A problem session for weeks 1 and 2

17 July 2023

1 Classical knot theory

1.1 Basic definitions and first examples

- 1. Show that the figure eight knot is amphichiral.
- 2. Show that if k is any knot and $\pi : k \to \mathbb{R}^2$ is some projection which induces a diagram then there exists an alternating knot k' with the same projection as a subset of \mathbb{R}^2 (Tait, late 1800s).
- 3. Define the writhe of a diagram δ of a knot k to be

$$w(\delta) = \sum_{v \in V(\delta)} \varepsilon(v)$$

(compare the definition of linking number, where the sum is only over intersections of two different components). Show that w is invariant under the second and third Reidemeister moves, but not the first: in fact adding a single 'loop' (either over or under) to a knot diagram adds 1 to the writhe. In fact the writhe is a topological invariant of the knot k together with a choice of section of the unit normal bundle to k, or (equivalently) a 'ribbon' thickening of k. This additional structure on k is called a **framed knot** (and has an obvious generalisation to links).

- 4. Show that the only knot of crossing number 0 is the unknot; that there are no knots of crossing number 1 or 2; that the only knot of crossing number 3 is the trefoil knot; that the only knot of crossing number 4 is the figure eight knot. Conclude that the figure eight and trefoil knots are distinct.
- 5. Show that the figure eight knot is amphichiral.

1.2 The fundamental group

- 1. Show that the Fox knot (fig. 1) is not the unknot. (See e.g. [Fox49] for one method)
- 2. Show that the fundamental groups of two separated rings and two linked rings (the **Hopf** link) are not isomorphic. The Hopf link is so named because every pair of circles in the Hopf fibration form a Hopf link in \mathbb{S}^3 .
- 3. Exhibit 3-bridge presentations for the Kinoshita-Terasaka and Conway knots.
- 4. Find all presentations of the fundamental group of the trefoil knot onto A_5 .

Figure 1: A wild knot, the **Fox knot** [CF08, p. 6]. Observe that this can somehow be unravelled, but it is not isotopic to the unknot [Fox49]! See also [Kau87, p. 52].

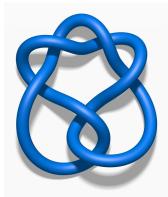


Figure 2: The stevedore's knot. Image by Jim.belk, released to public domain (see http://commons.wikimedia.org/wiki/File:Blue_Stevedore_Knot.png)

- 5. Show that the fundamental group of the Klein bottle is $\pi_1(K) = \langle x, y : y = xyx \rangle$. Show that no knot group admits a surjective representation onto $\pi_1(K)$.
- 6. Show that tricolourability of k is equivalent to the existence of a surjective homomorphism $\pi_1(k) \to S_3$.
- 7. Show that the trefoil knot is the (2,3) torus knot. Show that the (p,q) and (q,p) torus knots are equivalent.
- 8. Show that the stevedore's¹ knot (fig. 2) is 2-bridge and give a two generator presentation for its group.
- 9. Show that $\langle x, y : yxy = xyx \rangle \simeq \langle a, b : a^2 = b^3 \rangle$. Hint: b = xy and a = xyx. Observe that this is a presentation for PSL(2, Z) [Ser02, Example 1.5.2 of Chapter I].
- 10. (Brauner's theorem, [Mil69, p. 4]) The (p, q)-torus knot is cut out by intersecting a sufficiently small 3-sphere in \mathbb{C}^2 with the algebraic curve $\mathbf{V}(z^p + w^q)$, i.e. it is an algebraic knot.

¹"A workman employed either as overseer or labourer in loading and unloading the cargoes of merchant vessels." (OED)

2 Geometric knot theory

2.1 Geometric structures on knot complements

1. If you know Chapter VII of Maskit [Mas87]: write the figure eight group in terms of the amalgamated products and HNN extensions of the cyclic groups generated by

$$\begin{bmatrix} 1 & \omega \\ 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$

where $\omega = e^{2\pi/3}$.

- 2. Describe in SU(2), in terms of the group structures (where α denotes the upper-left-hand element of a generic element, eq. (2.11)),
 - (a) the latitudes: the set of all $U \in SU(2)$ such that $\operatorname{Re} \alpha$ is some fixed value (hint: this was already done for $x = \pm 1$);
 - (b) the longitudes: the set of $U \in SU(2)$ cut out by any hyperplane (\mathbb{R}^3) in \mathbb{C}^2 which passes through $\pm I$.
- 3. Let $T = \mathbb{R}^2 / \mathbb{Z}^2$ be the 2-torus.
 - (a) Show that the linear automorphism of \mathbb{R}^2 represented by $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ descends to *T*. The resulting map on the torus is the **Arnold's cat map** α .
 - (b) Draw the mapping torus of α , $M_{\alpha} \coloneqq (T \times [0, 1])/((x, 1) \sim (\alpha(x), 0))$. This manifold is a Sol-manifold.
- 4. [Thu97, Exercise 4.7.1] If ϕ is an isometry of \mathbb{S}^2 then the mapping torus M_{ϕ} is an $(\mathbb{S}^2 \times \mathbb{E}^1)$ -manifold. In fact it is the quotient of $\mathbb{S}^2 \times \mathbb{E}^1$ by the discrete group generated by the transformation $(v, t) \mapsto (\phi v, t + 1)$ where $v \in \mathbb{S}^2$. The manifold is diffeomorphic to $\mathbb{S}^2 \times \mathbb{S}^1$ when ϕ is orientation-preserving and is non-orientable otherwise. What other manifolds admit $\mathbb{S}^2 \times \mathbb{E}^1$ structures?
 - (a) Any discrete subgroup of isometries of $\mathbb{S}^2 \times \mathbb{E}^1$ acts discretely (but not necessarily freely or effectively) on \mathbb{E}^1 .
 - (b) An infinite discrete group of isometries of \mathbb{E}^1 is isomorphic to \mathbb{Z} or $C_2 * C_2$.
 - (c) There are only three closed 3-manifolds, up to diffeomorphism, that admit $(\mathbb{S}^2 \times \mathbb{E}^1)$ -structures. Two are orientable and one is not.

2.2 Hyperbolic invariants and computation

- 1. [Mar16, Exercise 3-46] (Halpern's inequality) Suppose G is a torsion-free Fuchsian group (i.e. discrete subgroup of $PSL(2, \mathbb{R}) \simeq Isom^+(\mathbb{H}^2)$) acting on the upper half-plane $\mathbb{H}^2 = \{x + ti \in \mathbb{C} : t > 0\}$. Assume G has a parabolic fixed point at ∞ and that the parabolic subgroup is generated by $T : z \mapsto z + 1$. Prove that for every $A \in G$ that does not fix ∞ , $|c| \ge 2$ where c is the lower-left-hand entry of A. (Hint: compute tr $TATA^{-1}$.)
- 2. [Mar16, Exercise 3-5] A Dirichlet region for a Kleinian group G with centre $z \in \mathbb{H}^3$ is the closed convex hyperbolic polyhedron

$$\bigcap_{g \in G} H_g$$

where H_g is the relatively closed half-space which is bounded by the perpendicular bisector of [z, gz] containing z. This is a fundamental polyhedron for G [Mas87, §IV.G].

Find a Dirichlet region for the rank two parabolic group generated by $z \mapsto z + 1$ and $z \mapsto \tau$ for $\tau \in i\mathbb{R}_{>0}$. Show that generically it has six edges, but sometimes only four. Compute the hyperbolic volume of the part of the polyhedron lying above a general horosphere based at ∞ . Show that the quotient $\mathbb{H}^3 \cup \mathbb{C}/G$ (this is OK since $\Omega(G) = \hat{C} \setminus \{\infty\}$!) is homeomorphic to $\{0 < |z| \le 1 : z \in \mathbb{C}\} \times \S^1$, i.e. the complement of the core circle is the solid torus. This is the prototype of the local structure about a hyperbolic knot, the parabolic fixed point is 'stretched' onto the knot.

- 3. [Mar16, Exercise 6-1] Let Γ be the group of isometries of \mathbb{E}^3 which is generated by $(x, y, t) \mapsto (x + 1, y, t)$ and $(x, y, t) \mapsto (-x, y + 1, -t)$. Let $\Gamma_0 = \langle (x, y, t) \mapsto (x + 1, y, t), (x, y, t) \mapsto (x, y + 1, t) \rangle$
 - (a) The group Γ preserves \mathbb{C} and \mathbb{C}/Γ is the Klein bottle.
 - (b) The interior of T² × [0, 1] obtained by thickening the torus T² is almost hyperbolic except for the existence of hyperbolic essential cylinders with one boundary component on T² × {0}. The interior is E³/Γ₀. (This is the only manifold whose boundary components are tori whose interior does not have a complete finite-volume hyperbolic structure, by a theorem from the lecture.)
 - (c) The torus C/Γ₀ is the two-sheeted orientable cover of C/Γ and the cover transformation is 'flipping'. The corresponding 3-manifold E³/Γ is called the **twisted** *I*-**bundle** over the Klein botthe and is the only homotopically atoroidal manifold whose interior does not have a hyperbolic structure.

References

- [CF08] Richard H. Crowell and Ralph H. Fox. Introduction to knot theory. Dover Publications, 2008. ISBN: 9780486468945.
- [Fox49] Ralph H. Fox. 'A remarkable simple closed curve'. In: Annals of Mathematics 50.2 (1949), pp. 264–265. DOI: 10.2307/1969450.
- [Kau87] Louis H. Kauffman. On knots. Annals of Mathematics Series 115. Princeton University Press, 1987. ISBN: 0691084343.
- [Mar16] Albert Marden. Hyperbolic manifolds. An introduction in 2 and 3 dimensions. 2nd ed. First edition was published under the title "Outer circles". Cambridge University Press, 2016. ISBN: 9781107116740.
- [Mas87] Bernard Maskit. Kleinian groups. Grundlehren der mathematischen Wissenshaften 287. Springer-Verlag, 1987. ISBN: 978-3-642-61590-0. DOI: 10.1007/978-3-642-61590-0.
- [Mil69] John Milnor. Singular points of complex hypersurfaces. Annals of Mathematics Studies 61. Princeton University Press, 1969. ISBN: 0691080658.
- [Ser02] Jean-Paul Serre. Trans. by John Stillwell. Springer, 2002. ISBN: 978-3-540-44237-0.
- [Thu97] William P. Thurston. Three-dimensional geometry and topology. Ed. by Silvio Levy. Vol. 1. Princeton University Press, 1997. ISBN: 0691083045.