relatively closed half-space which is bounded by the perpendicular bisector of
[z, gz] containing z. This is a fundamental polyhedron for G [Mas87, §IV.G].

Find a Dirichlet region for the rank two parabolic group generated by z 7→ z + 1 and z 7→ τ
for τ ∈ iR>0. Show that generically it has six edges, but sometimes only four. Compute the
hyperbolic volume of the part of the polyhedron lying above a general horosphere based at ∞.
Show that the quotient H3 ∪ C/G (this is OK since Ω(G) = Ĉ \ {∞}!) is homeomorphic to
{0 < |z| ≤ 1 : z ∈ C} × §1, i.e. the complement of the core circle is the solid torus. This is the
prototype of the local structure about a hyperbolic knot, the parabolic fixed point is ‘stretched’
onto the knot.

3. [Mar16, Exercise 6-1] Let Γ be the group of isometries of E3 which is generated by (x, y, t) 7→
(x + 1, y, t) and (x, y, t) 7→ (−x, y + 1,−t). Let Γ0 = ⟨(x, y, t) 7→ (x + 1, y, t), (x, y, t) 7→
(x, y + 1, t)⟩

(a) The group Γ preserves C and C/Γ is the Klein bottle.

(b) The interior of T2× [0, 1] obtained by thickening the torus T2 is almost hyperbolic except
for the existence of hyperbolic essential cylinders with one boundary component on
T2 ×{0}. The interior is E3/Γ0. (This is the only manifold whose boundary components
are tori whose interior does not have a complete finite-volume hyperbolic structure, by a
theorem from the lecture.)

(c) The torus C/Γ0 is the two-sheeted orientable cover of C/Γ and the cover transformation
is ‘flipping’. The corresponding 3-manifold E3/Γ is called the twisted I-bundle over the
Klein botthe and is the only homotopically atoroidal manifold whose interior does not
have a hyperbolic structure.
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