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Introduction

These are the notes for a eight-lecture minicourse given at the University of Auckland in July 2023.
The course follows a fairly traditional set of topics—fundamental groups, invariants from geometric
topology, braids, and knot polynomials—but given the particular interests of the audience we will go
a bit more deeply into some aspects which do not normally end up in textbooks, in particular the role
of group representations (both finite and infinite). We will also give full technical proofs of many of
the results we use instead of just taking them for granted. In general we will expect the audience to
have a good understanding of basic topology, group theory, and hyperbolic geometry. References on
the background for each section may be found in the individual introductions.

“Oh, there we are back to those parallel lines,” answeredWhatif, “I admit that you can prove
that if the alternating angles are equal then those lines must be parallel, but nobody could
prove the converse. This is why Euclid put the converse (or what is equivalent to it), as his
famous fifth postulate for the Euclidean plane. But now we are in a...”
“diabolic plane?” asked Alice. [65, p. 64]
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Chapter 1

Classical knot theory

In this first week, we will look at classical knot theory—by this, we mean knot theory pre-Thurston
(so up until the 1970s). A lengthy description of the history of knotting, including the mathematics,
may be found in the delightful anthology [71]. We will emphasise the algebraic aspects, in particular
the representation theory of knot complement groups (following R. Riley).

For these notes, we follow in particular the textbooks of Crowell–Fox [19], Kauffman [40], and
Lickorish [45]; but since these books do not go deeply into a lot of what we want to do (Riley’s work).
The prerequisite topology and group theory may be found in the book by Stillwell [64].

1.1 Basic definitions and first examples
Let 𝕊𝑛 be the 𝑛-sphere; usually we identify 𝕊𝑛 ≔ ℝ𝑛 ∪ {∞}. A knot is an embedding 𝑘 ∶ 𝕊1 → 𝕊3. A
link is an embedding 𝑘 ∶ 𝕊1⊔⋯⊔𝕊1 → 𝕊3. A component of a link is just a topological component
of the image. The actual parameterisation 𝑘 is not important, we usually identify the knot or link
with the image. Often we will say ‘knot’ when we mean ‘knot or link’, hopefully in the places that it
matters we remember to say so.
1.1 Example. The unknot is the image of the map [0, 2𝜋] → ℝ × ℂ = ℝ3 given by 𝑡 ↦ (0, exp(𝑖𝑡)).
The figure eight knot and the trefoil knot (also called the cloverleaf knot) are shown along with
the unknot in Fig. 1.1.

Knots are defined up to ambient isotopy in 𝕊3: two knots 𝑘, 𝑙 are equivalent if there exists a con-
tinuous map 𝐹 ∶ 𝕊3×[0, 1] → 𝕊3 such that 𝐹(⋅, 0) is the identity map, 𝐹(⋅, 𝑡) ∶ 𝕊3 → 𝕊3 is an isotopy
for all 𝑡 ∈ [0, 1], and 𝐹(𝑘(⋅), 1) = 𝑙(⋅).

Figure 1.1: Three elementary knots.

9



10 CHAPTER 1. CLASSICAL KNOT THEORY

Figure 1.2: A wild knot, the Fox knot [19, p. 6]. Observe that this can somehow be unravelled, but
it is not isotopic to the unknot [26]! See also [40, p. 52].

Remark. Some people say that knots are defined up to homeomorphism of 𝕊3, i.e. if there exists
a homeomorphism 𝑓 ∶ 𝕊3 → 𝕊3 which sends one knot onto the other. Clearly if two knots are
equivalent up to ambient isotopy then they are equivalent up to ambient homeomorphism. The
converse is almost true. If two knots are equivalent under orientation preserving homeomorphism
then they are equivalent up to ambient isotopy [19, p. 10]. Two knots which are equivalent up to
orientation reversing homeomorphism are said to form a chiral pair, and a knot equivalent up to
ambient isotopy with its chiral twin (mirror image) is called amphichiral.

Finally we say that a knot is polygonal if it is piecewise linear except for finitely many vertices,
and a knot is tame if it is equivalent to a polygonal knot. In Fig. 1.2 we show an example of awild
(i.e. non-tame) knot. We shall from this point assume that every knot is tame unless otherwise stated.

Usually we will work with planar projections of knots. We will give a formal definition but in
reality the technicalities get in theway sowewill hardly ever phrase anything in terms of the function
ob which we are about to define.

1.2 Definition. A knot diagram of a link 𝑘 is a planar1 4-valent graph 𝛿 together with a function
ob ∶ 𝑉(𝛿) → 2𝐸(𝛿) which assigns to every vertex 𝑣 an unordered pair ob(𝑣) = {𝑒, 𝑓} (𝑒 ≠ 𝑓) of edges
incident with 𝑣 such that in the planar embedding 𝑘 ↪ ℝ2 the edges 𝑒 and 𝑓 are on opposite sides of
𝑣, i.e. any arc from the midpoint of 𝑒 to the midpoint of 𝑓 crosses an edge originating from 𝑣 that is
neither 𝑒 nor 𝑓.

Almost all projections ℝ3 → ℝ2 of a 3-plane containing a link to a 2-plane not incident with the
knot induce a knot diagram: the projection induces a 4-valent graph, and the function ob sends 𝑣
to the pair of edges of the diagram which are the projection of the piece of the knot furthest away
from the plane of projection (Fig. 1.3). Conversely a knot diagram clearly induces a knot (by simply
separating the two strands into the third dimension at each vertex).

One can play aroundwith ‘bad’ projections and produce some amusing results: https://youtu.
be/SqpzP81Z0BA.

We will describe here a couple of other things we need from knot diagrams. Suppose 𝑘 is an
oriented knot, that is take an orientation of 𝕊1 and push it forward onto the image 𝑘(𝕊1); let 𝛿 be a
diagram of 𝑘. Then every edge 𝑒 ∈ 𝐸(𝛿) inherits an orientation, and the ‘divalence’ (number of in
edges minus number of out edges) of every vertex 𝑣 ∈ 𝑉(𝛿) is zero.

1. We can assign a sign 𝜖(𝑣) to each vertex 𝑣 ∈ 𝑉(𝛿) according to the convention Fig. 1.4.

2. Define an equivalence relation↭ on the set of edges 𝐸(𝛿) by 𝑒 ↭ 𝑓 iff there exists a vertex 𝑣
such that {𝑒, 𝑓} = ob(𝑣). This sets up a partition 𝑉(𝛿)/↭ of the set of vertices, and the parts of
this partition are the arcs of the diagram. We will write arcs(𝛿) for this set of arcs. Note also
that ob sets up a map 𝑉(𝛿) → arcs(𝛿) which we also denote by ob; it is this function which is
really what we are trying to formalise (a crossing is a place where an arc crosses over another
arc). In Fig. 1.5 we show a diagram of the figure eight knot with four arcs (the connected

1i.e. comes equipped with a given fixed embedding intoℝ2

https://youtu.be/SqpzP81Z0BA
https://youtu.be/SqpzP81Z0BA


1.1. BASIC DEFINITIONS AND FIRST EXAMPLES 11

Figure 1.3: Formally encoding the data of a crossing via the function ob.

Figure 1.4: Sign of a vertex 𝑣.

components of the left-hand image). The arc graph of 𝛿 is the graph with vertex set arcs(𝛿)
and an edge between arcs 𝛼 and 𝛽 iff there is a vertex of 𝛿 at which 𝛼 and 𝛽 meet (right hand
image of Fig. 1.5)

On the subject of arcs, let 𝑘 be a knot in 𝕊3 which meets a plane ℝ2 in 2𝑚 points such that the
arcs (in the usual topological sense) of 𝑘 contained in each halfspace cut out by ℝ2 are orthogonally
projected onto arcs on ℝ2 which are simple and mutually disjoint from the other arcs from the same
halfspace. The minimal 𝑚 for which this is possible is called the bridge number of 𝑘. It is very
hard to compute this number in general. The only 1-bridge knot is the trivial knot; we will classify
2-bridge knots later on; and𝑚-bridge knots for𝑚 > 2 do not admit a known classification.

It is an important (but hard to prove) theorem of Reidemeister that the topological definition of
knot equivalency can be reinterpreted in terms of the combinatorics of knot diagrams:

Figure 1.5: The arc graph of the figure eight knot.
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Figure 1.6: The three Reidemeister moves.

1.3 Theorem (Reidemeister). Two tame links 𝑘, 𝑘′ are equivalent if and only if there exists a finite
sequence of Reidemeister moves (Fig. 1.6) changing a diagram of 𝑘 into a diagram of 𝑘′. mAk

In practice this theorem is useful when trying to define so-called knot invariants.

1.4 Definition. Let 𝑘 be a link with diagram 𝛿 and arc graph arcs(𝛿). Then arcs(𝛿) is said to be
tricolourable if it admits a (possibly non-proper) vertex colouring on 3 colours such that (i) at least
two colours are used, (ii) any lollipop is coloured with either exactly one or exactly two colours, and
(iii) any 3-cycle is coloured with either exactly one or exactly three colours.

1.5 Lemma. Let 𝑘 be a link. If there exists a diagram 𝛿 of 𝑘 which has tricolourable arc graph, then
every diagram of 𝑘 has tricolourable arc graph. Hence the function 𝑡 ∶ Link → {0, 1} which assigns to
each knot the value 1 if it is tricolourable and 0 otherwise is well–defined, i.e. it does not depend on the
diagram chosen.

Proof. Reidemeister moves preserve tricolourability. mAk

This is the first example of a knot invariant, a function Link → 𝑆 where 𝑆 is a known set. It is
not a very good one, but at least we get the following:

1.6 Corollary. The figure eight knot is nontrivial (i.e. is not equivalent to the unknot).

Proof. The incidence graph of the figure eight knot is 𝐾4 (Fig. 1.5), but the unknot is tricolourable
(its arc graph is a single vertex with no edges). mAk

We have distinguished at least two knots, but we need better invariants—for instance we still
cannot prove that the trefoil (Fig. 1.3) is knotted.

There is a simple to define invariant which does distinguish the three knots of Fig. 1.1 (though
it is in general hard to compute). Define the crossing number of a link to be the minimal number
of crossings of any regular diagram. It is intuitively obvious that the figure eight knot has crossing
number 4 and the trefoil knot has crossing number 3: one can prove this via enumerating all knot
diagrams(!). First, show that the only diagrams on 0, 1, or 2 crossings represent the unknot; we
can exhibit a diagram of the trefoil with 3 crossings, and one can enumerate all diagrams with 3
crossings and show that they are all unknots or trefoils; and the figure eight knot admits a diagram
with 4 crossings so this must be the minimal number. (We will give an alternative proof that these
knots are distinct in Example 1.25.)

Proceeding in this way one can enumerate (in principle) all knots, and indeed most knot tables
like the famous Rolfsen table (helpfully placed online in a useful form as part of Dror Bar-Natan and
Scott Morrison’s Knot atlas, http://katlas.org/wiki/The_Rolfsen_Knot_Table) use crossing
number as the first-order measure of knot complexity. However while one can enumerate all knots
algorithmically in this way it is not easy to check that they are all distinct, and indeed knots 10161

http://katlas.org/wiki/The_Rolfsen_Knot_Table
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Figure 1.7: An excerpt from the table of Rolfsen [59]. For at least 73 years the Perko Pair was listed
as two distinct knots in tables. But they are the same!

and 10162 in the Rolfsen table (the 10 refers to the crossing number) shown in Fig. 1.7 are in fact the
same knot; they are known as the Perko pair [41]. The error originates in the Tait–Little table of
1900, and the pair gives a counterexample to a ‘theorem’ of Tait (that the writhe of a knot, defined
in the exercises, is a knot invariant).

To show how hard the computation of crossing number is in general, we give a hard theorem
now and an open problem in a bit. A knot diagram is alternating if, when walking along the knot,
one encounters over- and under-crossings alternately. A diagram in the plane 𝑃 is reducible if there
is a round circle in 𝑃 that intersects the knot diagram transversely in exactly one crossing, called a
nugatory crossing, and a diagram is reduced if it is not reducible.

1.7 Theorem (First Tait conjecture). Any reduced diagram of an alternating link has the fewest pos-
sible crossings. mAk

One can prove the first Tait conjecture using the machinery of the Jones polynomial.
We can define slightly finer invariants almost immediately for links.

1.8 Lemma. Let 𝐿 = 𝑙 ⊔𝑘 be a link of two oriented components. Let 𝑙 ∩ 𝑘 be the set of crossings in some
diagram. Then the linking number

lk(𝑙, 𝑘) = 1
2 ∑
𝑝∈𝑙∩𝑘

𝜀(𝑝)

where 𝜀(𝑝) is the sign of the crossing (i.e. depending on the orientation) is independent of the diagram
and hence is an invariant of the link.

Proof. Reidemeister moves preserve lk. mAk

1.9 Corollary. There exists a nontrivial link (i.e. a link which is not equivalent to two unknots that lie
in disjoint 3-balls in 𝕊3). mAk

Again this invariant is not good enough for simple examples like the Borromean rings.
In the next lecture we will derive a function 𝜋1 ∶ Knot → Group which provides a better in-

variant (and which is algorithmically computable), and the definition of even better (faster, easier to
compute, more geometrically meaningful: pick any two) knot invariants is a theme of the next few
weeks. But for the rest of today we will pause to have a look at some fun tricks and constructions to
pick up some intuition that will be very useful.

1.10 Construction. The connected sum of two oriented knots 𝑘, 𝑘′, denoted 𝑘 ⊕ 𝑘′, is defined by
cutting tiny arcs out of 𝑘 and 𝑘′ and gluing the ends in an orientation-compatible way. Clearly if 1 is
the unknot then 𝑘 ⊕ 1 = 𝑘 = 1 ⊕ 𝑘.
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Figure 1.8: Three connected sums.

1.11 Lemma. Connected sum is associative and commutative (up to knot equivalence). mAk

1.12 Example. We exhibit the granny knot and the square knot as connected sums of trefoil knots
in Fig. 1.8. Observe that the sum depends on orientation!

A knot is called prime if whenever 𝑘 = 𝑘′⊕𝑘″ then either 𝑘 = 𝑘′ or 𝑘 = 𝑘″. The following trick
shows that the unknot is prime.

1.13 Trick (The Eilenberg-Mazur swindle). Knots don’t cancel: i.e. given two knots 𝑘, 𝑘′, if 𝑘 ⊕ 𝑘′
is unknotted then 𝑘 and 𝑘′ are unknotted. We follow the proof indicated in [40, Theorem 4.6, p.55].
Suppose 𝑘 ⊕ 𝑘′ is unknotted; then form the wild knot 𝑘 ⊕ 𝑘′ ⊕ 𝑘⊕ 𝑘′ ⊕⋯ (c.f. Fig. 1.2). But

𝑘 ⊕ 𝑘′ ⊕ 𝑘⊕ 𝑘′ ⊕⋯ = (𝑘 ⊕ 𝑘′) ⊕ (𝑘 ⊕ 𝑘′) ⊕⋯ = 1⊕ 1⊕⋯ = 1.

On the other hand,

𝑘 ⊕ 𝑘′ ⊕ 𝑘⊕ 𝑘′ ⊕⋯ = 𝑘⊕ (𝑘′ ⊕ 𝑘) ⊕ (𝑘′ ⊕ 𝑘) ⊕⋯ = 𝑘⊕ 1⊕ 1⊕⋯ = 𝑘.

Thus 𝑘 = 1.
Remark. Compare the proof of Conway, https://youtu.be/lwWeRMmXIoU, where he basically uses
the idea that we use to prove associativity of connected sum and so (really) it is the same proof.

Now for the open problem on crossing numbers which we promised earlier:

1.14 Problem. Is crossing number additive under connected sum?
This is true for alternating knots, and for certain other specialised classes of knots (e.g. torus

knots).
The connected sum is obtained by taking two 3-balls which each contain an arc with endpoints

on the boundary, and gluing them in someway so as to identify those endpoints. One can do a similar
thing for 3-balls containing two arcs:

1.15 Construction (Mutation). The Kinoshita–Terasaka knot [42] and the Conway knot [17,
???] of Fig. 1.9 are distinct (we will prove next time). They are related by the process ofmutation: if
𝑘 ⊆ 𝕊3 is a knot and 𝐵 ⊆ 𝕊3 is a 3-ball with |𝜕𝐵 ∩ 𝑘| = 4 then cut 𝐵 out of 𝕊3 and glue it back in after
a rotation by 𝜋 so that the four bits of the knot are matched up.

https://youtu.be/lwWeRMmXIoU
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Figure 1.9: The Kinoshita–Terasaka knot (L) and the Conway knot (R) [45, Figure 3.3].

We end with a final remarkable construction of knots due e.g. to Brauner, though we follow the
excellent exposition of Milnor [50].

1.16 Construction. Let 𝑉 ⊆ ℂ2 be an affine algebraic curve cut out by a square-free polynomial
𝑓(𝑤, 𝑧). Let 𝑟 be the number of local analytic branches of 𝑉 passing through (0, 0). Since (0, 0) is
either a simple point or an isolated singularity, there exists 𝜀 > 0 such that the intersection 𝑆𝜀 ∩ 𝑉 of
a 3-sphere of radius 𝜀 with 𝑉 is a smooth compact 1-manifold with 𝑟 components, i.e. it is a link of 𝑟
components. Such a link is called an algebraic link.

1.17 Exercises. 1. Show that the figure eight knot is amphichiral.

2. Show that if 𝑘 is any knot and 𝜋 ∶ 𝑘 → ℝ2 is some projection which induces a diagram then
there exists an alternating knot 𝑘′ with the same projection as a subset of ℝ2 (Tait, late 1800s).

3. Define thewrithe of a diagram 𝛿 of a knot 𝑘 to be

𝑤(𝛿) = ∑
𝑣∈𝑉(𝛿)

𝜀(𝑣)

(compare Lemma 1.8, where the sum is only over intersections of two different components).
Show that 𝑤 is invariant under the second and third Reidemeister moves, but not the first: in
fact adding a single ‘loop’ (either over or under) to a knot diagram adds 1 to the writhe. In fact
the writhe is a topological invariant of the knot 𝑘 together with a choice of section of the unit
normal bundle to 𝑘, or (equivalently) a ‘ribbon’ thickening of 𝑘. This additional structure on 𝑘
is called a framed knot (and has an obvious generalisation to links).

4. Show that the only knot of crossing number 0 is the unknot; that there are no knots of crossing
number 1 or 2; that the only knot of crossing number 3 is the trefoil knot; that the only knot of
crossing number 4 is the figure eight knot. Conclude that the figure eight and trefoil knots are
distinct.

1.2 The fundamental group
Recall that a knot isprime if it does not decompose under connected sum, i.e. 𝑘 is prime iff whenever
𝑘 = 𝑘′⊕𝑘″ one of 𝑘′ or 𝑘″ is the unknot, and a knot is tame if it is isometric to a knot which is made
up of finitely many straight line segments. We write 𝕊3 ⧵ 𝑘 for the complement 3-manifold of 𝑘, and
𝜋1(𝑘) ≔ 𝜋1(𝕊3 ⧵ 𝑘).

1.18 Theorem (Gordon–Luecke, 1989 [31]).

1. Fundamental groups are knot invariants: If (𝕊3 ⧵ 𝑘) ≃homeo. (𝕊3 ⧵ 𝑘′), then 𝑘 ∼ 𝑘′.
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Figure 1.10: Median and latitude of a torus.

2. The converse is true for prime knots: If 𝑘 and 𝑘′ are prime, and𝜋1(𝑘) ≃ 𝜋1(𝑘′), then 𝑘 ∼ 𝑘′. mAk

The Gordon–Luecke theorem does not hold for links [59, §9.H].
Usually when we compute the fundamental group we will obtain it in terms of generators and

relations. Having a group in terms of generators and relations is not to really know the group! Hence
this invariant, while ‘easy’ to compute (we will see an algorithm in a bit), is not in practice so useful
on its own.

We recall first some basic algebraic topology which we will use throughout the remainder of the
lecture.

1.19 Definition. Let𝐻1 and𝐻2 be groups, and 𝐿 be a third group equipped with mapsΦ1 ∶ 𝐿 → 𝐻1
and Φ2 ∶ 𝐿 → 𝐻2. Then the amalgamated free product 𝐻1 ∗𝐿 𝐻2 is a group equipped with maps
𝑓1 ∶ 𝐻1 → 𝐻1∗𝐿𝐻2 and𝑓2 ∶ 𝐻2 → 𝐻1∗𝐿𝐻2 such that𝑓1∘Φ1 = 𝑓2∘Φ2 satisfying the universal property
“if 𝐺 is a group equipped with maps 𝑔1 ∶ 𝐻1 → 𝐺 and 𝑔2 ∶ 𝐻2 → 𝐺 such that 𝑔1 ∘ Φ1 = 𝑔2 ∘ Φ2, then
there exists a unique map Ψ ∶ 𝐻1 ∗𝐿 𝐻2 → 𝐺 such that the following diagram commutes:

𝐻1

𝐿 𝐻1 ∗𝐿 𝐻2 𝐺.”

𝐻2

𝑓1

𝑔1

Φ1

Φ2

Ψ

𝑓2
𝑔2

This group is (𝐻1 ∗ 𝐻2)/𝐾, where 𝐾 is the normal closure of the subgroup of 𝐻1 ∗ 𝐻2 generated by
the words Φ1(𝑙)Φ2(𝑙)−1 for all 𝑙 ∈ 𝐿.

1.20 Theorem (Seifert–Van Kampen [12, Theorem III.9.4]). Let 𝑋 = 𝑈 ∪𝑉 with each of𝑈 , 𝑉 ,𝑈 ∩𝑉
open, non-empty, and path connected. Fix a common base point 𝑥0 ∈ 𝑈 ∪𝑉 . Then the canonical maps
of the fundamental groups of 𝑈 , 𝑉 , and 𝑈 ∩ 𝑉 into that of 𝑋 induce an isomorphism

𝜋1(𝑈) ∗𝜋1(𝑈∩𝑉) 𝜋1(𝑉) ≃ 𝜋1(𝑋).

The following technical lemma is the fount of all places that coprime pairs will appear.

1.21 Lemma. Coordinatise 𝕊1 ⊆ ℂ in the usual way via exp, and let the ‘standard torus’ be 𝕋2 =
𝕊1 × 𝕊1. The fundamental group 𝜋1(𝕋2, (1, 1)) is a free Abelian group with standard basis given by the
images of 𝛼, 𝛽 ∶ (𝐼, 𝜕𝐼) → (𝕋2, (1, 1)) defined by

𝛼(𝑡) = (𝑒2𝜋𝑖𝑡, 1), 𝛽(𝑡) = (1, 𝑒2𝜋𝑖𝑡).

(So far so good.) An element of 𝜋1(𝕋2) is represented by a simple loop iff it has homotopy class [𝛼]𝑝[𝛽]𝑞
with (𝑝, 𝑞) = 1.
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Figure 1.11: Every simple closed curve on the torus is a projection of a line of rational slope.

Proof. “⇐”: if it has given homotopy class then it is parametrised by 𝑡 ↦ (𝑒2𝜋𝑝𝑖𝑡, 𝑒2𝜋𝑞𝑖𝑡) which is
simple (Fig. 1.11). “⇒”: suppose𝜔(𝑡)parameterises a simple curve, and cut along it, opening the torus
into an annulus. Since 𝛼 also has this property there is a homeomorphism ℎ ∶ 𝕋2 → 𝕋2 with ℎ𝛼 = 𝜔
(cut via omega and reglue via alpha to define ℎ). Define 𝑝, 𝑞, 𝑟, 𝑠 ∈ ℤ by ℎ∗(𝛼) = [𝜔] = [𝛼]𝑝[𝛽]𝑞 and
ℎ∗(𝛽) = [𝛼]𝑟[𝛽]𝑠. Since ℎ∗ is an automorphism of 𝜋1 ≃ [𝛼] × [𝛽], we have |||

𝑝 𝑟
𝑞 𝑠

||| = ±1. mAk

1.22 Example (Torus knots). Let 𝑝, 𝑞 ∈ ℤ be coprime. Fix a basis [𝛼], [𝛽] for 𝜋1(𝕋2). Then there
exists a unique up to homotopy curve on the torus 𝕋2 with homotopy class [𝛼]𝑝[𝛽]𝑞 (Lemma 1.21).
Embed 𝕋2 into 𝕊3 in an unknotted way. The resulting curve is the (𝑝, 𝑞) torus knot 𝑘𝑝,𝑞. We can
apply Theorem 1.20 to compute 𝜋1(𝑘𝑝,𝑞). Let 𝑇 be the torus, 𝑈 be a slight open thickening of the
portion of 𝕊3 ⧵ 𝑘 not exterior to 𝑇, and 𝑉 a slight open thickening of the portion of 𝕊3 ⧵ 𝑘 not interior
to 𝑇. Both 𝑈 and 𝑉 are solid torii, so 𝜋1(𝑈) = ⟨𝑥⟩ and 𝜋1(𝑉) = ⟨𝑦⟩. Now observe that from the
perspective of 𝑈 , 𝑈 ∩𝑉 is a thickened annulus winding 𝑝 times around, and from the perspective of
𝑉 𝑈 ∩𝑉 winds 𝑞 times. We therefore have 𝜋1(𝑈 ∩𝑉) = ⟨𝑥𝑝⟩ ⊆ 𝜋1(𝑈) and 𝜋1(𝑈 ∩𝑉) = ⟨𝑦𝑞⟩ ⊆ 𝜋1(𝑉).
Thus 𝜋1(𝑈 ∪ 𝑉) = ⟨𝑥, 𝑦 ∶ 𝑥𝑝 = 𝑦𝑞⟩.

In general we can give an algorithm for the computation of the fundamental group, first described
by Wirtinger circa. 1905 (according to the historical notes to [15, Chapter 3]).

1.23 Algorithm (Wirtinger presentation). Let 𝛿 be a diagram of an oriented link 𝑘.

1. Enumerate the arcs of 𝛿, so arcs(𝛿) = {𝑥1,… , 𝑥𝑛}.

2. For every vertex 𝑣 of 𝛿, let 𝑖, 𝑗, 𝑘 be the indices of the three arcs at 𝑣 in such away that ob(𝑣) = 𝑥𝑘
and such that 𝑥𝑖 is walked before 𝑥𝑗 when travelling in the orientation direction. If 𝜖(𝑣) = +1
then let𝑊𝑣 = 𝑥𝑘𝑥𝑖𝑥−1𝑘 𝑥−1𝑗 , otherwise set𝑊𝑣 = 𝑥−1𝑘 𝑥𝑖𝑥𝑘𝑥−1𝑗 . Let words(𝛿) = {𝑊𝑣 ∶ 𝑣 ∈ 𝑉(𝛿)}.

3. Then ⟨arcs(𝛿) ∶ words(𝛿)⟩ is a presentation for 𝜋1(𝑘), theWirtinger presentation.

Observe that, if we write the Wirtinger presentation of a link, generators which are loops around
the same component are all conjugate. In particular we see that the Abelianisation of 𝜋1(𝑘) = ℤ𝑛
where 𝑛 is the number of components of 𝑘.

1.24 Example. The unknot has fundamental group ℤ.

1.25 Example. We can compute the group of the trefoil knot 𝑘 as follows. Label the three arcs of
𝑘 by 𝑥, 𝑦, 𝑧 as in Fig. 1.12. Then by applying the vertex rules we get the following relations for each
vertex:

1. 𝑧 = 𝑦𝑥𝑦−1,
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Figure 1.12: Generators and relations for the Wirtinger presentation of the trefoil knot.

2. 𝑥 = 𝑧𝑦𝑧−1,

3. 𝑦 = 𝑥𝑧𝑥−1.

Hence
𝜋1(𝑘) = ⟨𝑥, 𝑦, 𝑧 ∶ 𝑦𝑥𝑦−1𝑧−1 = 𝑧𝑦𝑧−1𝑥−1 = 𝑥𝑧𝑥−1𝑦−1 = 1⟩.

But by relation (1) we can eliminate the generator 𝑧; this also eliminates one of the other two gener-
ators (one becomes the inverse of the other) and in total we have

𝜋1(𝑘) = ⟨𝑥, 𝑦 ∶ 𝑦𝑥𝑦 = 𝑥𝑦𝑥⟩.

We now observe that there is a surjective map 𝜋1(𝑘) → 𝑆3: the symmetric group is generated by (1 2)
and (2 3), so define the map 𝜙 ∶ 𝜋1(𝑘) → 𝑆3 by 𝑥 ↦ (1 2) and 𝑦 ↦ (2 3); this is possible since

(2 3)(1 2)(2 3) = (1 3) = (1 2)(2 3)(1 2).

By another application of the algorithm, we get that the fundamental group of the figure eight
knot 𝑙 is

𝜋1(𝑙) = ⟨𝑥, 𝑦 ∶ 𝑦𝑥𝑦−1𝑥𝑦 = 𝑥𝑦𝑥−1𝑦𝑥⟩.
We claim that there is no surjective map 𝜋1(𝑙) → 𝑆3, and prove this by contradiction. First note that
𝑥 and 𝑦 are conjugate so their images in 𝑆3 must be distinct (as 𝑆3 is not cyclic) conjugate elements.
Further since the map is surjective their images cannot be cycles of length 3, since two cycles of
length 3 generate a proper subgroup of 𝑆3. We therefore see that 𝑥 and 𝑦 must be mapped to two
transpositions, without loss of generality 𝑥 ↦ (1 2) and 𝑦 ↦ (2 3). But one can easily check that the
relation

(2 3)(1 2)(3 2)(1 2)(2 3) = (1 2)(2 3)(2 1)(2 3)(1 2)
does not hold—the left hand side is (1 2) and the right hand side is (1 3), so the only possible map
{𝑥, 𝑦} → 𝕊3 cannot extend to a homomorphism, giving the desired contradition.

By Theorem 1.18 we therefore see that since 𝜋1(𝑘) ≄ 𝜋1(𝑙), 𝑘 ≢ 𝑙.

Note that for the trefoil and figure eight knots we could reduce the number of generators down
to 2 from the a priori number 3.

1.26 Lemma. Theminimal number of generators of aWirtinger presentation is exactly the bridge num-
ber of the knot.

Proof. Let 𝑏 be the bridge number of 𝑘 and let𝑚 be theminimal number of generators of aWirtinger
presentation. Since the number of generators in the Wirtinger presentation coming from a 𝑏-bridge
presentation is 𝑏, we have 𝑚 ≤ 𝑏. On the other hand the bridge number is bounded above by the
number of arcs in any given diagram, and each of these gives a presentation, so 𝑏 ≤ 𝑚. mAk
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We shall now turn to the proof of correctness of Algorithm 1.23 which is fairly standard; we steal
pictures from the version given in §10.2 of Armstrong [6] since they are particularly clearly drawn.
Observe without loss of generality we may assume our link is embedded in ℝ3.

Proof of correctness of Algorithm 1.23. Let 𝑘 be a link, let 𝑃 = {(𝑥, 𝑦, 𝑧) ∶ 𝑧 = 0} be the plane disjoint
from 𝑘 which induces a diagram 𝛿 via orthogonal projection 𝜋; the claim is that a presentation for
𝜋1(𝑘) is given by ⟨arcs(𝛿) ∶ words(𝛿)⟩. Let 𝑆 be a bounded closed disc in 𝑃 which includes in its
interior the diagram 𝛿, for every crossing 𝑣 ∈ 𝑉(𝛿) let 𝑅𝑣 be a closed subset of 𝑘 which is projected
onto a small closed neighbourhood of 𝑣 of the undercrossing at 𝑣 chosen in such a way that all the
𝑅𝑣 are mutually disjoint (except for if 𝑅𝑣 and 𝑅′𝑣 are adjacent ). In Fig. 1.13 the arcs 𝑅𝑣 are the lighter
coloured arcs. It should now be clear that we can move the knot via an isotopy such that the sets 𝑅𝑣
are all disjoint subsets of 𝑃 and the remainder of the knot lies entirely in one of the open half-spaces
bounded by 𝑃, say 𝑃+ = {(𝑥, 𝑦, 𝑧) ∶ 𝑧 > 0}—see Fig. 1.14. We can identify the connected components
of 𝑃+ ∩𝑘, 𝛼1,… , 𝛼𝑟 with the elements of the set arcs(𝛿) and without loss of generality we can assume
that the orthogonal projections 𝜋(𝛼𝑖) of these components to 𝑃 are disjoint.

Pick a basepoint in 𝑃+ that is far away from 𝑃 and the knot, say 𝑥0 = (0, 0, 𝑧0) where 𝑧0 ≫ 0 and
let 𝑃+ = {(𝑥, 𝑦, 𝑧) ∶ 𝑧 ≥ 0} be the closed half-space. For each arc 𝛼𝑖 let 𝑥𝑖 be a loop based at 𝑧0 which
goes around 𝛼𝑖 according to the right-hand rule and comes straight back up, as in Fig. 1.15.

Claim: 𝜋1(𝑃+ ⧵ 𝑘, 𝑧0) is the free group generated by the 𝑥𝑖. Proof of claim: For each arc 𝛼𝑖 let
𝐵𝑖 be a thickening (i.e. small open neighbourhood) of the set ⋃𝑥∈𝛼𝑖

[𝑥, 𝜋(𝑥)]; the latter set looks
like a wall under 𝛼𝑖 (Fig. 1.16). Delete all these neighbourhoods and start adding them (minus the
knot) back in one at a time inductively—the set 𝑃∗ ⧵⋃𝐵𝑖 is simply connected, each 𝐵𝑖 ⧵ 𝑘 has cyclic
fundamental group generated by 𝑥𝑖; to be fully rigorous we need to adjoin to 𝐵𝑖 a long thin open
‘noodle’ which goes up to 𝑧0 and doesn’t intersect any other 𝐵𝑖 except in a tiny ball around 𝑧0, then
these intersections have trivial fundamental group and so by Theorem 1.20 the fundamental group
of (𝑃+ ⧵⋃𝐵𝑖) ∪ (𝐵1 ⧵ 𝑘) ∪⋯∪ (𝐵𝑟 ⧵ 𝑘) is exactly the free product ⟨𝑥1⟩ ∗ ⟨𝑥2⟩ ∗⋯ ⟨𝑥𝑟⟩ as desired. This
ends the proof of the claim.

We now need to add in the lower half-space 𝑃− ⧵ 𝑘. Suppose we look at the local picture at some
vertex with incident arcs indexed 𝑖, 𝑗, 𝑘 and with the lower arc going from 𝑖 to 𝑗 as you look along 𝑘
(the other orientation is the same argument), depicted in Fig. 1.17. Suppose for the sake of labelling
that this is vertex 𝑣. Draw a small box 𝐷𝑣 made up of the square cylinder in 𝑃− capped with a square
𝜕𝐷𝑣 on 𝑃 surrounding the underpass 𝑅𝑣. Topologically, we can thicken 𝐷𝑣 slightly into 𝑃+. The
fundamental group of the thickened𝐷𝑣 is still trivial but the intersection of this thickeningwith 𝑃+⧵𝑘
is an annulus, namely it is a thickening of the square 𝜕𝐷𝑣 minus the central arc 𝑅𝑣 (see Fig. 1.18).
The fundamental group of this intersection is generated by the loop indicated in Fig. 1.17. Observe
that this loop is homotopic in 𝑃+ to the loop 𝑥𝑖𝑥𝑘𝑥−1𝑗 𝑥−1𝑘 . By Theorem 1.20 we therefore have that
𝜋1(𝑃+ ⧵ 𝑘 ∪ 𝐷𝑣) = 𝜋1(𝑃+ ⧵ 𝑘) ∗𝑁 𝜋1(𝐷𝑣), where 𝑁 is the (normal closure of the) group generated by
𝑥𝑖𝑥𝑘𝑥−1𝑗 𝑥−1𝑘 . This is exactly the element of words(𝛿) coming from the vertex 𝑣 . By induction, since
all the 𝐷𝑣 for different groups are disjoint, we get

𝜋1((𝑃+ ⧵ 𝑘) ∪⋃𝐷𝑣) = ⟨𝑥1,… , 𝑥𝑟 ∶ words(𝛿)⟩.

Finally observe that the remaining part of 𝑃𝑖 is simply connected and has simply connected inter-
section with the set whose fundamental group was just computed, so by a final application of Theo-
rem 1.20 we get

𝜋1(ℝ3 ⧵ 𝑘) = ⟨𝑥1,… , 𝑥𝑟 ∶ words(𝛿)⟩

as desired. mAk
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Figure 1.13: Undercrossings (light) and arcs (dark). Figure from [6, Fig. 10.6].

Figure 1.14: A knot isotoped to lie entirely in the plane 𝑧 = 0 except for the finitely many arcs of
some diagram. Figure from [6, Fig. 10.7].

Figure 1.15: The generators of the Wirtinger presentation. Figure modified from [6, Fig. 10.8].
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Figure 1.16: The open set 𝐵𝑖 is a thickening of the ‘wall’ set⋃𝑥∈𝛼𝑖
[𝑥, 𝜋(𝑥)]. Figure modified from [6,

Fig. 10.9].

Figure 1.17: The local picture of the fundamental group around the vertex with incident arcs in-
dexed 𝑖, 𝑗, 𝑘 (and with the lower arc going from 𝑖 to 𝑗 as you look along 𝑘). Figure modified from [6,
Fig. 10.10].
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Figure 1.18: Square doughnuts. Image from https://www.bakingbusiness.com/articles/
54433-square-is-the-new-round-at-udf.

We already mentioned that just knowing presentations of groups is not good enough to distin-
guish them. The most classical way of dealing with this is to study representations onto simpler
groups; we now exhibit some results of Riley for the case of representations onto finite groups.
Remark. The computation of the Alexander modules, which we will do much later on, is a similar
kind of idea: instead of studying representations onto finite groups, one studies representations onto
infinite cyclic groups and the associated group algebras and homology groups. Thus the reader can
postpone caring about the following discussion until then.

Following Riley [57] we will outline a scheme for computing the representations 𝜋1(𝑘) → 𝐿𝑝 ≔
PSL(2, 𝑝) for 𝑘 a knot (of one component). Suppose we have a Wirtinger representation for 𝜋1(𝑘) of
minimal number of generators (or alternatively we take an arbitrary Wirtinger representation and
reduce it by substituting relations, so we keep the property that every relator is of them form 𝑥𝑖 =
𝑊 −1𝑥𝑗𝑊 for some𝑊 ∈ 𝜋1(𝑘)); say to fix notation that 𝜋1(𝑘) = ⟨𝑥1,… , 𝑥𝑛 ∶ 𝑟1,… , 𝑟𝑛−1⟩ where 𝑛 is
the bridge number of 𝑘. Suppose also for simplicity that 𝑛 = 2 or 𝑛 = 3. Given some 𝜃 ∶ 𝜋1(𝑘) → 𝐺
for any finite group𝐺, since all the generators 𝑥𝑖 are conjugate, their images have the same order; we
say that this is the order of the representation 𝜃 and it is defined up to equivalence of representations.
Let 𝑝 be an odd prime: we will classify the representations of order 𝑝 from 𝜋1(𝑘) to 𝐿𝑝. To do this we
need to study the elements of order 𝑝 in 𝐿𝑝 since these are the possible images of the 𝑥𝑖.

1.27 Lemma (Structure of 𝐿𝑝). We recall some properties of 𝐿𝑝 from [16, Chapter XIV] (n.b., Burnside’s
𝐻 is our 𝐿𝑝).

1. ||𝐿𝑝|| = 𝑝(𝑝2 − 1)/2 (§221).

2. There are two conjugacy classes of elements of order 𝑝 in 𝐿𝑝 and each class contains (𝑝2 − 1)/2
elements (§227).

3. Fix 𝛼 an element of order 𝑝. Given a second element 𝛽 of order 𝑝, either (i) 𝛽 = 𝛼𝑛 for some 𝑛, or
(ii) 𝐿𝑝 = ⟨𝛼, 𝛽⟩.

4. In case (i), the element 𝛽 = 𝛼𝑛 is conjugate to 𝛼 iff 𝑛 is a square mod 𝑝 (there are (𝑝−1)/2 squares
mod 𝑝).

5. The elements of order 𝑝 which are not powers of 𝛼 lie in (𝑝 − 1)/2 orbits of 𝑝 elements each under
conjugacy by 𝛼.

6. The automorphism group of 𝐿𝑝 acts transitively on elements of order 𝑝, and the stabiliser of 𝛼 is
the group generated by 𝛼-conjugation. mAk

https://www.bakingbusiness.com/articles/54433-square-is-the-new-round-at-udf
https://www.bakingbusiness.com/articles/54433-square-is-the-new-round-at-udf
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Figure 1.19: Generators for theWirtinger presentations of the Kinoshita–Terasaka andConway knots
[57, Figure 2].

𝜃1𝑥1 𝜃1𝑥2 𝜃1𝑥3 𝜃2𝑥1 𝜃2𝑥2 𝜃2𝑥3
𝐾𝑇 𝛼 (1675243) (1452736) 𝛼 𝛼 (1675243)
𝐶 𝛼 (1675243) (1723654) 𝛼 𝛼 (1264735)

Table 1.1: Representations onto PSL(2, 7) of the Kinoshita–Terasaka and Conway knots. Table an
exerpt from p.615 of [57].

1.28 Proposition ([57, §3]). Fix a surjective representation 𝜃 ∶ 𝜋1(𝑘) → 𝐿𝑝 of order𝑝. The equivalence
class of 𝜃 can be found by performing 𝐸(𝑛) experiments—𝑛 the bridge number—where

𝐸(𝑛) = (𝑝 − 1
2 )

𝑛−1 (𝑝 + 1)𝑛−1 − 1
𝑝 .

Proof. We have 𝜋1(𝑘) = ⟨𝑥1,… , 𝑥𝑛 ∶ 𝑟1,… , 𝑟𝑛−1⟩. Fix 𝛼 ∈ 𝐿𝑝 of order 𝑝, without loss of generality we
can take 𝛼 = (1, 1|0, 1). We can assume up to automorphism that 𝜃(𝑥1) = 𝛼. The image 𝜃(𝑥2) is of
order 𝑝 and is conjugate to 𝛼, hence is either a power of 𝛼 and there are (𝑝−1)/2 choices by (4) in the
lemma, or lies in one of the (𝑝−1)/2 orbits mentioned in (5). Choose a representative 𝛼1,… , 𝛼(𝑝−1)/2
for each of these; then 𝜃(𝑥2) = 𝛼𝑠 for some 𝑠 or 𝜃(𝑥2) = 𝛼𝑗 for some 𝑗.

If 𝑛 = 2, then by surjectivity we must have 𝜃(𝑥2) = 𝛼𝑗 hence 𝐸(2) = (𝑝 − 1)/2.
If 𝑛 = 3 then either 𝜃(𝑥2) = 𝛼𝑗 for some 𝑗 in which case ⟨𝜃𝑥1, 𝜃𝑥2⟩ = 𝐿𝑝 and the isomorphism

class is determined by 𝑗 and 𝜃𝑥3, or 𝜃𝑥2 = 𝛼𝑠 so we swap 𝑥2 and 𝑥3 since in this case again by
surjectivity we must have 𝜃𝑥3 = 𝛼𝑗 for some 𝑗; hence the number of choices is

𝑝−1
2

𝑝2−1
2

(case I) plus
𝑝−1
2

𝑝−1
2
(case II) and one can check that this is OK.

By similar arguments for 𝑛 > 3 one gets the claimed formula. mAk

1.29 Example. One can use this to check that the Kinoshita–Terasaka knot and the Conway knot
are distinct (c.f. Construction 1.15). The point will be the consideration of representations 𝜋1 → 𝐿7.
One can check that 𝐾𝑇 and 𝐶 have presentations on three generators and two relations, by tak-
ing the Wirtinger presentation and then eliminating all but the three generators shown in Fig. 1.19.
Then there are exactly two representations for each knot, and they are distinct [57, p. 615]. One can
choose a permutation representation for 𝐿7 where 𝛼 = (1234567) (warning: we write and multiply
permutations from left-to-right) and the (𝑝−1)/2 orbits of other elements of order 𝑝 are represented
respectively by the elements 𝛼1 = (1675243), 𝛼2 = 𝛼21, and 𝛼3 = 𝛼41 . We end up with table Table 1.1.

Whenwe have a permutation representation 𝜌 ∶ 𝜋1(𝑘) → 𝐺where𝐺 is a finite group acting tran-
sitively on some finite set {1,… , 𝑠}; let𝐻 be the subgroup of𝐺 defined by pulling back the stabiliser of
1 through 𝜌. The covering space 𝒰 of 𝕊3 ⧵ 𝑘 defined by 𝐻 is a non-compact 𝑠-sheeted cover, and the
integral homology 𝐻1(𝒰, ℤ) is a knot invariant: it depends up to group isomorphism only on 𝜋1(𝑘),
the representation 𝜌, and the number 𝑠.
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𝜃1 𝜃2
𝐾𝑇 ℤ⊕ ℤ/(4) ⊕ ℤ/(28) ℤ ⊕ ℤ/(2) ⊕ ℤ/(238)
𝐶 ℤ ⊕ ℤ/(2) ⊕ ℤ/(2) ⊕ ℤ/(4) ⊕ ℤ/(12) ℤ ⊕ ℤ/(2) ⊕ ℤ/(2)ℤ/(8) ⊕ ℤ/(40)

Table 1.2: Integral homology of the 7-sheeted covers of 𝕊3 ⧵ 𝐾𝑇 and 𝕊3 ⧵ 𝐶 defined via the represen-
tations 𝜃1 and 𝜃2 of Example 1.29. Table an exerpt from p.615 of [57].

Figure 1.20: The stevedore’s knot. Image by Jim.belk, released to public domain (see http://
commons.wikimedia.org/wiki/File:Blue_Stevedore_Knot.png)

1.30Example. TheKinoshita–Terasaka knot and theConway knot have integral homologies coming
from the two representations we just described with image in 𝑆7. The respective homology groups
are listed in Table 1.2.

Remark. Many other amazing results on knot groups and PSL(2, 𝔽𝑝) are known; for instance, 𝜋1(𝐾𝑇)
has quotient groups isomorphic to PSL(2, 𝔽𝑝) for infinitely many 𝑝 [46, Theorem 2] and there are
some knots which admit homomorphisms onto PSL(2, 𝔽𝑝) for all 𝑝 [57, pp. 609–610], this is particu-
larly remarkable since the groups PSL(2, 𝔽𝑝) are incredibly varied, see e.g. [60, pp. 224–227]

1.31 Exercises. 1. Read the paper of Fox [26] showing that the Fox knot (Fig. 1.2) is not the
unknot. (Now you have read and fully understood an Annals paper!) One can also try to see
that it is not unknottable by looking at the diagram—the point is that the isotopy ‘pull from
the right’ is not defined in the neighbourhood of 𝑝 in the knot complement.

2. Show that the fundamental groups of two separated rings and two linked rings (theHopf link)
are not isomorphic. TheHopf link is so namedbecause every pair of circles in theHopf fibration
(Example 2.10) form a Hopf link in 𝕊3.

3. Exhibit 3-bridge presentations for the Kinoshita–Terasaka and Conway knots.

4. Find all presentations of the fundamental group of the trefoil knot onto 𝐴5.

5. Show that the fundamental group of the Klein bottle is 𝜋1(𝐾) = ⟨𝑥, 𝑦 ∶ 𝑦 = 𝑥𝑦𝑥⟩. Show that
no knot group admits a surjective representation onto 𝜋1(𝐾).

6. Show that tricolourability of 𝑘 is equivalent to the existence of a surjective homomorphism
𝜋1(𝑘) → 𝑆3.

7. Show that the trefoil knot is the (2, 3) torus knot. Show that the (𝑝, 𝑞) and (𝑞, 𝑝) torus knots
are equivalent.

http://commons.wikimedia.org/wiki/File:Blue_Stevedore_Knot.png
http://commons.wikimedia.org/wiki/File:Blue_Stevedore_Knot.png
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8. Show that the stevedore’s2 knot (Fig. 1.20) is 2-bridge and give a two generator presentation for
its group.

9. Show that ⟨𝑥, 𝑦 ∶ 𝑦𝑥𝑦 = 𝑥𝑦𝑥⟩ ≃ ⟨𝑎, 𝑏 ∶ 𝑎2 = 𝑏3⟩. Hint: 𝑏 = 𝑥𝑦 and 𝑎 = 𝑥𝑦𝑥. Observe that
this is a presentation for PSL(2, ℤ) [63, Example 1.5.2 of Chapter I]. This will be explained in
Example 2.14.

10. (Brauner’s theorem, [50, p. 4]) The (𝑝, 𝑞)-torus knot is cut out by intersecting a sufficiently
small 3-sphere in ℂ2 with the algebraic curveV(𝑧𝑝+𝑤𝑞), i.e. it is an algebraic knot (Construc-
tion 1.16).

2“A workman employed either as overseer or labourer in loading and unloading the cargoes of merchant vessels.” (OED)





Chapter 2

Geometric knot theory

In this week we will study the hyperbolic geometry of knot complements. A very nice historical
overview of the contributions of Thurstonmay be found in his article [69]. Wewill begin by reviewing
briefly hyperbolic geometry; we will then give the historical motivation for, and some examples of,
the Riley–Thurston theorem (“most knot complements are hyperbolic”). In the second lecture we
will compute some geometric invariants and explain how they can be mechanicised following the
work of Jeff Weeks.

There are a plethora of nice books on this area, but we will mainly follow Thurston [70, 68],
Purcell [53], and Benedetti–Petronio [8]. We also found several sets of notes very useful in the prepa-
ration of this chapter: [10, 61]. Basic hyperbolic geometry may be found in [65, Chapter 4] and [7,
Chapter 7].

2.1 Geometric structures on knot complements
We saw in the previous section that the study of representations 𝜋1(𝑘) → PSL(2, 𝑝) is a fruitful one
when trying to define knot invariants. This representation space has a big disadvantage: the groups
PSL(2, 𝑝) are all finite, and so do not carry a lot of information about 𝜋1(𝑘). In addition, these groups
do not have obvious geometric interpretations in terms of the knot 𝑘. Recall from covering space the-
ory that 𝐺 = 𝜋1(𝑘) can be viewed as a group of homeomorphisms of a simply-connected topological
3-manifold𝑀, the universal cover of 𝕊3 ⧵ 𝑘, in such a way that𝑀/𝐺 is homeomorphic to 𝕊3 ⧵ 𝑘. The
manifold 𝑀 can be viewed as the ‘unrolling’ of 𝕊3 ⧵ 𝑘 via the action of 𝜋1(𝑘). The geometric study
of knots comes from the observation that it might be possible to keep geometric as well as topolog-
ical information: that is, it might be possible to find a nice Riemannian manifold 𝑀 and a faithful
representation 𝜌 ∶ 𝜋1(𝑘) → Isom+(𝑀) such that if 𝐺 = 𝜌(𝜋1(𝑘)) then 𝑀/𝐺 is a Riemann manifold
homeomorphic to 𝕊3 ⧵ 𝑘. In fact in most cases this is possible, and even better there is a unique such
geometric structure (i.e. a unique representation 𝜌) such that this all works!

2.1 Definition. Amodel geometry (𝑋, 𝐺) is a manifold 𝑋 together with a Lie group 𝐺 of diffeo-
morphisms of 𝑋 such that:

1. 𝑋 is connected and simply connected;

2. 𝐺 acts transitively on 𝑋 with compact point stabilisers;

3. 𝐺 is not contained in any larger group of diffeomorphisms of 𝑋 with compact point stabilisers;
and

27
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Figure 2.1: The eight Thurston geometries, from https://www.3-dimensional.space/. From top
left: ℝ3, 𝕊3, ℍ3, 𝕊2 × 𝔼1, ℍ2 × 𝔼1, Nil, ˜SL(2, ℝ), and Sol.

4. there exists at least one compact manifold modelled on (𝐺, 𝑋).

To clarify the last point, if 𝑋 is a metric space and 𝐺 is a group of diffeomorphisms of 𝑋 then a
manifold𝑀 ismodelled on (𝐺, 𝑋) (or we say𝑀 is a (𝐺, 𝑋)-manifold, or locally 𝑋 if 𝐺 ≤ Isom(𝑋))
if it admits an atlas of charts 𝜙𝑖 ∶ 𝑈 𝑖 → 𝑋 such that 𝜙𝑖𝜙−1𝑗 ∶ 𝜙𝑗(𝑈 𝑖 ∩ 𝑈𝑗) → 𝜙𝑖(𝑈 𝑖 ∩ 𝑈𝑗) is the
restriction of an element of 𝐺 for all 𝑖, 𝑗 such that 𝑈 𝑖 ∩ 𝑈𝑗 ≠ ∅.

2.2 Theorem (Thurston, c.1980). There are exactly eight three-dimensional model geometries (𝐺, 𝑋),
called the Thurston geometries:

1. If the point stabilisers are three-dimensional, then 𝑋 is either 𝕊3, 𝔼3, or ℍ3.

2. If the point stabiliers are one-dimensional, then 𝑋 fibres over one of 𝕊2, 𝔼2, or 𝐻2 in such a way
that is 𝐺-invariant and there is a 𝐺-invariant Riemann metric on 𝑋 such that the connection
orthogonal to the fibres has curvature 0 or 1:

(a) Curvature 0: 𝑋 is 𝕊2 × 𝔼1 or ℍ2 × 𝔼1.
(b) Curvature 1: 𝑋 is Nil (fibreing over 𝔼2) or ˜SL(2, ℝ) (fibreing over ℍ2).

3. If the point stabilisers are zero-dimensional, then 𝑋 is Sol.

Remark. The point stabiliser dimensions 3, 1, and 0 come from the fact that the identity component
of the point stabiliser must be SO(3), SO(2), or the trivial group [70, p. 181].

For the sake of completeness we show pictures of the eight geometries in Fig. 2.1, but we will
introduce the ones we need as we go. If we ever want to distinguish the Euclidean structure on ℝ𝑛

as opposed to the algebraic structure, we write 𝔼𝑛.
Hyperbolic 3-spaceℍ3 is the unique simply connectedRiemannianmanifold of constant sectional

curvature −1. The upper half-space model is given by the topological manifold

ℍ3 ≔ {(𝑧, 𝑡) ∈ ℂ × ℝ ∶ 𝑡 > 0}

https://www.3-dimensional.space/
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equipped with the Riemann metric

𝑑𝑠2 = 𝑑𝑧2 + 𝑑𝑡2
𝑡 ;

the geodesic lines in this metric are the half-circles which are orthogonal to the sphere ℂ̂ = ℂ∪ {∞}.
A 3-manifold is hyperbolic if it is locally modelled on ℍ3. A knot is hyperbolic if the complement
𝕊3 ⧵ 𝑘 admits a Riemannian metric that turns it into a hyperbolic 3-manifold.

There is a natural isomorphism between the group Isom+(ℍ3) of orientation preserving isome-
tries of ℍ3 and the group of conformal maps of the sphere ℂ̂ which is identified with the group of
Möbius transformations𝕄 given via extension of the action on geodesics to their endpoints; we iden-
tify Isom+(ℍ3) ≃ 𝕄 ≃ PSL(2, ℂ). A discrete subgroup of𝕄 is calledKleinian.

2.3 Theorem. Given any Kleinian group 𝐺, the quotient ℍ3/𝐺 is a complete hyperbolic manifold with
holonomy group 𝐺. Conversely, given any complete hyperbolic manifold𝑀 with holonomy group 𝐺, 𝐺
is a Kleinian group with ℍ3/𝐺 ≃isom. 𝑀. mAk

By standard algebraic topology, since ℍ3 is simply connected there is a natural identification be-
tween the discrete group 𝐺 and 𝜋1(ℍ3/𝐺). To see this concretely, given a nontrivial 𝑔 ∈ 𝐺 there are
four possibilities for its action on ℍ3:

Elliptic: there is a hyperbolic geodesic 𝜆which is fixed pointwise by 𝑔, and 𝑔 acts as a finite-order
rotation around 𝜆;

Hyperbolic: there is a hyperbolic geodesic 𝜆 which is left invariant by 𝑔, and 𝑔 acts as a transla-
tion along 𝜆;

Loxodromic: 𝑔 is a composition of an elliptic and an hyperbolic with the same axis;1

Parabolic: there is exactly one family of horospheres in ℍ3 (that is, a Euclidean sphere in the
upper half-plane model of ℍ3 tangent to ℂ̂; locally they are E) which are preserved by 𝑔.

We will always assume in these notes that Kleinian groups are torsion-free (so we exclude elliptics,
but all three other types are possible). Take a loxodromic element with axis 𝜆; the quotient of 𝜆 by
⟨𝑔⟩ is a circle of circumference the translation length of 𝑔, and the projection of 𝜆 to 𝑀 = ℍ3/𝐺 is
a homotopically nontrivial loop in 𝑀 of minimal length in its homotopy class. (There is also some
twisting going on because of the rotational component of 𝑔 but this is not relevant to the homotopy
theory.) On the other hand, given a parabolic element 𝑔 fix a horosphere Σ. One can always pick
a horocircle 𝜎 on Σ which is preserved by 𝑔, and this projects down to a homotopically nontrivial
loop in𝑀. However one may always pick a smaller horosphere Σ′ and obtain a shorter loop which is
homotopically equivalent; thus 𝑔 represents a homotopy class of nontrivial curves in𝑀 with lengths
tending to zero. One should think of loxodromic elements of 𝐺 ≃ 𝜋1(𝑀) as representing hyperbolic
geodesics in𝑀 of definite length that wrap around large homotopy obstructions (for instance a cross-
ing in a knot complement), while parabolic elements represent infinitesimal obstructions at infinity
known as cusps (e.g. a single arc of the knot). In a hyperbolic knot complement, the group should
be generated by loops around just the arcs, i.e. a representation into 𝕄 should send meridians to
parabolics. In general there are many representations 𝜋1(𝕊3 ⧵ 𝑘) → 𝕄: in the next lecture we will
explain how to distinguish the ‘correct’ one.

2.4 Problem. Give, for each hyperbolic 𝑛-bridge knot group, a faithful representation into𝕄with 𝑛
parabolic generators.

1The OED cites Penny Cyclopaedia XIV. 183/1: “Loxodromic spiral, the curve on which a ship sails when her course is
always on one point of the compass. It is called in English works Rhumb Line.”
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Figure 2.2: Thurston’s hexahedral face pairing. Figure taken from [27, Fig. 2 of Chapter 8].

Riley [58] does this for 2-bridge and torus knots.
We will show that the figure eight knot complement is hyperbolic. One way to do this is to ex-

hibit a polyhedron 𝑃 ⊆ ℍ3 and an edge-pairing structure on 𝑃 in the sense of the Poincaré polyhedron
theorem, and this is how the result was proved by Thurston [68, §3.1]—but it does not give an ex-
plicit holonomy group. In the next section we will give the original proof of Riley [56]. The history
surrounding this discovery is very interesting; various accounts beyond [69] include [55] and the ac-
companying commentary [13], and the additional references given in the historical notes to Section
10.3 on p.504 of [54].

2.5 Theorem. The figure eight knot 𝑘 is hyperbolic.
Proof. Consider an ideal hyperbolic triangular bipyramid: that such a vegetable exists can be seen by
gluing a pair of regular tetrahedra, andwe can take these two tetrahedra to have vertex sets {0, 1, 𝜔,∞}
and {1, 𝜔, 𝜔+1,∞}where 𝜔 = 𝑒2𝜋𝑖/3. Two of the tetrahedron faces are already equal (the convex hull
of {1, 𝜔,∞}), and we pair the remaining six faces as in the labelling of Fig. 2.2. This pairing satisfies
the hypotheses of the Poincaré polyhedron theorem if all the angles are 𝜋/3.

We can write down the corresponding group in terms of matrices:

(2.6) 𝜋1(𝑘) = ⟨𝜙𝐵 =
𝑖
√𝜔

[1 1
1 −𝜔2] , 𝜙𝐶 = [1 𝜔

0 1] , 𝜙𝐷 = [2 −1
1 0 ]⟩ .

(In one of the exercises you are invited to struggle to show that 𝜙𝐵 is redundant and hence we have
a parabolic representation.)

It remains to convince ourselves that the result is indeed the figure eight knot... this can be done
via the deformations shown in Fig. 2.3. mAk

Wewould like to give criteria for a given knot complement to have a geometric (andmore specifi-
cally hyperbolic) structure (i.e. to admit a Riemannianmetric which is locally 𝑋 for one of the model
geometries 𝑋). Such a criteria comes as a consequence [53, Theorem 8.17] of a very deep theorem
of Thurston, the geometrisation theorem for Haken manifolds [69, 66] whose detailed proof occu-
pies the monograph of Kapovich [37]. The specific case for knot complements requires a couple of
definitions:

2.7 Definition. A knot 𝑘 is a satellite if its complement contains an incompressible torus which is
not boundary-parallel (a picture like Fig. 2.4 makes this clearer). A knot is a torus knot if it can be
embedded (without crossings) onto the boundary of a torus. (We already classified all such knots,
Example 1.22.)
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Figure 2.3: Proof that the face-pairing of Fig. 2.2 does indeed give the figure eight knot complement.
Figure taken from [27, Fig. 3 of Chapter 8].
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Figure 2.4: A satellite of the trefoil knot. Figure from [59, §9.J.10].

𝐺 𝔤 dim /𝐹 𝐵(𝑋, 𝑌)
GL(𝑛, 𝐹) 𝔤𝔩(𝑛, 𝐹) = Mat(𝑛, 𝐹) 𝑛2 2𝑛 tr𝑋𝑌 − 2 tr𝑋 tr𝑌
SL(𝑛, 𝐹) 𝔰𝔩(𝑛, 𝐹) = {𝐴 ∈ 𝔤𝔩(𝑛, 𝐹) ∶ tr𝐴 = 0} 𝑛2 − 1 2𝑛 tr𝑋𝑌
SO(𝑛) 𝔰𝔬(𝑛) = {𝐴 ∈ 𝔤𝔩(𝑛, ℝ) ∶ tr𝐴 = 0 and 𝐴 + 𝐴′ = 0} 𝑛(𝑛 − 1)/2 (𝑛 − 2) tr𝑋𝑌
SU(𝑛) 𝔰𝔲(𝑛) = {𝐴 ∈ 𝔤𝔩(𝑛, ℂ) ∶ tr𝐴 = 0 and 𝐴 + 𝐴∗ = 0} 𝑛(𝑛 − 1)/2 2𝑛 tr𝑋𝑌

Table 2.1: Little list of Lie groups (always 𝑛 ≥ 2).

We will now state the Riley–Thurston theorem:

2.8 Theorem (Riley–Thurston (c.1982), [69, Corollary 2.5]). Let 𝑘 ⊆ 𝑆3 be a knot. Then 𝑘 has a
geometric structure if and only if 𝑘 is not a satellite knot, and 𝑘 has a hyperbolic structure iff it is neither
a satellite nor a torus knot. mAk

The remainder of this section will be spent on the non-hyperbolic knots.

2.9 Definition (Some Lie groups). We recommend Fulton and Harris [30] for full detail, but we
only need a brief precis of the land all of which one may have seen in 725. A Lie group is a smooth
manifold which also admits a group action such that multiplication and inversion are smooth. Ex-
amples of Lie groups are SL(𝑛, ℂ), GL(𝑛, ℂ), Mat(𝑛, ℂ); also the universal cover of a Lie group is a Lie
group, the most important example for us is S̃L(2, ℂ) which does not admit a faithful matrix repre-
sentation. Fix a Lie group 𝐺. Then 𝐺 acts on itself by conjugation, say 𝜙𝑔 ∶ 𝐺 → 𝐺 is conjugation
by 𝑔. Let 𝑇𝑒𝐺 be the tangent space to 𝐺 at the identity. Then 𝑑𝜙𝑔 ∶ 𝑇𝑒𝐺 → 𝑇𝑒𝐺 induces a map
Ad ∶ 𝐺 × 𝑇𝑒𝐺 → 𝑇𝑒𝐺, this is the adjoint action of 𝐺 on 𝑇𝑒𝐺 and has kernel 𝑍(𝐺) if 𝐺 is connected.
We can further take the differential of this map with respect to the first argument, obtaining a map
ad ∶ 𝑇𝑒𝐺 × 𝑇𝑒𝐺 → 𝑇𝑒𝐺. For matrix Lie groups, i.e. 𝐺 ≤ Mat(𝑛, 𝐹) for a field 𝐹, Ad(𝑔) ∶ 𝑇𝑒𝐺 → 𝑇𝑒𝐺
is defined by Ad(𝑔)(𝑋) = 𝑔𝑋𝑔−1 and ad(𝑋) ∶ 𝑇𝑒𝐺 → 𝑇𝑒𝐺 is given by ad(𝑋)(𝑌) = [𝑋, 𝑌] = 𝑋𝑌 − 𝑌𝑋 .
More generally a Lie algebra is an algebra admitting a skew-symmetric bilinear may [⋅, ⋅] which
admits the Jacobi identity [𝑋, [𝑌 , 𝑍]] + [𝑌, [𝑍, 𝑋]] + [𝑍, [𝑋, 𝑌]] = 0, and if 𝐺 is a Lie group then the
canonical Lie algebra𝑇𝑒𝐺 is denoted 𝔤. A Lie algebra is equippedwith a second natural bilinear form,
theKilling form 𝐵 ∶ 𝔤 × 𝔤 → 𝔤 defined by

𝐵(𝑋, 𝑌) ≔ tr(ad(𝑋) ∘ ad(𝑌)).

For convenience, we include a table of Lie groups, Table 2.1.

2.10 Example (The Hopf fibration). First, observe that SU(2) is a 3-sphere. More precisely, write the
generic element of SU(2) as

(2.11) 𝑈 = [ 𝛼 𝛽
−𝛽 𝛼]
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where det𝑈 = ‖𝛼‖2+‖𝛽‖2 = 1; this exibits SU(2) as the usual 3-sphere inℂ2 with±𝐼 being the north
and south poles (±1, 0, 0, 0).

Putting topology aside for a moment, we now define a continuous representation 𝜑 ∶ SU(2) →
SO(3), or equivalently an isometric action by SU(2) on 𝕊2. Observe that 𝔰𝔲(2) is isomorphic (as a
vector space) to ℝ3 via the following basis:

𝑢1 = [𝑖 0
0 −𝑖] , 𝑢2 = [ 0 1

−1 0] , and 𝑢3 = [0 𝑖
𝑖 0] .

With this basis, the matrix of the Killing form 𝐵 is diag(−2, −2, −2), hence − 1
2
𝐵 = 𝐼 is the usual

Euclidean quadratic form on ℝ3. The adjoint action Ad ∶ SU(2) × 𝔰𝔲(2) → 𝔰𝔲(2) preserves 𝐵
(exercise) hence preserves− 1

2
𝐵. In particular we have a morphism 𝜑 ∶ SU(2) → SO(3), where SU(2)

is acting on the level-sets of − 1
2
𝐵 as an element of SO(3).

Fix the particular level set − 1
2
𝐵 = 1. The unit vector 𝑢1 lies in this level-set; we compute the

stabiliser of this element. Let 𝑈 = 𝑈(𝛼, 𝛽) be the generic element of SU(2) as in Eq. (2.11). We have
Ad(𝑈)(𝑢1) = 𝑢1 iff

𝑢1 = 𝑈𝑢1𝑈−1 = [ 𝛼 𝛽
−𝛽 𝛼] [

𝑖 0
0 −𝑖] [

𝛼 −𝛽
𝛽 𝛼 ] = [𝑖(‖𝛼‖

2 − ‖𝛽‖2) −2𝑖𝛼𝛽
−2𝑖𝛼𝛽 −𝑖(|𝛽|2 + |𝛼|2)

]

this equality implies ‖𝛼‖2 − ‖𝛽‖2 = 1 which together with |𝛽|2 + |𝛼|2 shows ‖𝛼‖2 = 1 and ‖𝛽‖2 = 0;
since the converse is clearly true we have Ad(𝑈)(𝑢1) = 𝑢1 iff ‖𝛼‖

2 = 1. Hence the stabiliser of 𝑢1 is a
𝕊1.

In summary, then, we have an action of SU(2) ≃ 𝕊3 on 𝕊2 with stabilisers 𝕊1; this exhibits SU(2)
as a 𝕊1-bundle over 𝕊2. This structure is called theHopf fibration.
Remark. Another way of constructing the Hopf fibration is as follows. Let H be the Hamiltonian
quaternion algebra, that is the algebra on ℝ4 = ℝ{1, 𝑖, 𝑗, 𝑘} with multiplication given by the Fano
relations −1 = 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘. With the usual norm on ℝ4, the subgroup of unit norm quater-
nions is isomorphic to SU(2) via the map 𝑈(𝛼, 𝛽) → 𝛼 + 𝛽𝑗 (notation as in Eq. (2.11)), see e.g. [7,
§2.4]. Identify ℝ3 with the subspace ofH spanned by {𝑖, 𝑗, 𝑘}. Then SU(2) acts on ℝ3 via quaternion
multiplication as a group of rotations. With a little bit of algebra one can show that this is actually
the same action we just described via the adjoint action!

We note that a similar kind of thing occurs for ℍ3: one can define an action of SL(2, ℂ) on ℍ3 by
identifying ℍ3 with the set 𝛼 + 𝛽𝑗 ∈ H where 𝛼 ∈ ℂ is arbitrary but 𝛽 ∈ ℝ>0 and then setting

[𝑎 𝑏
𝑐 𝑑] .(𝛼 + 𝛽𝑗) ≔ (𝑎(𝛼 + 𝛽𝑗) + 𝑏) (𝑐(𝛼 + 𝛽𝑗) + 𝑑)−1 .

See the elementary proof in §4.1 of [7].
All of this is due to coincidences that occur in low-rank Lie groups: many of them are strongly

related to low-dimension Clifford algebras which can be constructedwith quaternions and octonions
in natural ways (see for instance the rather remarkable Chapter 21 of [52]).

As a quick application of the previous example, we can derive the famous belt trick.

2.12 Trick. Since SU(2) ≃ 𝕊3 is connected, the kernel of this map is 𝑍(SU(2)) = {±𝐼} and so 𝜑
induces an injective continuous map 𝜑 ∶ SU(2)/{±𝐼} → SO(3); by invariance of domain,2 𝜑 is open;

2Theorem. If𝑀 and𝑁 are topological 𝑛-manifolds and 𝑓 ∶ 𝑀 → 𝑁 is continuous and injective, then 𝑓 is open.
Proof. [12, Corollary IV.19.9]. mAk
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but domain and codomain are connected compact manifolds so this implies that 𝜑 is onto. Viewing
SU(2) as the 3-sphere so −𝐼 acts to send a point to its diametric opposite, it should be clear that
ℝℙ3 ≃ SU(2)/{±𝐼} ≃ SO(3), hence 𝜋1(SO(3)) = 𝜋1(ℝℙ3) = ℤ/2ℤ.

Consider now the embedded 1-sphere 𝛾 in SO(3) given by taking the projection via 𝜑 of the path
𝛾 from 𝛾(0) = 𝐼 to 𝛾(1) = −𝐼 given by

[0, 𝜋] ∋ 𝑡 ↦ [𝑒
𝑖𝑡 0
0 𝑒−𝑖𝑡] ∈ SU(2).

This loop cannot be contracted since the path above cannot be contracted to a point. Thus it repre-
sents the nontrivial element of 𝜋1(SO(3)).

One now observes that 𝛾(𝑡) represents (as an element of SO(3)) rotation by an angle 2𝜋𝑡. In partic-
ular since 𝛾∗𝛾 (as an element of𝜋1(SO(3))) is trivial, thismeans that themap 𝜆 ∶ 𝑡 ↦ rotation by 4𝜋𝑡
represents a homotopically trivial loop in SO(3). That is, there is a homotopy 𝐹 ∶ [0, 1]2 → SO(3)
with

𝐹(𝑠, 0) = id 𝐹(𝑠, 1) = 𝜆(𝑠)
𝐹(0, 𝑡) = id 𝐹(1, 𝑡) = id.

With this defined, consider the map Φ ∶ ℝ3 × [0, 1] → ℝ3 given by

Φ(𝑥, 𝑡) = {𝐹(|𝑥| − 1, 1 − 𝑡)𝑥 for 1 ≤ |𝑥| ≤ 2
𝑥 otherwise.

This sets up the following physical experiment (following Bredon). Suspend a hollow ball (of radius
1 centred at the origin) in an infinite bath of ideal jelly; rotate the ball twice around some axis; fix the
ball from any further movement and let go. Then the jelly can return to its original (unwound) state
via the isotopy 𝐹 which leaves the ball fixed and which also leaves the jelly far away from the origin
fixed. This is known as the belt trick.
2.13 Definition. We will endow ˜SL(2, ℝ) with a geometric structure, following [18, §10]. We have
already seen that SU(2) acts on 2-spheres foliating a copy of 3-space ℝ3 which gives it a fibre bundle
structure over 𝕊2 (Example 2.10), and similarly we will construct a decomposition of SL(2, ℝ) as a
fibre bundle over ℍ2. Consider the adjoint action of SL(2, ℝ) on 𝔰𝔩(2) (2 × 2 real matrices with zero
trace). The Killing form on 𝔰𝔩(2) is given by

𝐵(𝑋, 𝑌) = 4 tr(𝑋𝑌)

and has signature (2, 1). Level sets of this form are ℍ2’s and are the orbits of the SL(2, ℝ) action; the
point-stabilisers are topologically 𝕊1’s (they are isomorphic to 𝑂(2)) and hence we have SL(2, ℝ) ≃
ℍ2 × 𝕊1; the universal cover ˜SL(2, ℝ) is a line bundle over ℍ2 of curvature 1, also called ℍ2×̃𝔼1. For
some visualisations, see [51].

Remark. We won’t use it, but here are some properties of the isometry groups of the geometries
fibreing over ℍ2 [70, §4.7]. Fix 𝑋 such a geometry, i.e. 𝑋 is ℍ2 × 𝔼1 or ˜SL(2, ℝ). Let 𝐺 = Isom(𝑋).
There is a natural projection 𝑝 ∶ 𝐺 → Isom(ℍ2) = PSL(2, ℝ). If Γ ≤ 𝐺 is discrete, then 𝑝(Γ) is either
discrete (i.e. a Fuchsian group) or is virtually Abelian. Even better, Γ is finite covolume iff 𝑝(Γ) is
discrete, finite covolume, and ker𝑝 is infinite.
2.14 Example (The trefoil knot). Recall that the trefoil knot is a torus knot. By the Riley–Thurston
theorem, it has a geometric but not hyperbolic structure. We claim that it has ˜SL(2, ℝ) structure
(which is a special case of Example 2.17 below) and in fact we can exhibit it explicitly as

(2.15) ˜SL(2, ℝ)/ ˜SL(2, ℤ)
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Figure 2.5: A ‘slice’ of a fibred solid torus. Modified from [59, §10.K.1].

We give a proof of this fact which was written up by Milnor [49, p. 84], though he attributes it to
D. Quillen, and which ties together all the remarkable views of this manifold enumerated in [63,
Example 1.5.2 of Chapter I].

Observe first that we can reduce the problem to the study of

𝑀 = SL(2, ℝ)/SL(2, ℤ)

since by definition ˜SL(2, ℤ) is the inverse image of SL(2, ℤ) in ˜SL(2, ℝ). The manifold𝑀 is naturally
identified with the space of unit-area lattices in ℂ.

Consider the space of all lattices in ℂ, call it �̂�. Given any lattice 𝐿 there is aWeierstrass func-
tion℘𝐿 which is meromorphic onℂ, doubly periodic with respect to 𝐿, and with poles exactly at the
lattice points 𝜆 ∈ 𝐿 of the form

℘𝐿(𝑧 + 𝜆) = 𝑧−2 +
∞
∑
𝑛=1

𝑎2𝑛𝑧2𝑛.

The Weierstrass function satisfies the differential equation [3, §7.3.3]

(d℘𝐿
d𝑧 )

2
= 4℘3

𝐿 − 𝑔2℘𝐿 − 𝑔3

where 𝑔2 and 𝑔3 are defined respectively as

𝑔2 = 60 ∑
𝜆∈𝐿∗

𝜆−4, 𝑔3 = 140 ∑
𝜆∈𝐿∗

𝜆−6.

Further, the pair (𝑔2, 𝑔3) determine℘𝐿 and 𝐿 uniquely. Conversely a pair (𝑔2, 𝑔3) determines a lattice
iff the three roots of the polynomial 𝑓(𝑧) = 4𝑧3 − 𝑔2𝑧 − 𝑔3 are all distinct [3, §7.3.4], and hence the
manifold �̂� is diffeomorphic to the complement of the variety cut out by the discriminant of 𝑓, i.e.

�̂� ≃ ℂ2 ⧵ V(27𝑔23 − 𝑔32).

We have already seen that the trefoil knot is the (2, 3)-torus knot and that the (2, 3)-torus knot
is the algebraic knot corresponding to the point (0, 0) on V(𝑤2 − 𝑧3) (for both statements see Ex-
ercises 1.31). Hence (modulo scaling one coordinate, which is a diffeomorphism) we see that the
trefoil knot complement in 𝕊3 is �̂� ∩ 𝑆𝜀 for some small 𝜀 > 0. But for every element of𝑀 (i.e. every
unit-area lattice) there is a unique lattice on the sphere 𝑆𝜀 of �̂� obtained by scaling; this scaling is a
smooth map and hence we have a diffeomorphism𝑀 ≃ �̂� ∩ 𝑆𝜀 as desired.

2.16 Definition. A trivial fibred solid torus is the solid torus 𝕊1 × 𝔹2 with the product foliation
of circles, (𝕊1 × {𝑥})𝑥∈𝔹2 (Fig. 2.5). A fibred solid torus is a solid torus together with a foliation by
circles that is finitely covered by a trivial solid torus; these fibred tori can all be obtained by cutting
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Figure 2.6: A Seifert fibration of𝕊3with generic fibre the (1, 1)-torus knot. Image by IanAgol, https:
//mathoverflow.net/a/248120/150082.

a trivial fibred solid torus along one of the discs, rotating by 𝑞/𝑝 (𝑞, 𝑝 coprime), and regluing. (The
induced foliation on the boundary is the (𝑝, 𝑞) curve on the torus.)

A Seifert fibration on a 3-manifold𝑀 is a decomposition of𝑀 into disjoint simple closed curves
(fibres) such that every fibre has a neighbourhood 𝑈 that is diffeomorphic to a fibred solid torus in
a fibre-preserving way.

Warning. A Seifert fibration of a knot complement is not to be confused with a fibration by Seifert
surfaces: the figure eight knot complement admits the latter structure [27, pp. 159–160] but not the
former (as it is hyperbolic).

2.17 Example. Torus knot complements admit Seifert fibrations. First observe that if 𝛾 is a curve
on the boundary of the solid torus, then the solid torus admits a Seifert fibration which restricts
to a foliation parallel to 𝛾 on the boundary (Fig. 2.6). Now given the 𝑝/𝑞-torus knot, cut along the
embedded torus so obtaining one solid torus glued to another along the boundary with a 𝑝/𝑞-curve
on one glued to amedian on the other. Fibre each torus separately, and then the two surface foliations
on the torus agree giving a fibration of the whole thing. On the other hand, if 𝕊3 ⧵ 𝑘 admits a Seifert
fibration where 𝑘 is a knot, then 𝑘 is a torus knot. Proof: the fibration extends to a Seifert fibration
of 𝕊3 by adding in 𝑘, let 𝑈 be a neighbourhood of 𝑘 which is a fibred torus and clearly a fibre on the
boundary of this torus is isotopic to 𝑘.

This classifies topologically the only class of non-hyperbolic geometric knots. (The complement
manifolds of the third class of knots, the satellite knots, can be decomposed by cutting along a com-
pact surface such that each piece is either hyperbolic or admits a Seifert fibration. This is called the
characteristic torus decomposition [10, Theorem 3.4].)
Remark. There are many more Seifert fibred links: see [14] for some characterisations (e.g. it is
equivalent to the link group having a nontrivial center).

2.18 Theorem. If the complement of a knot 𝑘 admits a Seifert fibration, then it admits a ˜SL(2, ℝ)
geometry and a ℍ2 × 𝔼1 geometry (and these geometries are not rigid).

https://mathoverflow.net/a/248120/150082
https://mathoverflow.net/a/248120/150082
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Sketch of proof. Suppose𝑀 is the knot complement, sowehave a (𝑝, 𝑞)-torus knot. Define an orbifold
𝑋 to be the quotient space of𝑀 by the relation ‘points become equal if they lie on the same circular
fibre’: so 𝑋 is an orbifold surface. There is an exact sequence 1 → 𝐾 → 𝜋1(𝑀) → 𝜋1(𝑋) → 1where𝐾
is the infinite cyclic group generated by a regular fibre of 𝑋 . One can show that 𝜒(𝑋) < 0 (it is a disc
with one𝑝-cone point and one 𝑞-cone point, so𝜒(𝑋) = 𝜒(disc)−(1−1/𝑞)−(1−1/𝑝) = 1−2+1/𝑞+1/𝑝
by [68, §13.3]), i.e. it is hyperbolic and so 𝑋 = ℍ2/𝜋1(𝑋) where 𝜋1(𝑋) is a Fuchsian group. Choose
natural generators for 𝜋1(𝑋) and lifts of these generators to 𝜋1(𝑀); we can choose these generators
such that if 𝑋 has genus 𝑔 with 𝑛 cone points of orders 𝛼1,… , 𝛼𝑛 we have a presentation

𝜋1(𝑋) = ⟨𝑎1, 𝑏1,… , 𝑎𝑔, 𝑏𝑔, 𝑥1,… , 𝑥𝑛 ∶ ∀𝑟(𝑥𝛼𝑟𝑟 = 1),
𝑔
∏
𝑖=1

[𝑎𝑖, 𝑏𝑖]𝑥1⋯𝑥𝑛 = 1⟩ .

Thepoint now is to lift this action of𝜋1(𝑋) onℍ2; there are twoways of doing this, one in a twistedway
giving a embedding of 𝜋1(𝑀) into Isom( ˜SL(2, ℝ)) and one in a non-twisted way giving an embedding
into Isom(ℍ2×𝔼1). See [61, Theorem5.3(ii)] for details, which are a little too complicated for us. mAk

2.19 Exercises. 1. If you know Chapter VII of Maskit [48]: write the figure eight group in terms
of the amalgamated products and HNN extensions of the cyclic groups generated by

[1 𝜔
0 1] and [2 −1

1 0 ]

where 𝜔 = 𝑒2𝜋/3.

2. Describe in SU(2), in terms of the group structures (where 𝛼 denotes the upper-left-hand ele-
ment of a generic element, Eq. (2.11)),

(a) the latitudes: the set of all 𝑈 ∈ SU(2) such that ℜ𝛼 is some fixed value (hint: this was
already done for 𝑥 = ±1);

(b) the longitudes: the set of 𝑈 ∈ SU(2) cut out by any hyperplane (ℝ3) in ℂ2 which passes
through ±𝐼.

3. Let 𝑇 = ℝ2/ℤ2 be the 2-torus.

(a) Show that the linear automorphism ofℝ2 represented by [ 2 1
1 1 ] descends to 𝑇. The result-

ing map on the torus is the Arnold’s cat map 𝛼.
(b) Draw the mapping torus of 𝛼, 𝑀𝛼 ≔ (𝑇 × [0, 1])/((𝑥, 1) ∼ (𝛼(𝑥), 0)). This manifold is a

Sol-manifold.

4. [70, Exercise 4.7.1] If𝜙 is an isometry of𝕊2 then themapping torus𝑀𝜙 is an (𝕊2×𝔼1)-manifold.
In fact it is the quotient of𝕊2×𝔼1 by the discrete group generated by the transformation (𝑣, 𝑡) ↦
(𝜙𝑣, 𝑡 + 1) where 𝑣 ∈ 𝕊2. The manifold is diffeomorphic to 𝕊2 × 𝕊1 when 𝜙 is orientation
preserving and is non-orientable otherwise. What other manifolds admit 𝕊2 × 𝔼1 structures?

(a) Any discrete subgroup of isometries of 𝕊2 × 𝔼1 acts discretely (but not necessarily freely
or effectively) on 𝔼1.

(b) An infinite discrete group of isometries of 𝔼1 is isomorphic to ℤ or 𝐶2 ∗ 𝐶2.
(c) There are only three closed 3-manifolds, up to diffeomorphism, that admit (𝕊2 × 𝔼1)-

structures. Two are orientable and one is not.
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Figure 2.7: The thick-thin decomposition. Modified from from [68, §5.11].

2.2 Hyperbolic invariants and computation
We are now interested only in knots 𝑘whose complement is hyperbolic. Recall by this that we mean
the following: there exists a Riemann metric on 𝕊3 ⧵ 𝑘 which has constant sectional curvature −1.
If this Riemann metric is complete, then we even have a faithful representation 𝜋1(𝑘) → PSL(2, ℂ)
such that 𝕊3 ⧵ 𝑘 = ℍ3/𝜋1(𝑘). We wish to study (i) invariants which we can define using hyperbolic
geometry, and (ii) the space of incomplete structures on the knot complement.

Our main geometric invariant is volume, so we need to prove that knot complement manifolds
(a) have finite volume, and (b) admit only one structure so that this volume is well-defined. We need
to know some of the global geometry, which is controlled by the so-called thick-thin decomposi-
tion, a consequence of Margulis’ lemma [8, Chapter D]. Suppose that 𝑀 is a complete hyperbolic
3-manifold. For each 𝑥 ∈ 𝑀 we define the injectivity radius of𝑀 at 𝑥, 𝜄(𝑥), to be the supremum of
all 𝑟 ∈ ℝ such that the ball of radius 𝑟 around 𝑥 is isometric to the ball of radius 𝑟 in ℍ3. Let 𝜀 > 0.
The 𝜀-thin part of𝑀 is the set

𝑀𝜀 = {𝑥 ∈ 𝑀 ∶ 𝜄(𝑥) < 𝜀/2}.
See Fig. 2.7 for a two-dimensional cartoon of the thick and thin parts of a hyperbolic 3-manifold.

2.20 Theorem (Structure of thin part). There exists a universal (i.e. independent of𝑀) constant 𝜀3 > 0
such that for 0 < 𝜀 ≤ 𝜀3 the 𝜀-thin part of any complete hyperbolic 3-manifold𝑀 consists of tubes around
short geodesics, rank 1 cusps, and rank 2 cusps. mAk

In the theorem, a rank 1 cusp is a piece of𝑀 which is isometric to the quotient of the horoball
based at at 𝜉 ∈ ℂ̂ by a cyclic group of parabolic elements with fixed point at 𝜉, and a rank 2 cusp
is isometric to the quotient of the horoball by a rank 2 Abelian group generated by two parabolics
with fixed points at 𝜉. These three objects are shown in Thurston’s cartoon Fig. 2.7: observe that a
geodesic on the surface can bemoved by free homotopy towards a rank 1 cusp, this is meant to depict
how a geodesic can be shrunk in a 3-manifold around a rank 1 cusp. See also that a short geodesic
on the tube part of the surface is surrounded by a cylinder on the surface to make up that piece of the
thin part. It is hard to draw a cartoon of a rank 2 cusp, so it is represented by simply drawing a small
torus: there are two independent directions of geodesics which can be shrunk to a point around this.
Finally note that the different parts intersect along torus surfaces.
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Figure 2.8: The Lobachevskii function Л and its derivative (in grey).

One can also ask for bounds on the radii of tubes around short geodesics [47, Theorem 3.3.4].

2.21 Theorem. A complete hyperbolic 3-manifold𝑀 has finite volume iff either

• 𝑀 is compact without boundary, or

• 𝑀 is homeomorphic to the interior of a compact manifold 𝑀 with torus boundary components,
such that𝑀 is neither a solid torus or 𝕋2 × [0, 1].

In particular, knot complements which admit hyperbolic metrics have finite volume.

Proof. The proof goes via the thick-thin decomposition of 3-manifolds [8]. First if𝑀 is compact with-
out volume then it is the image of a compact fundamental domain inℍ3 which is finite volume. If𝑀
is the interior of a manifold with only torus boundary components and is not elementary (the two ex-
cluded homeomorphism classes) then we can write it as the union of a compact piece (finite volume)
and neighbourhoods of rank 2 cusps, and these neighbourhoods are finite volume. Conversely, if𝑀
has finite volume and is not compact without boundary then (i) the thick part of𝑀must be compact
(else it would be infinite volume), (ii) the number of components of𝑀𝜀 is finite (since each of these
is glued onto the boundary of the thick part, which is compact). Add the tubes to the thick part: this
union continues to be compact. Attach a 𝕋2 × [0, 1] to the boundary of each torus boundary com-
ponent, and call the result 𝑁. Clearly 𝑁 = int𝑀, and the boundary of 𝑁 cannot be one of the two
excluded cases since those manifolds are infinite volume. mAk

For knot invariant construction the outlook is not very good unless the hyperbolic structure is
unique (otherwise different structures on the same topological knot complementmight give different
volumes).

2.22 Theorem (Mostow-Prasad rigidity). Let𝑀 be a hyperbolic 3-manifold. Then𝑀 admits at most
one complete finite-volume hyperbolic structure.

Here, completemeans in the usualmetric sense, and can also be detected locally in fundamental
domains for the uniformising group. The conditions for a given structure to be complete are polyno-
mial conditions, but are complicated.

2.23 Corollary. The map Vol ∶ Knot → ℝ̂>0 which sends a hyperbolic knot to the hyperbolic volume
of its complement and a torus or satellite knot to∞ is a well-defined knot invariant. mAk
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Figure 2.9: On the left, a hyperbolic tetrahedron with one vertex at∞ and the corresponding level
set. In the centre and on the right we see all four vertices adorned with these horocyclic triangles.
Figure from [8, Figs. C.10–C.12].

2.24 Definition. The Lobachevskii function [44] Л ∶ [0, 2𝜋] → ℝ is defined by

Л(𝜃) = −
𝜃

∫
0

log |2 sin𝑢|𝑑𝑢,

and is plotted in Fig. 2.8.

2.25 Proposition. Let 𝒯 be the set of ℝ2-triangles up to similarity; that is, 𝒯 is the set of unordered
triples 𝛼, 𝛽, 𝛾 ∈ (0, 𝜋) such that 𝛼 + 𝛽 + 𝛾 = 𝜋. Let 𝒮3 be the set of isometry classes of ideal simplices
(tetrahedra) in ℍ3. There exists a bijective map 𝑇 ∶ 𝒮3 → 𝒯 such that, if 𝜎 ∈ 𝒮3, then Vol(𝜎) =
Л(𝛼) + Л(𝛽) + Л(𝛾) where 𝛼, 𝛽, 𝛾 are the angles of 𝑇(𝜎).

We follow the proof given in [8, §C.2].

Proof. Let 𝜎 ∈ 𝒮3 be an ideal simplex with vertex set {𝑝0, 𝑝1, 𝑝2, 𝑝3}. Define maps 𝑇𝑖 for 0 ≤ 𝑖 ≤ 3 in
the followingway: send 𝑝𝑖 to∞ via an isometry; for large enough 𝑡, the set 𝜎∩(ℝ2×{𝑡}) is a Euclidean
triangle (Fig. 2.9, left) which we take to be 𝑇𝑖(𝜎). The similarity class of this triangle is independent
of the choice of 𝜎 in [𝜎]: observe that isometries of ℍ3 keeping ∞ fixed induce conformal maps
ℝ2 × {𝑡} → ℝ2 × {𝜆𝑡} for some 𝑡 (this is the essence of the definition of Poincaré extension actually).
Hence the 𝑇𝑖 are all well-defined.

We now claim that 𝑇𝑖(𝜎) is independent of 𝜎. To see this we draw all of the triangles 𝑇𝑖(𝜎) at once.
Move one of the vertices 𝑝𝑖 is at∞, and consider the horospherical triangle which 𝑇𝑗 constructs near
𝑝𝑗 . We see that the two angles indicated in the central image of Fig. 2.9 are equal; overall we only have
the six distinct angles shown in the rightmost image of the figure. We obtain four equations in these
six angles from the Euclidean angle sum formula: 𝛼+𝛽+𝛾 = 𝛼+𝛽′+𝛾′ = 𝛼′+𝛽+𝛾′ = 𝛼′+𝛽′+𝛾 = 𝜋.
Reducing these we get 𝛼 + 𝛽 = 𝛼′ + 𝛽′, 𝛼 + 𝛾 = 𝛼′ + 𝛾′, and 𝛽 + 𝛾 = 𝛽′ + 𝛾′, this is a system of three
linear equations in six unknowns that has three-dimensional solution space 𝛼 = 𝛼′, 𝛽 = 𝛽′, 𝛾 = 𝛾′.
This shows that all the images 𝑇𝑖(𝜎) are similar Euclidean triangles and hence we can define 𝑇(𝜎) to
be ‘the Euclidean triangle cut out by any sufficiently large horosphere around any vertex of 𝜎’.

The equation on Л is a technical exercise in hyperbolic trigonometry which we omit, see [8,
Prop. C.2.8]. mAk
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Figure 2.10: Weeks’ algorithm for triangulating hyperbolic knot complements. Bottom figure from
[72].

2.26 Example. By the proof of Theorem 2.5 the volume of the figure eight knot complement is twice
the volume of the tetrahedron with all angles 𝜋/3, i.e. it is

6Л(𝜋/3) = −6
𝜋/3

∫
0

log |2 sin𝑢|𝑑𝑢 ≈ 2.0299.

In fact the figure eight knot is the knot of minimal volume.

In order to compute the hyperbolic volume of a knot, then, it is enough to compute triangulations
of the complement manifold.

2.27 Algorithm (SnapPea Algorithm (Jeff Weeks, c.1985)). Let 𝑘 be a hyperbolic knot in 𝕊3. The
algorithm computes a decomposition of 𝕊3 ⧵ 𝑘 into hyperbolic ideal tetrahedra.

1. Embed the knot in 𝑆2 × [−1, 1] ‘flatly’ around 𝑆2 × {0}.
2. Cut straight down along the dual graph & the knot graph (Fig. 2.10, top).

3. Collapse the quadrilateral slices to tetrahedra (Fig. 2.10, bottom).

4. Glue four cusps onto these vertices to get spherical tetrahedra.

5. Do a bit of fiddling to get the hyperbolic geometry back.

The details of this algorithm can be found in [72], and it is implemented in the SnapPy software
[20]. We will give some detailed examples when we study two-bridge knots.

We would like to ask how ‘good’ this invariant actually is. The two main results in this area form
the following theorem.

2.28 Theorem. 1. Given some 𝑣 ∈ ℝ>0, the number of hyperbolic 3-manifolds with volume 𝑣 is
finite.

2. The set of all volumesℱ3 is awell-ordered non-discrete subset ofℝ>0 (without the axiom of choice).

3. Given any 𝑛 ∈ ℕ there exists some volume 𝑣 ∈ ℱ3 such that ||Vol−1(𝑣)|| = 𝑛. (Wielenberg, 1981)

This theorem follows fromThurston’sDehn filling theorem (togetherwith a lot ofwork) by taking
sequences of Dehn surgeries ofmanifolds and looking at the convergence behaviour of their volumes.
The motivation behind this is the classification of incomplete hyperbolic structures on hyperbolic
manifolds, of which there are infinitely many.
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2.29 Definition. Let𝑀 be a manifold with torus boundary component 𝑇, and let 𝛾𝑝/𝑞 be an isotopy
class of simple closed curves on 𝑡. The manifold obtained by attaching a solid torus to 𝑇 such that
𝛾𝑝/𝑞 bounds a disc is called the Dehn filling of𝑀 along 𝛾𝑝/𝑞.

2.30 Definition. Let 𝑀 be a manifold, let 𝑘 be a knot in 𝑀, and let 𝑝/𝑞 ∈ ℚ̂. The manifold 𝑀′

obtained from𝑀 by drilling out a solid torus neighbourhood of 𝑘 and performing a 𝑝/𝑞 Dehn filling
along the result is called the result of Dehn surgery along 𝑘.

The result of Dehn surgery in a hyperbolic manifold is usually hyperbolic. This follows from
the next theorem, which we first state in a rough sense: Let𝑀 be a 3-manifold homeomorphic to the
interior of a compactmanifoldwith boundary a single torus𝕋2 such that𝑀 admits a complete hyperbolic
structure. Then the space of all Dehn surgeries on𝑀 contains an open neighbourhood of the complete
structure.

More precisely, let 𝑀 be any 3-manifold with torus boundary 𝐶 (𝐶 is called a cusp torus) and
suppose that an incomplete hyperbolic structure is placed on𝑀, so the holonomy group 𝜋1(𝐶) is not
generated by parabolic elements. Then there is a natural map 𝐿 ∶ 𝜋1(𝐶) = 𝐻1(𝐶, ℤ) → ℂ given by
the complex length function, and this admits a canonical extension 𝐿 ∶ 𝐻1(𝐶, ℝ) → ℂ. (In other
words we extend from simple closed curves to arbitrary laminations of one leaf.)

Suppose that the complex length around a simple closed curve 𝛾 is 2𝜋𝑖. Then 𝛾 corresponds
exactly to a rotation by 2𝜋 and in the completion of𝑀 the curve 𝛾 bounds a smooth hyperbolic disc.
Hence the completion of𝑀 with this hyperbolic structure is a manifold homeomorphic to the Dehn
filled manifold along 𝛾 and we therefore get a complete hyperbolic structure. On the other hand if
the imaginary part is 𝜃 ≠ 2𝜋, in the completion the curve 𝛾 will bound a hyperbolic cone of angle
𝜃, the metric on the completion is not smooth, and so we don’t get a structure. There is a unique
𝑐 ∈ 𝐻1(𝐶, ℝ) with 𝐿(𝑐) = 2𝜋𝑖, and this 𝑐 is called the Dehn surgery coefficient of 𝐶. The subset of
𝐻1(𝐶, ℝ) ≃ ℝ2 consisting of all Dehn filling coefficients for all possible hyperbolic structures (that is,
𝐻1(𝐶, ℝ) is a topological invariant so does not depend on the incomplete structure on𝑀, but 𝐿 does
depend on this structure, so we get different coefficients for each structure that all lie in the same
ℝ2) is called the hyperbolic Dehn filling space for𝑀, and by convention we let∞ be the complete
hyperbolic structure on𝑀 if it exists.

2.31 Theorem (Thurston’s Dehn filling theorem). Let𝑀 be a 3-manifold homeomorphic to the inte-
rior of a compact manifold with boundary a single torus 𝕋2 such that𝑀 admits a complete hyperbolic
structure. Then the Dehn filling space of𝑀 contains an open neighbourhood of∞. More generally if𝑀
is the interior of a compact manifold with torus boundary components 𝑇1,… , 𝑇𝑛 and if it admits a com-
plete structure, then for each 𝑇𝑖 the corresponding Dehn filling space contains an open neighbourhood
of∞.

Sketch of proof. Suppose𝑀 admits a complete structure, and let 𝜌 ∶ 𝜋1(𝑋) → PSL(2, ℂ) be the repre-
sentation verifying this. The fundamental group of𝕋2 has image 𝜌(𝜋1(𝕋2)) generated by two parabol-
ics with the same fixed point. Now show that 𝜌 admits a one-parameter family of deformations, and
that each deformation sends these parabolics to a pair of loxodromics which share fixed points. Now
this gives a distance measure which induces an incomplete complex structure that has Dehn filling
coefficient varying continuously around∞. In general, one can do high-dimensional deformations
to get the result for 𝑛 boundary components. mAk

2.32 Corollary. Let 𝑋 be a complete hyperbolic manifold with 𝑛 torus boundary components 𝑇1,… , 𝑇𝑛
. For each 𝑇𝑖, exclude finitely many Dehn fillings. The resulting Dehn fillings yield a manifold with a
complete hyperbolic structure.

Proof. For every 𝑖 there are only finitely many elements of 𝐻1(𝐶, ℤ) that lie outside the open neigh-
bourhood of∞ in 𝐻1(𝐶, ℝ) given by the theorem. mAk
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Conversely, all 3-manifolds arise by Dehn surgery:

2.33 Theorem (Lickorish/Wallace, 1960–1962). Let𝑀 be a closed orientable 3-manifold. Then𝑀 is
the result of Dehn surgery along some link in 𝕊3.

A slightly stronger version of this is:

2.34 Theorem (Jørgensen). Let 𝐶 > 0. Among all hyperbolic 3-manifolds𝑀 with volume at most 𝐶,
there are only finitely many homeomorphism types of𝑀𝜀. There is a universal link 𝐿𝐶 ⊆ 𝕊3 such that
every complete hyperbolic manifold with volume at most 𝐶 is obtained by some Dehn surgery along 𝐿.

The combination of Corollary 2.32 and Theorem 2.33 implies, roughly speaking, that most 3-
manifolds are hyperbolic.

2.35 Exercises. 1. [47, Exercise 3-46] (Halpern’s inequality) Suppose𝐺 is a torsion-free Fuchsian
group (i.e. discrete subgroup of PSL(2, ℝ) ≃ Isom+(ℍ2)) acting on the upper half-plane ℍ2 =
{𝑥+𝑡𝑖 ∈ ℂ ∶ 𝑡 > 0}. Assume𝐺 has a parabolic fixed point at∞ and that the parabolic subgroup
is generated by 𝑇 ∶ 𝑧 ↦ 𝑧 + 1. Prove that for every 𝐴 ∈ 𝐺 that does not fix∞, |𝑐| ≥ 2 where 𝑐
is the lower-left-hand entry of 𝐴. (Hint: compute tr𝑇𝐴𝑇𝐴−1.)

2. [47, Exercise 3-5] A Dirichlet region for a Kleinian group 𝐺 with centre 𝑧 ∈ ℍ3 is the closed
convex hyperbolic polyhedron

⋂
𝑔∈𝐺

𝐻𝑔

where𝐻𝑔 is the relatively closed half-space which is bounded by the perpendicular bisector of
[𝑧, 𝑔𝑧] containing 𝑧. This is a fundamental polyhedron for 𝐺 [48, §IV.G].
Find a Dirichlet region for the rank two parabolic group generated by 𝑧 ↦ 𝑧 + 1 and 𝑧 ↦ 𝜏
for 𝜏 ∈ 𝑖ℝ>0. Show that generically it has six edges, but sometimes only four. Compute the
hyperbolic volume of the part of the polyhedron lying above a general horosphere based at∞.
Show that the quotient ℍ3 ∪ ℂ/𝐺 (this is OK since Ω(𝐺) = ̂𝐶 ⧵ {∞}!) is homeomorphic to
{0 < |𝑧| ≤ 1 ∶ 𝑧 ∈ ℂ} × 𝕊1, i.e. the complement of the core circle is the solid torus. This is the
prototype of the local structure about a hyperbolic knot, the parabolic fixed point is ‘stretched’
onto the knot.

3. [47, Exercise 6-1] Let Γ be the group of isometries of 𝔼3 which is generated by (𝑥, 𝑦, 𝑡) ↦ (𝑥 +
1, 𝑦, 𝑡) and (𝑥, 𝑦, 𝑡) ↦ (−𝑥, 𝑦 + 1,−𝑡). Let Γ0 = ⟨(𝑥, 𝑦, 𝑡) ↦ (𝑥 + 1, 𝑦, 𝑡), (𝑥, 𝑦, 𝑡) ↦ (𝑥, 𝑦 + 1, 𝑡)⟩

(a) The group Γ preserves ℂ and ℂ/Γ is the Klein bottle.
(b) The interior of 𝕋2 × [0, 1] obtained by thickening the torus 𝕋2 is almost hyperbolic except

for the existence of hyperbolic essential cylinders with one boundary component on 𝕋2×
{0}. The interior is 𝔼3/Γ0. (This is the only manifold whose boundary components are tori
whose interior does not have a complete finite-volume hyperbolic structure, by a theorem
from the lecture.)

(c) The torus ℂ/Γ0 is the two-sheeted orientable cover of ℂ/Γ and the cover transformation
is ‘flipping’. The corresponding 3-manifold 𝔼3/Γ is called the twisted 𝐼-bundle over the
Klein bottle and is the only homotopically atoroidal manifold whose interior does not
have a hyperbolic structure.





Chapter 3

Braids

In this third we week we will study braids. These are important and central objects in geometric
topology and their study arises naturally in knot theory and in the study of surface homeomorphisms.
Representations of braid groups will be of particular interest to us, as this is the direction we need to
head in order to introduce the Jones polynomials in the final week. As well as preparing for this we
will classify all 2-bridge knots and explain their relationship to Lens spaces, and consider the link
between knot theory and the theory of mapping classes. For braids in general, see the textbook of
Kassel and Turaev [39] as well as the large monograph of Burde and Zieschang [15]. We will also use
parts of Farb and Margalit’s monograph on mapping classes [24] as an important reference.

3.1 4-plats and 2-bridge knots
In this section, we mainly follow the exposition of [15, Chapters 10–12] and Chapter 10 of [53] in
classifying all 2-bridge links. We will also explain the Riley representations of the corresponding
groups into𝕄.

Recall that a 2-bridge link is a link 𝑘 ⊆ 𝕊3 which can be arranged via isotopy in such away that 𝑘
intersects a fixed plane (taken to be ℝ2) transversely in exactly four points such that the intersection
of 𝑘 with each half-space cut out by the plane (consisting of two space arcs) projects injectively to
two disjoint arcs on the plane. The figure eight knot is an example, as seen in Fig. 3.1.

Without loss of generality (i.e. by applying an appropriate isotopy) we can assume that the image
of the two arcs on one side of ℝ2 is exactly the two invervals 𝐼1 = [0, 1] and 𝐼2 = [3, 2] (observe
the orientation of 𝐼2 is reversed), and the other two arcs projecting from the other side of ℝ2 end up
as two curves 𝑢, 𝑣 winding in a spiral fashion like in Fig. 3.2; we always assume that such a torsion
diagram is reduced. The number of double points is even since each of 𝑢 and 𝑣 intersects both 𝐼1 and
𝐼2 the same number of times: call this number of intersectons 𝛼 − 1. If 𝛼 is odd then 𝑘 is a knot and
if 𝛼 is even then it is a two-component link. Note that 𝛼 does not determine the diagram uniquely,
since the curve might wind around through the middle like in the diagram for the figure eight knot
(Fig. 3.3); we will introduce a second invariant 𝛽 via a topological argument and you are invited to
supply a geometric interpretation in terms of the diagram as an exercise.

Now observe that there is a natural double cover 𝕋2 → 𝕊2 given by the hyperelliptic involution
𝜏 ⟳ 𝕋2 (Fig. 3.4). Lifting 𝑢 and 𝑣 to ̂𝑢 and ̂𝑣 and 𝐼1 and 𝐼2 to ̂𝐼1 and ̂𝐼2, we see that ̂𝑣 − 𝜏 ̂𝑣 and
̂𝑢 − 𝜏�̂� are isotopic homotopy chains (where the minus signs show only that the orientation needs to
be reversed in order to obtain well-defined chains); they intersect alterately with the lifts of the two
intervals, (1−𝜏) ̂𝐼1 and (1−𝜏) ̂𝐼2. These lifts are shown in Fig. 3.5. Choose a basis for𝐻1(𝕋2) consisting

45
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Figure 3.1: The figure eight knot is 2-bridge; a presentation is in the lower right corner. Figure from
[27, p. 150].

Figure 3.2: Torsion diagram for the (4, 1) 2-bridge link.

Figure 3.3: Torsion diagram for the figure eight knot, showing how impractical torsion diagrams are.



3.1. 4-PLATS AND 2-BRIDGE KNOTS 47

Figure 3.4: The hyperelliptic involution 𝜏 ⟳ 𝕋2 induces an 𝕊2 as quotient.

Figure 3.5: Computation of Heegard splitting invariants from a 2-bridge knot.

of a meridian𝑀 (isotopic to (1− 𝜏) ̂𝐼1) and a longitude 𝐿 (isotopic to one of the lifts of a simple closed
curve separating 𝐼1 from 𝐼2). Assume that 𝛼 > 1 (you are asked in the exercises for 𝛼 ∈ {0, 1}). Then
(1−𝜏)�̂� (and (1−𝜏) ̂𝑣, being isotopic to it) is of ℤ-homology type 𝛽𝑀+𝛼𝐿where |𝛽| < 𝛼 and where 𝛽
is positive or negative according to whether 𝑣 crosses [0, 1] in one direction or the other (in the sense
of Fig. 1.4). We also see that (𝛼, 𝛽) = 1, as a consequence of Lemma 1.21.

Thus:-

3.1 Proposition. For any 2-bridge link, there is a pair of integers (𝛼, 𝛽) with

(TBL) 𝛼 > 0, |𝛽| < 𝛼, (𝛼, 𝛽) = 1, and 𝛽 odd.

Further, the number of components of the link is 𝜇 ≡ 𝛼 (mod 2) where 1 ≤ 𝜇 ≤ 2. mAk

The invariants are respectively called the torsion or determinant (𝛼) and the crossing number
(𝛽).

There are two natural questions arising from Proposition 3.1.

1. Does the converse of Proposition 3.1, i.e. existence of a knot given a pair of integers, also hold?

2. Is the map from 2-bridge knots to pairs of integers a 1–1 correspondence?
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Figure 3.6: The 3-sphere admits a Heegard splitting.

The answer to (1) is yes, and in order to prove it (Corollary 3.4) we will consider 2-fold coverings
of the 3-manifold𝕊3 branched along the knot. The answer to (2) is no, and is the theorem of Schubert
(Theorem 3.5).

3.2 Construction (Lens spaces and Heegard splittings). Identify 𝕊2𝑛−1 with the set {𝑧 ∈ ℂ𝑛 ∶ ‖𝑧‖ =
1}. Fix an integer 𝑝 and set 𝜁 = 𝑒2𝜋𝑖/𝑝. Choose 𝑞1,… , 𝑞𝑛 integers such that (𝑝, 𝑞𝑖) = 1 for all 𝑖, and
define an action of 𝜁 on 𝕊2𝑛−1 by the rule

𝜁.(𝑧1,… , 𝑧𝑛) ≔ (𝜁𝑞1𝑧1,… , 𝜁𝑞𝑛𝑧𝑛).

This action is isometric with respect to the angular metric on the sphere, and is properly discontinu-
ous since 𝑔𝑥 = 𝑥 implies 𝑔 is the identity. Hence the quotient 𝕊2𝑛−1/⟨𝜁⟩ is a spherical manifold, the
lens space 𝐿(𝑝; 𝑞1,… , 𝑞𝑛). In the special case 𝑛 = 2 and 𝑞1 = 1 we write 𝐿(𝑝, 𝑞) ≔ 𝐿(𝑝; 1, 𝑞), this is
a smooth 3-manifold modelled on 𝕊3. In the sequel this will be the only class of lens spaces we want.

A (genus 𝑔)Heegard splitting of a compact oriented 3-manifold𝑀 is a decomposition𝑀 ≃homeo.
𝑈 ∪𝑓 𝑉 where (i) both 𝑈 and 𝑉 are solid handlebodies of genus 𝑔, (ii) 𝑓 is a orientation reversing
homeomorphism 𝑈 → 𝑉 (the notation ∪𝑓 means ‘take the disjoint union and quotient by the equiv-
alence relation set up by 𝑓’). We will classify the 3-manifolds which admit a genus one splitting, for
details see Hempel [32, pp. 20–23]. Before doing any work we immediately observe that 𝕊3 itself
admits such a splitting, Fig. 3.6.

Suppose 𝑀 = 𝑈 ∪𝑓 𝑉 where 𝑈,𝑉 are solid genus 1 handlebodies. The homeomorphism 𝑓 ∶
𝜕𝑈 → 𝜕𝑉 is isotopic to a map which glues a simple closed curve 𝜔 on 𝜕𝑈 to the curve [𝛼] on 𝜕𝑉 , and
different choices of𝜔 (modhomotopy) give different homeomorphisms—this is just the classification
ofmapping classes on the torus. Hence by Lemma 1.21 theHeegard splittings are indexed by the pairs
(𝑝, 𝑞) of coprime integers.

We now claim that the manifold with Heegard splitting (𝑝, 𝑞) is exactly the Lens space 𝐿(𝑝, 𝑞). To
do this consider the Clifford torus

𝐶 = 1
√2

𝕊1 × 1
√2

𝕊1 = { 1
√2

(𝑒𝑖𝜃, 𝑒𝑖𝜙) ∶ 0 ≤ 𝜃, 𝜙 < 2𝜋} ⊆ ℂ2

which lies in 𝕊3. The action of 𝜁 on 𝐶 is

𝜁. 1
√2

(𝑒𝑖𝜃, 𝑒𝑖𝜙) = 1
√2

(𝑒𝑖(𝜃+2𝜋/𝑝), 𝑒𝑖(𝜙+2𝑞𝜋/𝑝))

so the quotient of 𝐶 by ⟨𝜁⟩ sets up a 𝑝-fold cover of a torus 𝑇 in 𝐿(𝑝, 𝑞) by 𝐶; the image of [𝛼] on 𝐶 is
the meridian of 𝑇 and the image of [𝛽] is a curve wrapping 𝑝 times in the meridian direction and 𝑞
times in the longitudinal direction (where ‘meridian’ and ‘longitudinal’ are with respect to looking
at 𝐶 from infinity). If one instead looks at the exterior of the Clifford torus then the (𝑝, 𝑞) curve is the
quotient of the meridian of this second solid torus. This completes the proof. (Draw some pictures,
following [25, §4.3].)
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Remark. By looking at the Klein bottle and not the torus, one sees that there is a unique non-
orientable 3-manifold with genus one Heegard splitting, the non-orientable 2-sphere bundle over
𝕊1.
Remark. A lens space is exactly a Dehn surgery of 𝕊3 along the trivial knot.

3.3 Theorem. If 𝑘 is a 2-bridge knot with invariants (𝛼, 𝛽) (in the sense of Proposition 3.1), then the
two-fold covering of 𝕊3 branched along 𝑘 is precisely 𝐿(𝛼, 𝛽).

Proof. Suppose we have such a 2-bridge knot embedded 𝕊3 such that it intersects some 𝕊2 exactly
four times. By the construction given earlier we have a covering 𝑝 ∶ 𝕋2 → 𝕊2. The idea is to extend
this covering to a covering ̃𝑝 ∶ 𝑀 → 𝕊3 of order two branched along 𝑘. Denote by 𝐵1 and 𝐵2 the
two 3-balls in 𝕊3 bounded by the 𝕊2, so 𝐵1 ∩ 𝑘 is the pair of intervals 𝐼1 and 𝐼2 pushed slightly into
the interior and 𝐵2 ∩ 𝑘 = 𝑢 ∪ 𝑣. For each 𝑖 the 2-fold covering ̂𝐵𝑖 of 𝐵𝑖 branched along 𝐵𝑖 ∩ 𝑘 can be
constructed by cutting 𝐵𝑖 along two disjoint discs spanning the arcs and identifying two copies of the
result in the obvious way. Each ̂𝐵𝑖 is a solid torus and (1 − 𝜏) ̂𝐼1 and (1 − 𝜏)�̂� represent the medians of
̂𝐵1 and ̂𝐵2 respectively. By construction we see that 𝐵1 ∪ 𝐵2 is the Heegard splitting of 𝐿(𝛼, 𝛽), since

(1 − 𝜏)�̂� ≃ 𝛽𝑀 + 𝛼𝐿. mAk

As a corollary of the proof of Theorem 3.3 we get the following:

3.4 Corollary. Given any pair (𝛼, 𝛽) of integers satisfying the conditions (TBL) in Proposition 3.1, then
there exists a 2-bridge link of 𝜇 components with the given invariants; we call it 𝔟(𝛼, 𝛽).

Proof. Consider the standard construction of 𝕋2 asℝ2/ℤ2 (c.f. ). The curve (1− 𝜏)�̂� produced from a
2-bridge knotwith invariants (𝛼, 𝛽) (if such a knot exists) is constructed by projecting the line through
(0, 0) and (𝛽, 𝛼) to 𝕋2. Draw such a line inℝ2 and project it to the torus. Continue going backwards in
the construction by quotienting by the hyperelliptic involution 𝜏. This will give a spiral curve which
loops the appropriate number of times from 0 to one of 1 or 3 depending on the value of𝛼 (it is covered
twice, but we consider just the topological curve not its parameterisation). Take the projections of
the lines through (1, 0) and (𝛽 + 1, 𝛼) to get the other spiral curve. Now draw [0, 1] and [1, 1] in, and
define the spiral curve to be an overcrossing at all the vertices of the resulting graph. mAk

Remark. One can even visualise these branched coverings: see the Thurston lecture Knots to Narnia
[67] and the software Polycut [11].

We will neglect the proof of the following for the sake of time; for references see [15, Theo-
rem 12.6].

3.5 Theorem (Schubert, 1956). Let 𝛽 be odd, (𝛼, 𝛽) = 1, and let 𝛽−1 be the inverse of 𝛽 mod 2𝛼.

1. 𝔟(𝛼, 𝛽) and 𝔟(𝛼′, 𝛽′) are equivalent as oriented links iff 𝛼 = 𝛼′ and 𝛽±1 = 𝛽′ (mod 2𝛼).

2. 𝔟(𝛼, 𝛽) and 𝔟(𝛼′, 𝛽′) are equivalent as unoriented links iff 𝛼 = 𝛼′ and 𝛽±1 = 𝛽′ (mod 𝛼).

Proof. Exercises! mAk

There is an alternative construction of 2-bridge knots via braids. We will concern ourselves only
with a geometric consideration of Artin’s braid theory here; in the next lecture we will look at the
algebra.

3.6 Definition. Fix 𝑛 distinct points in the complex plane, and choose a permutation 𝜋 ∈ 𝑆𝑛. A
braid on 𝑛 strands is an 𝑛-tuple 𝔉 = (𝑓1,… , 𝑓𝑛) of piecewise linear functions 𝐼 → 𝐼 × ℂ such that
(a) for each 𝑖, 𝑓𝑖(0) = 𝑃𝑖 and 𝑓𝑖(1) = 𝜋𝑃𝑖; and (b) 𝑓𝑖(𝑡) = 𝑓𝑗(𝑡) for some 𝑡 if and only if 𝑖 = 𝑗.
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Figure 3.7: Closing a 4-braid to obtain a 4-plat [45, Fig. 1.8].

Figure 3.8: The two Artin generators 𝜎1 and 𝜎2 of the spherical braid group on four strands.

Braids are defined up to level-preserving isotopy (the reader should supply the obvious def-
inition), and the set of 𝑛-braids admits (up to this isotopy) a natural group operation, namely the
‘concatenation’ operation familiar from homotopy theory (so 𝔊𝔉 is the 𝑛-tuple of functions which
consists of ‘do 𝑓𝑖 from 𝑡 = 0 to 𝑡 = 1/2 and then do 𝑔𝜋(𝑖) from 𝑡 = 1/2 to 𝑡 = 1). This is called the
braid group 𝐵𝑛.

We now restrict ourselves to the case 𝑛 = 4.

3.7 Definition. A 4-plat,1 orViergeflechte, is obtained by taking a 4-braid and closing it by adding
four arcs in the manner of Fig. 3.7.

Warning. The ‘plat’ manner of closing a braid (which makes sense for any braid on an even number
of strands) should be contrasted with the closure of a braid (for which see the exercises and which
makes sense for any braid at all).

Cut a 4-plat diagram in the orientation of Fig. 3.7 by a vertical line placed as far to the right as
possible that cuts the diagram transversely in exactly four places. Lifting this back into 3-space, we
have a representation of the 4-plat as the closure of a rational tangle:

3.8 Definition. A tangle in a 3-ball 𝔹3 ⊆ 𝕊3 in the sense of Conway is a collection of disjointly
embedded (piecewise-linear) arcs in 𝔹3, with endpoints in 𝜕𝔹3. The tangle is rational if it consists
of exactly two arcs.

3.9 Proposition (Conway, 1970). There is a bijective correspondence between equivalence classes of
rational tangles (i.e. up to isotopy with 𝜕𝔹3 fixed) and the set ℚ̂ = ℚ ∪ {∞}.

The proof of the proposition as stated will become clear as we continue our discussion; we will
instead prove the analogous theorem for knots, Theorem 3.13 below.

Consider braids which are, instead of lying in ℂ × [0, 1], (as in Definition 3.6 above), lying in
𝕊1 × [0, 1]. We will study this more carefully in the next section; all we need to know is that the
braid group is generated by the two Artin generators shown in Fig. 3.8. Let 𝔟(𝛼, 𝛽) be a 2-bridge knot,
and view it as a 4-braid with four additional arcs; that is, we cut 𝕊3 into two 3-balls 𝐵0 and 𝐵1 and a

1Beware! the correct English is ‘plait’, yet the mathematical term for this general kind of object is (2𝑚-)‘plat’...
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Figure 3.9: The two generators 𝜎1 and 𝜎2 of the spherical braid group on four strands induce homeo-
morphisms on the bridge plane 𝐵0 (left), namely half-twists along the indicated curves. These lift to
Dehn twists on the covering space 𝕋2 (right).

complement [0, 1] × 𝕊2 such that each 𝐵0 and 𝐵1 contains a pair of disjoint arcs and such that the
braid is contained entirely in [0, 1] × 𝕊2. Consider the lens space 𝐿(𝛼, 𝛽) which is the 2-fold cover of
𝕊3 branched along 𝔟(𝛼, 𝛽). Let 𝕋2 be the torus of the Heegard splitting of this lens space which is the
lift of the ball 𝐵0.

3.10 Lemma. With the notation as just described, the two homeomorphisms of 𝐵0 induced by 𝜎1 and
𝜎2 respectively lift to Dehn twists about the curves ̂𝑠1 and ̂𝑠2 of Fig. 3.9. mAk

Hence, considering the action of the Dehn twists on the canonical basis of𝐻1(𝕋2) given by𝑀 and
𝐿 (notation again as above), we have a natural representation of the braid group into PSL(2, ℂ) given
by

𝜎1 ↦ 𝐿 = [1 −1
0 1 ] and 𝜎2 ↦ 𝑅 = [1 0

1 1] .

In fact this is a faithful representation (it is exactly the orientation preserving part of the mapping
class group of the four-punctured sphere).

The Heegard splitting which gives us 𝐿(𝛼, 𝛽) is induced by some homeomorphism ℎ ⟳ 𝕋2. With
respect to some choice of bases for the homology groups of the tori, the induced map ℎ∗ ∶ 𝐻1(𝑇1) →
𝐻1(𝑇2) (𝑇1 and 𝑇2 the two tori which are glued to form the whole 3-manifold) is represented by some
element of SL(2, ℤ),

𝐴 = [𝛽 𝛼′
𝛼 𝛽′] .

The matrix entries are defined modulo multiplication on the right by powers of 𝐿, since these do
not change the isotopy class of the knot. We can therefore replace 𝐴 with a matrix that factors as a
product of 𝐿’s and 𝑅’s ending on the right with a nonzero power of 𝑅:

𝐴 = 𝑅𝑎1𝐿−𝑎2 ⋯𝐿−𝑎𝑚−1𝑅𝑎𝑚 = [ 1 0
𝑎1 1] [

1 𝑎2
0 1 ]⋯[1 𝑎𝑚−1

0 1 ] [ 1 0
𝑎𝑚 1]
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where 𝑎𝑚 ≠ 0. Considering the entries of these matrices we obtain a Euclidean algorithm, in the
sense that we obtain a sequence of equations

(3.11)

𝑟0 = 𝑎1𝑟1 + 𝑟2
𝑟1 = 𝑎2𝑟2 + 𝑟3
⋮ =⋮

𝑟𝑚−1 = 𝑎𝑚𝑟𝑚 + 0, |𝑟𝑚| = 1
where 𝑟0 = 𝛼 and 𝑟1 = 𝛽 from the intermediate steps

𝑅−𝑎𝑖 [ 𝑟𝑖 ∗
𝑟𝑖−1 ∗] = [ 𝑟𝑖 ∗

𝑟𝑖−1 − 𝑎𝑖𝑟𝑖 ∗] ≕ [ 𝑟𝑖 ∗
𝑟𝑖+1 ∗]

𝐿𝑎𝑖+1 [ 𝑟𝑖 ∗
𝑟𝑖+1 ∗] = [𝑟𝑖 − 𝑎𝑖+1𝑟𝑖+1 ∗

𝑟𝑖+1 ∗] ≕ [𝑟𝑖+2 ∗
𝑟𝑖+1 ∗] .

i.e. we unwind the word 𝐴 from left to right by multiplying by appropriate inverses.
Conversely, from any such Euclidean algorithm for 𝛽/𝛼 (i.e. any sequence of integers 𝑎1,… , 𝑎𝑚

and such that there exist integers 𝑟0,… , 𝑟𝑚 with |𝑟𝑚| = 1 and 0 ≤ 𝑟𝑖 < 𝑟𝑖−1 for all 𝑖 such that 𝑟0 = 𝛼
and 𝑟1 = 𝛽 satisfying Eq. (3.11)) we obtain a matrix factorisation

[𝛽 𝛼′
𝛼 𝛽′] =

⎧⎪
⎨⎪
⎩

𝑅𝑎1𝐿−𝑎2 ⋯𝑅𝑎𝑚 [±1 ∗
0 ±1] 𝑚 odd

𝑅𝑎1𝐿−𝑎2 ⋯𝐿𝑎𝑚 [ 0 ±1
±1 ∗ ] 𝑚 even.

In the first case the inducedHeegard splitting is the covering of the knot 𝔟(𝛼, 𝛽) since the final matrix
is the lift of a power of 𝜎1 and hence does not change the knot type. On the other hand when 𝑚 is
even we observe that the final factor can be ‘fixed’ by

(3.12) [0 −1
1 𝑏 ] = 𝑅−𝑏 [0 −1

1 0 ]

and where the final factor corresponds to having to close the plat in a nontrivial way (exercises).
Observing that we have simply given the decomposition of 𝛽/𝛼 as a continued fraction,

𝛽
𝛼 = [𝑎1,… , 𝑎𝑚] ≔

1

𝑎1 +
1

𝑎2 +
1

𝑎3 +
1

⋱ +
1
𝑎𝑚

,

and that continued fraction decompositions of odd length always exist and are unique, we have the
following result:
3.13 Theorem. The knot 𝔟(𝛼, 𝛽) with 0 < 𝛽 < 𝛼 has a presentation as a 4-plat with a defining braid

𝜎𝑎12 𝜎−𝑎21 ⋯𝜎𝑎𝑚2
where each 𝑎𝑖 > 0 and where 𝑚 is odd, such that the 𝑎𝑖 are the quotients of the continued fraction
[𝑎1,… , 𝑎𝑚] = 𝛽/𝛼. Sequences (𝑎1,… , 𝑎𝑚) and (𝑎′1,… , 𝑎′𝑚′) define the same knot iff 𝑚 = 𝑚′ and
𝑎𝑖 = 𝑎′𝑖 or 𝑎𝑖 = 𝑎′𝑚−𝑖 for 1 ≤ 𝑖 ≤ 𝑚. mAk
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Figure 3.10: The 4-plat presentation of the figure eight knot.

(All that remains is to observe that the very final possibility—𝑎𝑖 = 𝑎′𝑚−𝑖—comes from the fact
that we assumed everything was defined with respect to 𝐵0, while 𝐵0 and 𝐵1 are in fact symmetric.)
3.14 Example. We have seen (Fig. 3.3) that the figure eight knot is 𝔟(5, 3), but the method of torsion
diagrams is hugely impractical. (Did anyone actually check that the cited figure is a diagram for the
figure eight knot? The author certainly did not.) We can decompose 3/5 as the continued fraction

3
5 = [1, 1, 2] =

1

1 +
1

1 +
1
2

.

We therefore have a 4-plat presentation as in Fig. 3.10. This is much easier!
We will now construct some representations 𝜋1(𝔟(𝛼, 𝛽)) → PSL(2, ℂ), following Riley [58]. From

the torsion presentations Figs. 3.2 and 3.3 we can read off a presentation of the knot group in the
following form:
3.15 Proposition ([58, Proposition 1]). Fix a 2-bridge link 𝔟(𝛼, 𝛽). For any 𝑎 ≠ 𝛼 write ̄𝑎 for the
reprentative of 𝑎mod 2𝛼 in the interval (−𝛼, 𝛼). For each 𝑖 set 𝜀𝑖 = − sign(𝑖𝛽). Define a word𝑊 𝛽/𝛼 in
the symbols 𝑋 and 𝑌 by

𝑊 = 𝑊𝛽/𝛼 = 𝑋𝜀1𝑌 𝜀2 ⋯(𝑋 or 𝑌 depending on 𝛼)𝜀𝛼−1 ,

so𝑊 is a word of length 𝛼 − 1. Then, if 𝛼 is odd (so the link is a knot) we have

𝜋1(𝔟(𝛼, 𝛽)) ≃ ⟨𝑋, 𝑌 ∶ 𝑊𝑋 = 𝑌𝑊⟩;

if 𝛼 is even (so the link has two components) then

𝜋1(𝔟(𝛼, 𝛽)) ≃ ⟨𝑋, 𝑌 ∶ 𝑊𝑌 = 𝑌𝑊⟩.

Sketch of the proof. Let 𝑘 = 𝔟(𝛼, 𝛽) and choose a torsion diagram for it. Take the two intervals 𝐼1 and
𝐼2 to be always overcrossings, and let 𝑋 and 𝑌 be the corresponding Wirtinger generators. Reduce
the Wirtinger presentation to leave only these generators. mAk
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3.16 Definition. The relator of length 2𝛼,

𝑊 𝛽/𝛼 ≔ 𝑊𝛽/𝛼𝐴𝑊
−1
𝛽/𝛼𝑌−1,

where 𝐴 = 𝑋 if 𝛼 is odd and 𝐴 = 𝑌 if 𝛼 is even is called the 𝛽/𝛼-Farey word [22]. We also extend
this definition to the case 𝛽 is even (see the exercises) by taking the (𝛼 − 𝛽)/𝛼 Riley word to be the
same but with 𝑦 ↔ 𝑌 .

3.17 Example. The 3/5 Riley word is 𝑋𝑌−1𝑋−1𝑌 . The 3/5 Farey word is

𝑋𝑌−1𝑋−1𝑌𝑋𝑌−1𝑋𝑌𝑋−1𝑌−1.

3.18 Theorem ([58, Theorem 2]). Let 𝑘 = 𝔟(𝛼, 𝛽) and consider the presentation for 𝜋1(𝑘) of Propo-
sition 3.15. Let us define a family of functions 𝜌 = 𝜌𝜇 ∶ {𝑋, 𝑌,𝑊} → PSL(2, ℂ) (indexed on 𝜇 ∈ ℂ)
by

𝜌(𝑋) = [1 1
0 1] and 𝜌(𝑌) = [1 0

𝜇 1] .

and
𝜌(𝑊) = 𝜌(𝑋)𝜀1𝜌(𝑌)𝜀2 ⋯𝜌(𝑋)𝜀𝛼−2𝜌(𝑌)𝜀𝛼−1 .

Define a polynomial
Λ𝛽/𝛼(𝜇) ≔ 𝜌(𝑊)11(𝜇);

this is the Riley polynomial. Then Λ is of the form

Λ𝛽/𝛼(𝜇) = 1 + 𝑐1𝜇 + 𝑐2𝜇2 +⋯+ 𝑐𝜆−1𝜇𝜆−1 + (−1)𝜆𝜇𝜆

where 𝜆 = (𝛼 − 1)/2, and a necessary and sufficient condition on 𝜇 ∈ ℂ for 𝜌 to extend to a homomor-
phism 𝜌 ∶ 𝜋1(𝑘) → PSL(2, ℂ) is that 𝜌(𝑊)11 = 0. mAk

We consider our favourite example.

3.19Proposition (Riley, 1975 [56, 55, 13]). The figure eight knot groupadmits a faithful representation
⟨𝑋, 𝑌 ∶ 𝑋𝑦𝑥𝑌𝑋𝑦𝑋𝑌𝑥𝑌 (where 𝑥 = 𝑋−1 and 𝑦 = 𝑌−1) into PSL(2, ℂ) given by

𝑋 ↦ [1 1
0 1] and 𝑌 ↦ [ 1 0

−𝜔 1] .

where 𝜔 = exp(2𝜋𝑖/3). In fact if Γ−𝜔 is the group generated by this pair of matrices, then the quotient
ℍ3/Γ−𝜔 has finite volume and hence by Mostow rigidity it is the figure eight complement. (Riley’s cited
paper gives an alternative proof that this is the figure eight knot complement.) mAk

With some effort, Riley produced the diagram of Fig. 3.11, showing all 𝜇 such that the group

Γ𝜇 ≔ ⟨[1 1
0 1] , [

1 0
𝜇 1]⟩

is a two-bridge link. Also shown on this diagram are various related groups, calledHeckoid groups,
as well as the edge of the so-called Riley slice (the top-right region bounded by the diagonal fractal
curve) of four-times punctured sphere groups. See [21] for a detailed account aimed at graduate
students.
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Figure 3.11: Riley’s plot of two-bridge link groups in the (+,+)-quadrant of ℂ, reproduced from the
monograph [4, p. VIII].
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3.20 Exercises. 1. What does 𝛽 determine in a torsion diagram? Hint: start at 0 and walk along
the curve 𝑢 according to its orientation. Where do you end up? Hence 𝛽 is not the crossing
number as in ‘number of crossings’, but in terms of ‘number of the crossing’. The exercise is to
check that this is actually what the homology number is measuring.

2. Show that the (𝛼, 𝛽) torsion diagram with 𝛽 even (so 𝛼 is odd and the orientation of 𝐼2 is re-
versed) is a diagram of the (𝛼 − 𝛽)/𝛼 knot. Hence if the assumption ‘𝛽 odd’ is deleted then
Theorem 3.5 should be modified to read .... and 𝛽±1 = ±𝛽′... in both cases. Hint: rotate 𝐼2 by
an isotopy ofℝ2. The corresponding presentation is now on𝑋 and 𝑦−1 so to obtain the (𝛼−𝛽)/𝛼
Riley word from the 𝛽/𝛼 one swap 𝑌 and 𝑦; instead of 𝑉𝑋 = 𝑌𝑉 we also have 𝑉𝑋 = 𝑦𝑉 so the
new Farey word is 𝑉𝑥𝑣𝑌 up to inverses.
(The point here is that the 𝛽/𝛼 and (𝛼−𝛽)/𝛼 torsion diagrams correspond to different 2-bridge
presentations of the same knot. The knot groups are the same, but you are picking a different
presentation and a different unknotting tunnel to ‘expand’ to get a Riley group. There are six
unknotting tunnels to a 2-bridge knot [43] and two unknotting tunnels to a hyperbolic 2-bridge
link [1].)

3. Classify the 2-bridge links with 𝛼 ∈ {0, 1}. Draw the corresponding 4-plats.

4. Draw the 3/4 torsion diagram and write down the corresponding word.

5. Give the rational number corresponding to (a) the trefoil knot, (b) the knots of Fig. 3.7, (c) the
stevedore’s knot, Fig. 1.20. Compute their Farey words.

6. Verify that the 5/7 and the 3/7 knots are the same. What are the corresponding Riley words?
Conjecture a rule relating the 𝑝/𝑞 Riley word with the 𝑝−1/𝑞 Riley word (inverses taken mod
2𝑞).

7. Prove Proposition 3.15 formally. Hint: in the case of a 2-component link the Wirtinger pre-
sentation will give you two relations. These should correspond to the same relator, the Farey
word.

8. On lens spaces, Construction 3.2.

(a) 𝜋1(𝐿(𝑝, 𝑞)) = ℤ/𝑝ℤ.
(b) A homeomorphism ℎ ∶ 𝜕𝑈 → 𝜕𝑈 extends to an autohomeomorphism of 𝑈 iff ℎ∗(𝛽) =

[𝛽]±1. (Here 𝛽 is one of the loops in the standard basis, same notation as above.)
(c) 𝐿(1, 0) = 𝕊3 and 𝐿(0, 1) = 𝕊2 × 𝕊1. In fact, 𝐿(1, 𝑞) = 𝕊3 for all 𝑞.
(d) 𝐿(𝑝, 𝑞) = 𝐿(𝑝, 𝑞′) if and only if 𝑞 ≡ ±𝑞′ (mod 𝑝) or 𝑞 ≡ ±𝑞′−1 (mod 𝑝). Hint:- under

these conditions there is a homeomorphism ℎ ∶ 𝐿𝑝,𝑞 → 𝐿𝑝,𝑞′ which preserves the two
handebodies in the first case and swaps them in the second case.

(e) Computer project. Draw pictures of lens spaces [18].

9. Use (4) of the previous exercise to prove (2) of Theorem 3.5. Then prove (1) of Theorem 3.5.

10. If an 𝑛-braid is chosen with permutation 𝜋, as in the definition, then there exists a link with 𝜇
components obtained by identifying the 𝑃𝑖 with𝑄𝜋(𝑖). Give a formal definition of this link (the
closure of the braid). Prove (Alexander, 1928) that every link can be obtained as the closure
of some braid [15, §2D].

11. Prove Proposition 3.9 from Theorem 3.13.
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12. (Bankwitz-Schumann) All 2-bridge knots are alternating.

13. All 2-bridge knots are amphichiral.

14. Show that the group of Proposition 3.19 is isomorphic to Thurston’s group from Eq. (2.6).

15. Computer project. Plot⋃𝑟∈ℚ Λ−1
𝑟 (0).

3.2 Braids in general and mapping classes
Thanks to Josh Lehman for giving this guest lecture.

Last week we defined the braid group on 𝑛 strands, 𝐵𝑛 (Definition 3.6). Wewill study this group from
the perspective of configuration spaces this week, following selected parts of Chapters 4 and 9 of [24].
Fix a surface 𝑆, and let Conf(𝑆, 𝑛) be the configuration space of 𝑛 distinct ordered points in 𝑆,

Conf(𝑆, 𝑛) ≔ 𝑆×𝑛 ⧵ Δ(𝑆×𝑛)

where Δ(𝑆×𝑛) is the big diagonal, the set of all (𝑥1,… , 𝑥𝑛) such that for some 𝑖 ≠ 𝑗, 𝑥𝑖 = 𝑥𝑗 .
The symmetric group 𝑆𝑛 acts on Conf(𝑆, 𝑛) by permuting the labels of the 𝑥𝑖: if 𝜋 ∈ 𝑆𝑛 define 𝜋 ⋅
(𝑥1,… , 𝑥𝑛) ≔ (𝑥𝜋−1(1),… , 𝑥𝜋−1(𝑛)). This action is free, since

(𝑥𝜋−1(1),… , 𝑥𝜋−1(𝑛)) = (𝑥1,… , 𝑥𝑛) ⟺ 𝑥𝜋−1(𝑖) = 𝑥𝑖 for all 𝑖

and this is only the case if 𝜋−1(𝑖) = 𝑖 for all 𝑖 since the big diagonal is gone. Thus the quotient
Conf(𝑆, 𝑛)/𝑆𝑛 is a manifold, called the unordered configuration space UConf(𝑆, 𝑛).

Almost immediately, we see that 𝐵𝑛 = 𝜋1(UConf(ℂ, 𝑛)): a loop in UConf(ℂ, 𝑛) is exactly a map
𝛾 ∶ [0, 1] → UConf(ℂ, 𝑛) such that 𝛾(0) = 𝛾(1) and such that for each 𝑡 we have 𝑛maps 𝛾1,… , 𝛾𝑛 ∶
[0, 1] → ℂ𝑛 ⧵ Δ(ℂ, 𝑛) where 𝛾𝑖(0) = 𝑥𝑖 and 𝛾𝑖(1) is some 𝑥𝑗 (the map 𝑖 ↦ 𝑗 defined in this way is the
permutation of the braid.)

TheArtin generators of 𝐵𝑛 are the elements 𝜎𝑖 (1 ≤ 𝑖 < 𝑛) consisting of a crossing between the
𝑖 and (𝑖 +1)th strands, with the (𝑖 +1)th strand passing in front. These correspond to the elements of
𝜋1(UConf(ℂ, 𝑛)) which consist of the 𝑖th and (𝑖 + 1)th elements swapping by moving in a clockwise
way, while the other elements remain fixed. In fact, these generators fit into a finite presentation of
𝐵𝑛:

(3.21)
𝐵𝑛 = ⟨𝜎1,…𝜎𝑛−1 ∶ ∀|𝑖−𝑗|>1𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖,

∀𝑖𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1⟩.

You are asked to prove this as an exercise.
Recall next that themapping class groupMod(𝑆) of a surface 𝑆 with 𝑛marked points 𝑥1,… , 𝑥𝑛

and 𝑏 boundary components (deleted discs or punctures) 𝛽1,… , 𝛽𝑏 is the group of orientation pre-
serving homeomorphisms 𝑆 → 𝑆 which (i) pointwise fix each of the 𝛽𝑗 and (ii) permute the 𝑥𝑖
among themselves, modulo isotopies fixing all the 𝑥𝑖 and all the 𝛽𝑗 pointwise. More compactly,
Mod(𝑆) = 𝜋0(Homeo+(𝐷𝑛, 𝜕𝐷𝑛)). We have already used implicitly that Mod(𝕋2) = SL(2, ℤ). An-
other important example is:

3.22 Lemma (Alexander lemma). The mapping class group of the disc 𝔹2 = {𝑥 ∈ ℝ2 ∶ |𝑥| ≤ 1},
Mod(𝔹2), is trivial.
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Proof. Let 𝜙 ∶ 𝔹2 → 𝔹2 be a homeomorphism which fixes 𝜕𝔹2 pointwise. Define an isotopy from 𝜙
to the identity by

Φ(𝑥, 𝑡) = {(1 − 𝑡)𝜙 (𝑥/(1 − 𝑡)) 0 ≤ |𝑥| < 1 − 𝑡
𝑥 1 − 𝑡 ≤ |𝑥| ≤ 1

where 0 ≤ 𝑡 < 1 and set 𝐹(𝑥, 1) = 𝑥 for all 𝑥. Hence 𝜙 is trivial in Mod(𝔹2). mAk

The proof of this lemma is called the Alexander trick.
Let 𝐷𝑛 be a closed 2-disc 𝔹2 with 𝑛marked points. We claim that

(3.23) Mod(𝐷𝑛) ≃ 𝐵𝑛.

and we will spend a bit of time to get the machinery to prove this. We will deduce Eq. (3.23) from the
generalised Birman exact sequence, Theorem 3.25, but in order to prove this theorem we will need
the ordinary Birman exact sequence, Theorem 3.24. So we will do this first.

Let 𝑆 be any surface, with no marked points. Denote by (𝑆, 𝑥) the surface obtained by marking
𝑆 with some point 𝑥 in its interior. Then there is a natural map Forget ∶ Mod(𝑆, 𝑥) → Mod(𝑆)
given by forgetting the data of 𝑥, and this map is surjective since every homeomorphism of 𝑆may be
modified by an isotopy so as to fix 𝑥. Alternatively one could look at Forget as being induced by the
map 𝑆⧵{𝑥} → 𝑆, sinceMod(𝑆, 𝑥) is naturally isomorphic to the subgroup of Mod(𝑆 ⧵ {𝑥}) of mapping
classes stabilising 𝑆, and there is a natural map Mod(𝑆 ⧵ {𝑥}) → 𝑆 given by filling in 𝑥.

We wish to find ker Forget. An element of the kernel (up to isotopy) is a nontrivial homeomor-
phism 𝜙 of 𝑆, fixing 𝑥, which is trivial up to isotopies that do not fix 𝑥: more precisely, there is an
isotopy Φ ∶ [0, 1] × 𝑆 → 𝑆 such that Φ(0, 𝑠) = 𝜙(𝑠) for all 𝑠 ∈ 𝑆 and Φ(1, 𝑠) = 𝑠 for all 𝑠. Such an iso-
topy must induce an isotopy of 𝑥 along a loop 𝛼 in 𝑆, defined by 𝛼(𝑡) = Φ(𝑡, 𝑥): clearly 𝛼(0) = 𝑥 and
𝛼(1) = 𝑥, anyway. The idea now is that there is a bijection between elements of the kernel of Forget
and such isotopies: i.e. every such isotopy extends to an element of ker Forget. In other words, we
will describe a function Push that takes a loop 𝛼 based at 𝑥 and produces an element 𝜙 ∈ |Forget⟩
that ‘pushes’ 𝑥 along the loop. That such a map is well-defined is not very clear from this vague
description, and it is the main content of the following theorem.

3.24 Theorem (Birman exact sequence). Let 𝑆 be a hyperbolic surface (i.e. 𝜒(𝑆) < 0), possibly with
punctures and deleted discs. Let 𝑥 be a point in the interior of 𝑆 and denote by (𝑆, 𝑥) the surface 𝑆 with
a marking at 𝑥. Then there exists a well-defined map Push ∶ 𝜋1(𝑆, 𝑥) → Mod(𝑆, 𝑥) such that Push(𝛼)
restricts to the final state of an isotopy of 𝑥 ∈ 𝑆 around 𝛼 and which makes the sequence

1 𝜋1(𝑆, 𝑥) Mod(𝑆, 𝑥) Mod(𝑆) 1Push Forget

exact.

Proof. Consider the system of maps

Homeo+(𝑆, 𝑥) Homeo+(𝑆)

𝑆
ℰ

where Homeo+(𝑆, 𝑥) → Homeo+(𝑆) is the natural inclusion and the map ℰ is evaluation at 𝑥. We
now show that this is a fibre bundle over 𝑆 with fibres homeomorphic to Homeo+(𝑆, 𝑥): i.e. that
Homeo+(𝑆) is locally homeomorphic to Homeo+(𝑆, 𝑥) × 𝑈 for some open 𝑈 ⊆ 𝑆.
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Let 𝑈 be an open neighbourhood of 𝑥 in 𝑆 which is homeomorphic to a disc. For 𝑢 ∈ 𝑈 we can
choose 𝜙𝑢 ∈ Homeo+(𝑈) such that 𝜙𝑢(𝑥) = 𝑢 and such that the family {𝜙𝑢}𝑢∈𝑈 is continuous in
𝑢. Define a map Homeo+(𝑆, 𝑥) × 𝑈 → ℰ−1(𝑈) by (𝜓, 𝑢) ↦ 𝜙𝑢 ∘ 𝜓: evaluation of 𝜙𝑢 ∘ 𝜓 at 𝑥 gives
𝜙𝑢(𝜓(𝑥)) = 𝜙𝑢(𝑥) = 𝑢 ∈ 𝑈 , so the image is as claimed. This map is continuous by construction and
has continuous inverse ℰ−1(𝑈) → Homeo+(𝑆, 𝑥)×𝑈 given by 𝜓 ↦ (𝜙−1𝜓(𝑥) ∘𝜓, 𝜓(𝑥)). This shows that
small neighbourhoods 𝑈 ∋ 𝑥 are locally homeomorphic to Homeo+(𝑆, 𝑥) × 𝑈 . Let 𝑦 be an arbitrary
point of 𝑆, and let Ψ ∶ 𝑆 → 𝑆 be a homeomorphism with Ψ(𝑥) = 𝑦. Then ℰ−1(𝑈) → ℰ−1(Ψ(𝑥))
defined by 𝜓 ↦ Ψ ∘ 𝜓 is a homeomorphism.

Given that ℰ is a fibre bundle, we can write down the long exact sequence of homology [12, The-
orem VII.6.7],

⋯ 𝜋𝑛(Homeo+(𝑆)) 𝜋𝑛(𝑆)

𝜋𝑛−1(Homeo+(𝑆, 𝑥)) 𝜋𝑛−1(Homeo+(𝑆)) 𝜋𝑛−1(𝑆)

𝜋1(Homeo+(𝑆, 𝑥)) 𝜋1(Homeo+(𝑆)) 𝜋1(𝑆)

𝜋0(Homeo+(𝑆, 𝑥)) 𝜋0(Homeo+(𝑆)) 𝜋0(𝑆) = 1.

By Hanstrom’s theorem [24, Theorem 1.14], 𝜋1(Homeo+(𝑆)) = 1 (it is here that hyperbolicity of 𝑆 is
used). Thus the long exact sequence reduces to the short exact sequence

1 𝜋1(𝑆) 𝜋0(Homeo+(𝑆, 𝑥)) 𝜋0(Homeo+(𝑆)) 1

and the maps in this short exact sequence are exactly Push and Forget. mAk

One can now use the same argument to prove (exercise):

3.25 Theorem (Generalised Birman exact sequence). Let 𝑆 be a surface with possible boundary com-
ponents and no marked points, and let {𝑥1,… , 𝑥𝑛} be 𝑛 distinct points on the interior of 𝑆. Write
Mod(𝑆, {𝑥𝑖}) for the mapping class group of 𝑆 equipped with the points 𝑥𝑖 as marked points. Suppose
also that 𝜒(𝑆) < 0. Then the following sequence is exact:-

1 𝜋1(UConf(𝑆, 𝑛)) Mod(𝑆, {𝑥𝑖}) Mod(𝑆) 1.Push Forget
mAk

The proof of Eq. (3.23) is now straightforward:

3.26 Corollary. Mod(𝐷𝑛) ≃ 𝜋1(UConf(ℂ, 𝑛)) ≃ 𝔹𝑛.

Proof. Take 𝑆 = 𝔹2 in Theorem 3.25. We get an exact sequence

1 𝜋1(UConf(𝔹2, 𝑛)) Mod(𝐷𝑛) Mod(𝔹2) 1.Push Forget

We have Mod(𝔹2) = 1 by the Alexander trick, Lemma 3.22. Note also that 𝜋1(UConf(𝔹2, 𝑛)) ≃
𝜋1(UConf(ℂ, 𝑛)) is just 𝐵𝑛. Thus we have an exact sequence 1 → Mod(𝐷𝑛) → 𝐵𝑛 → 1. mAk
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Figure 3.12: Two involutions of the four-times punctured sphere.

In the previous section, we used some properties of spherical braid groups: braids in 𝕊2 × [0, 1]
not ℂ × [0, 1], or more formally 𝜋1(UConf(𝕊2, 𝑛)). In this case, 𝜋1(Homeo+(𝑆, 𝜕𝑆)) is non-trivial
(the sphere is not hyperbolic!)—in fact, Homeo+(𝑆) has the same homotopy type as SO(3) and hence
𝜋1(Homeo+(𝑆)) ≃ 𝜋1(SO(3)) ≃ ℤ/2ℤ (this was the belt trick, Trick 2.12). Substituting into the long
exact sequence of Theorem 3.25 and using that Mod(𝕊2) = 1 gives us the short exact sequence

(3.27) 1 → ℤ/2ℤ → 𝜋1(UConf(𝕊2, 𝑛)) → Mod(𝕊2 ⧵ {𝑥1,… , 𝑥𝑛}) → 1

where 𝑥1,… , 𝑥𝑛 are distinct punctures on 𝕊2. The nontrivial element of ℤ/2ℤ is mapped to a 2𝜋
rotation of the points in the configuration space. Call this loop 𝛼; then the image of 𝛼 in Mod(𝕊2 ⧵
{𝑥1,… , 𝑥𝑛}) is trivial (it is a Dehn twist around the simple loop surrounding all 𝑛 punctures). That
𝛼2 = 1 in the configuration space is exactly the belt trick.

3.28 Exercises. Many exercises courtesy of Josh Lehman.

1. Write down the relevant fibre bundle and prove Theorem 3.25 using the same argument as
Theorem 3.24 [24, Theorem 9.1].

2. Supply a formal proof that 𝜋1(UConf(𝔹2, 𝑛)) ≃ 𝜋1(UConf(ℂ, 𝑛)) (this was used in the proof of
Corollary 3.26).

3. Show that the (𝑝, 𝑞) torus knot is the closure of the braid (𝜎1,… , 𝜎𝑝−1)𝑞 by embedding the latter
braid on the torus.

4. (The four-times punctured sphere.) Let 𝑆0,4 be the topological four-times punctured sphere.

(a) Show that Mod(𝕋2) = SL(2, ℤ). [Hint: write 𝕋2 as the quotient of ℂ by some lattice Λ,
and show that SL(2, ℤ) is themaximal group which permutes all the different lattices that
produce the same complex structure—see [33, §1.2] for details and pictures, and compare
with Example 2.14.]

(b) Observe that §0,4 and 𝕋2 are both produced by quotients of a quadrilateral in ℂ and con-
clude that there is an induced surjective homomorphism Mod(𝑆0,4) → SL(2, ℤ) given
by topological lifting; show that the kernel of this homomorphism is generated by two
rotations by 𝜋 of 𝑆0,4 (Fig. 3.12).

(c) Conclude that Mod(𝑆0,4) = SL(2, ℤ) ⋊ (ℤ/2ℤ)2.
(d) Describe the maps in the spherical Birman exact sequence (Eq. (3.27)), 1 → ℤ/2ℤ →

𝜋1(UConf(𝕊2, 4)) → Mod(𝑆0,4) → 1.
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Figure 3.13: Two curves on the four-times punctured sphere.

(e) Recall that SL(2, ℤ) is generated by 𝑅 = (1, 1 ∣ 0, 1) and 𝑄 = (0, −1 ∣ 1, 0). Write 𝐿 =
(1, 0 ∣ 1, 0). Show that SL(2, ℤ) = ⟨𝑅, 𝐿⟩ ⋊ ⟨𝑄⟩.

(f) Let Γ1 = ⟨𝐿, 𝑅⟩. Describe the action of Γ1 as a subset of the mapping class group on the
curves 𝛾0 and 𝛾∞ of Fig. 3.13

(g) Compare with the discussion of the previous lecture on 2-bridge knots and links.

5. Prove that Eq. (3.21) is a presentation of the braid group.

6. Recall that 𝑆11 denotes the torus with a single boundary component. Prove that Mod(𝑆11) ≃ 𝐵3.
(Hint: Take the quotient of 𝑆11 by the hyperelliptic involution).

7. (The Birman exact sequence, revisited) Here we outline an alternative proof of the Birman
exact sequence, using only hyperbolic geometry and Alexander’s method, avoiding appealing
to the long exact sequence in homotopy and deep results about the contractibility of spaces of
homeomorphisms of surfaces.
Let 𝑆 be a hyperbolic surface. Fix a point 𝑥 in the interior of 𝑆.

(a) Prove that 𝜋1(𝑆, 𝑥) has trivial center (Hint: Use the representation 𝜋1(𝑆, 𝑥) → Isom+(ℍ2)
and the classification of isometries of ℍ2).

(b) Recall that if 𝐺 is a group with 𝑍(𝐺) = 1, then, we have a short exact sequence,

1 → 𝐺 → Aut(𝐺) → Out(𝐺) → 1.

(c) Show that the canonical homomorphism Mod(𝑆, 𝑥) → Aut(𝜋1(𝑆, 𝑥)) is injective. (Hint:
use Alexander’s method [24, p. 59] applied to a suitable collection of curves based at the
point 𝑥).

(d) Show that there is a natural, well-defined injection Mod(𝑆) → Out(𝜋1(𝑆, 𝑥)) (use the fact
that 𝑆 has contractible universal cover to see injectivity). What about surjectivity? See the
Dehn–Nielsen–Baer Theorem [24, Chapter 8].

(e) Consider the diagram

Mod(𝑆, 𝑥) Mod(𝑆)

1 𝜋1(𝑆, 𝑥) Aut(𝜋1(𝑆, 𝑥)) Out(𝜋1(𝑆, 𝑥)) 1

Forget

Show that the image of 𝜋1(𝑆, 𝑥) is contained in the image of Mod(𝑆, 𝑥) as follows: Let 𝛼
be a simple loop in 𝑆, based at 𝑥. Push 𝛼 to the left a bit, to get 𝛼+, and to the right a bit
to get 𝛼−. Show that the composition of Dehn twists 𝑇𝛼+𝑇−1𝛼− acts as conjugation by 𝛼 on
𝜋1(𝑆, 𝑥). Conclude that the image of 𝜋1(𝑆, 𝑥) lies within the kernel of Forget.
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(f) Verify that the map 𝜋1(𝑆, 𝑥) → Mod(𝑆, 𝑥) is actually the push map, and complete the
statement.

8. This exercise comes from a paper of Farb [23]. It provides a geometric explanation for the
existence of an exceptional surjection.

(a) Let 𝑛 > 𝑚 > 2, and denote by Σ𝑛 the symmetric group on 𝑛 letters. Show that there
exists an epimorphism Σ𝑛 → Σ𝑚 if and only if (𝑛,𝑚) = (4, 3). (Hint: If 𝑛 ≥ 5, then 𝐴𝑛 is
simple).

(b) Find a lift of the homomorphism Σ4 → Σ3 obtained above to 𝐵4 → 𝐵3, where 𝐵𝑛 denotes
the braid group on 𝑛 strands.

(c) Recall that 𝐵𝑛 = 𝜋1(Poly𝑛(ℂ)) = Mod(𝐷𝑛), where Poly𝑛(ℂ) denotes the space of monic,
degree 𝑛, square free polynomials over ℂ. There is a map Fer ∶ Poly4(ℂ) → Poly3(ℂ),
called the resolving quartic map, induced via the following: send a configuration of 4
distinct points (𝑞1, 𝑞2, 𝑞3, 𝑞4) to 3 distinct points (𝑧1, 𝑧2, 𝑧3) where,

𝑧1 = (𝑞1 − 𝑞2 − 𝑞3 + 𝑞4)2/4
𝑧2 = (𝑞1 − 𝑞2 + 𝑞3 − 𝑞4)2/4
𝑧3 = (𝑞1 + 𝑞2 − 𝑞3 − 𝑞4)2/4

Investigate the induced map Fer∗ ∶ 𝐵4 → 𝐵3.

9. (Capping and realizing 𝐵3 as homeomorphisms) This exercise involves the braid group on
3 strands, and in particular, some consequences of viewing it as the mapping class group
Mod(𝐷3). Is there a section to the projection Homeo+(𝐷3, 𝜕𝐷) → 𝐵3? That is, can you re-
alise the braid group on 3 strands as a group of homeomorphisms? The answer is yes, proven
by Thurston (https://mathoverflow.net/q/55555).
The following discussionmight be helpful regarding the above. We can cap the boundary of𝐷3
with a disk. If this disk is marked, then one has the following capping exact sequence [24,
p. 82]:

1 → ℤ → 𝐵3 → Mod(𝑆0,4) → 1
The homomorphism Mod(𝐷3) → Mod(𝑆0,4) is simply given by extending as the identity, and
the kernel is a Dehn twist about the boundary of𝐷3 (which, as you should check, generates the
center of 𝐵3). We show in another exercise that Mod(𝑆0,4) ≃ PSL(2, ℤ) ⋊ (ℤ2 × ℤ2).
Switching gears a bit, suppose we cap the boundary component of 𝐷3 with just a disk (no
marked point). It can be shown (see for example [24, p. 104]) that one has an exact sequence,

⋯→ 𝜋1(Diff
+(𝑆2)) → 𝜋1(𝑈𝑇𝑆2) → 𝐵3 → Mod(𝑆0,3) → 1

where𝑈𝑇𝑆2 is the unit tangent bundle of 𝑆2. Recall also that Diff+(𝑆2) has the homotopy type
of SO(3). Now, the unit tangent bundle of the 2-sphere𝑈𝑇𝑆2 can be identified withℝℙ3, so, in
particular, 𝜋1(𝑈𝑇𝑆2) = ℤ/2ℤ. One can try and place this exact sequence into the context of the
Birman exact sequence for the 3-stranded spherical braid group and obtain a similar picture to
the four-punctured sphere case.

https://mathoverflow.net/q/55555


Chapter 4

Knot polynomials

In the final week, wewill study polynomial invariants. These arise from representation theory: in the
case of the classical invariant, the Alexander polynomial, the representations to consider are those
of the knot group onto the cyclic group, and the geometric interpretation is in terms of homology
groups of infinite cyclic covers of the knot (compare with the work of Riley which we studied earlier
in Section 1.2). In the case of the quantum invariants that arose following the work of V.F.R. Jones
in the 1980s, it is the restriction of a representation from a tensor category to the category of vector
spaces, restricted to the automorphism groups of the unit object.

4.1 The Alexander–Conway polynomial
Thanks to Lavender Marshall for giving this guest lecture.

We have all seen physicists get very excited about minimal surfaces (Fig. 4.1). A minimal surface
spanning a knot is called a Seifert surface. More precisely:-

4.1 Definition. A Seifert surface for a link 𝐿 ⊆ 𝕊3 is an embedded orientable surface 𝑆 in 𝕊3 such
that 𝜕𝑆 = 𝐿. The genus of a link is the minimal genus of a Seifert surface for the link.

4.2 Example. See three views of a Seifert surface for the figure eight knot drawn by Polycut in
Fig. 4.2.

Remark. One cannot compute the genus easily. The algorithm below does not usually give a surface
of minimal genus. The knot genus is additive with respect to the operation ⊕ (Construction 1.10)
and is NP-complete [2]. One can also try to visualise the genus; see the interesting discussion in [73].

4.3 Algorithm. Let𝐾 be an oriented knot and let 𝛿 be an oriented diagram of𝐾. (It will be clear that
one can work with each component of a link ‘separately’.) Then the following algorithm produces a
Seifert surface for 𝐾 [40, Proposition 5.8].

1. For every vertex of 𝛿, cut and deform the two intersecting arcs into two disjoint arcs while
respecting orientation. The result will be a collection of disjoint topological circles in the plane
of 𝛿 called the Seifert circles.

2. Colour the resulting partition of the plane with two colours such that the two sides of each
circle are different colours, and declare one of the colours to mean ‘there is part of a surface

63
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Figure 4.1: Minimal surfaces spanned by soap films [34].

Figure 4.2: Three views of a Seifert surface for the figure eight knot, using the ‘soapfilm’ feature of
Polycut [11].
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Figure 4.3: A Seifert surface for the figure eight knot following Seifert’s algorithm.

Figure 4.4: A Seifert surface for the trefoil knot following Seifert’s algorithm.

here’.1

3. At each vertex of the diagram glue in a twisted band whose edges agree with the crossing of the
knot at that vertex.

Historical remark. Proof of existence of Seifert surfaceswas given originally by Frankl and Pontryagin
in 1930 [28] and the above algorithm was given by Seifert in 1934 [62].

4.4 Example. See the figure eight knot (Fig. 4.3) and the trefoil knot (Fig. 4.4).

We begin by following the discussion of Chapter 6 of [45], but an alternative (slower) presentation
is given in Chapter VII of [19].

Let𝑀 be a module over a (commutative with unity) ring 𝑅. An 𝑅-module is free if there exists a
subset 𝐵 called a basis such that every element of the module admits a unique expression as an 𝑅-
linear combination of elements of 𝐵. A finite presentation for an 𝑅-module𝑀 is an exact sequence
𝐹 → 𝐸 → 𝑀 → 0 where 𝐹 and 𝐸 are free 𝑅-modules with finite bases Suppose that the bases for 𝐹
and 𝐸 are respectively (𝑓1,… , 𝑓𝑚) and (𝑒1,… , 𝑒𝑛), and let 𝐴 be the matrix with respect to these bases
for the map 𝐹 → 𝐸; we say that 𝐴 is a presentationmatrix for𝑀. The images of (𝑒𝑖) in𝑀 generate
𝑀, and the images of (𝑓𝑖) in 𝐸 give linear relations between these generators; since these relations
are encoded in 𝐴 we may simply speak of the presentation matrix in leiu of carrying 𝐹 around.

1Kauffman simply says ‘glue in discs’, but it is allowed for the circles to be nested as in Fig. 4.3 below, in which case the
things being glued are not actually discs.



66 CHAPTER 4. KNOT POLYNOMIALS

Let𝑀 be a finitely presented 𝑅-module with𝑚× 𝑛 presentation matrix 𝐴. The 𝑟th elementary
ideal of𝑀, ℰ𝑟, is the ideal of 𝑅 generated by all the (𝑚 − 𝑟 + 1) × (𝑚 − 𝑟 + 1) ideals of 𝐴. One can
show that ℰ𝑟 is independent of the choice of presentation matrix. Since a finite abelian group 𝐺 is a
ℤ-module, and if it is finitely generated then it has a square presentation matrix, we have ℰ1 in this
case being the determinant of the presentation matrix which is exactly the order of the group (proof:
320).

The special case of the latter which we are interested in is the integer homology group of an
oriented compact connected surface 𝑆 of genus 𝑔 with 𝑛 boundary components. Algebraic topology
tells us that this homology is

𝐻1(𝑆, ℤ) = ⊕2𝑔+𝑛−1ℤ
where the summed cyclic groups are generated by the [𝛼𝑖] depicted in the figure.

4.5 Proposition. Suppose that 𝑆 ⊆ 𝕊3 is a piecewise linear connected, compact, orientable surface
with non-empty boundary. Then the homology groups 𝐻1(𝕊3 ⧵ 𝑆, ℤ) and 𝐻1(𝑆, ℤ) are isomorphic and
there is a unique nonsingular bilinear form

𝛽 ∶ 𝐻1(𝕊3 ⧵ 𝑆, ℤ) × 𝐻1(𝑆, ℤ) → ℤ

such that 𝛽([𝑐], [𝑑]) = lk(𝑐, 𝑑) for any oriented simple closed curves 𝑐 and 𝑑 in 𝕊3 ⧵𝑆 and 𝑆 respectively.
mAk

Restrict now to the case that 𝑆 is Seifert surface for an oriented link 𝐿. Delete a collar neighbour-
hood of 𝐿 = 𝜕𝑆 from 𝑆—i.e. let 𝑋 be 𝕊3 ⧵ 𝑁 for 𝑁 a regular neighbourhood of 𝐿 and take 𝑆 ∩ 𝑋 .
This new surface (which we will also call 𝑆) admits a regular neighbourhood 𝑆 × [−1, 1], where the
orientation is chosen so that medians to 𝐿 enter the neighbourhood across 𝑆 × −1 and leave across
𝑆 × 1. Let 𝑖± ∶ 𝑆 → 𝕊3 ⧵ 𝑆 denote the two embeddings defined by 𝑥 ↦ 𝑥 ×±1 and if 𝑐 is an oriented
simple closed curve in 𝑆 wrote 𝑐± for 𝑖±𝑐 respectively. This identification of curves on 𝑆 with nearby
curves in 𝕊3 ⧵ 𝑆 induces a bilinear form:

4.6 Definition. Let 𝑆 be the Seifert surface of an oriented link 𝐿; the Seifert form of 𝐿 is the bilinear
form

𝛼 ∶ 𝐻1(𝑆, ℤ) × 𝐻1(𝑆, ℤ) → ℤ
defined by 𝛽(𝑥, 𝑦) = 𝛼((𝑖−)∗𝑥, 𝑦).

Let us now perform somemagic. Let 𝑌 be obtained by taking 𝑋 and cutting out 𝑆×(−1, 1). Then
𝑌 can be turned back into 𝑋 by gluing 𝑆×−1 to 𝑆×1, but instead we will take infinitely many copies
of 𝑌 , (𝑌 𝑖 ∶ 𝑖 ∈ ℤ), and form a space 𝑋∞ by identifying 𝑆+𝑖 ⊂ 𝑌 𝑖 with 𝑆−𝑖 ⊂ 𝑌 𝑖+1 (Fig. 4.5).
Remark. The construction of 𝑋∞ is intended to be reminiscent of the construction of the developing
map of a manifold. It is known as the cyclic covering of the knot or link complement by Rolfsen
[59, §5C].

On 𝑋∞ there is a natural automorphism 𝑡 given by a one-unit shift sending each 𝑌 𝑖 ↦ 𝑌 𝑖+1.
We therefore have an action of ⟨𝑡⟩ on 𝐻1(𝑋∞, ℤ) and hence an action of the group algebra ℤ[⟨𝑡⟩] on
𝐻1(𝑋∞, ℤ) given by

(∑
𝑛∈ℤ

𝜆𝑛𝑡𝑛) 𝑥 = ∑
𝑛∈ℤ

𝜆𝑛(𝑡𝑛𝑥)

where the outer summation and multiplication by integers 𝜆𝑛 are the group addition and integer
multiplication in the abelian group 𝐻1(𝑋∞, ℤ). Also recall that the group 𝑅-algebra of an infinite
cyclic group is just the 𝑅-algebra of Laurent polynomials 𝑅[𝑡, 𝑡−1] and hence we have constructed an
action of the ring of integer Laurent polynomials ℤ[𝑡, 𝑡−1] on 𝐻1(𝑋∞, ℤ).



4.1. THE ALEXANDER–CONWAY POLYNOMIAL 67

Figure 4.5: The construction of the cyclic covering of the complement of 𝐿 via the collared Seifert
surface 𝑆.
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Figure 4.6: The (𝑝, 𝑞, 𝑟) pretzel knot and a Seifert surface spanning it. If any of the parameters is
negative, the twisting direction for the corresponding 2-braid is reversed.

The covering space 𝑋∞ and the action on it by ⟨𝑡⟩ are determined up to orientation preserving
homeomorphism entirely by the link 𝐿 and so the ℤ[𝑡, 𝑡−1]-module 𝐻1(𝑋∞, ℤ) is an invariant of 𝐿
called the Alexander module. The 𝑟th elementary ideal of the Alexander module of a link 𝐿 is
called the 𝑟thAlexander ideal of 𝐿. Every Alexander ideal is contained in a minimal principal ideal
(generated by the gcd of all elements in the ideal), and the generator of this ideal is the 𝑟thAlexander
polynomial. The first Alexander polynomial is called the Alexander polynomial Δ𝐿(𝑡).
4.7 Lemma. Let 𝐴 be a matrix for the Seifert form of 𝐿 with respect to any basis of 𝐻1(𝑆, ℤ) (𝑆 any
Seifert surface). Then 𝑡𝐴 − 𝐴⊤ is a presentation matrix for the Alexander module of 𝐿. mAk

By the lemma, we see that that ℰ1 itself is principal:- the Alexander module has a square presen-
tation matrix, 𝑡𝐴 − 𝐴⊤, hence a unique minor of maximal rank and so Δ𝐿(𝑡) = det(𝑡𝐴 − 𝐴⊤) (up to
multiplication by a unit, i.e. a power of ±𝑡, so we normalise such that no power of 𝑡 divides Δ𝐿).
4.8 Example. Δunknot(𝑡) = 1.

4.9 Example. Let 𝑃(𝑝, 𝑞, 𝑟) (𝑝, 𝑞, 𝑟 ∈ ℤ odd) be the (𝑝, 𝑞, 𝑟) pretzel knot shown in Fig. 4.6 and
choose the basis (𝛼1, 𝛼2) for𝐻1(𝑆, ℤ) depicted. Then, since the Seifert prodict 𝛼([𝑐], [𝑑]) is defined by
taking the linking number of 𝑐 and 𝑑 with 𝑑 shifted slightly off 𝑆 in a consistent way, we can see by
inspection that

𝛼([𝛼1], [𝛼1]) =
1
2(𝑝 + 𝑞)𝛼([𝛼1], [𝛼2]) =

1
2(𝑞 + 1)

𝛼([𝛼2], [𝛼1]) =
1
2(𝑞 − 1)𝛼([𝛼2], [𝛼2]) =

1
2(𝑞 + 𝑟)

(where the 1/2 factors come from the definition of lk, Lemma 1.8). If 𝐴 is the corresponding matrix
we have

Δ𝑃(𝑝,𝑞,𝑟)(𝑡) = det(𝑡𝐴 − 𝐴⊤) = 1
4 ((𝑝𝑞 + 𝑞𝑟 + 𝑟𝑝) (𝑡2 − 2𝑡 + 1) + 𝑡2 + 2𝑡 + 1) .

We see that for (𝑝, 𝑞, 𝑟) = (−3, 5, 7) then the corresponding knot has polynomial Δ(𝑡) = 𝑡, equal
up to units to that of the unknot. This pretzel knot is called Seifert’s knot, and to see that it is
nontrivial we can use the Jones polynomial (next lecture). Anyway, the Alexander polynomial is still
a fairly good invariant:- it completely classifies all knots with at most eight crossings (see the table
on p. 59 of [45]).
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Figure 4.7: A Conway triple: three links (𝐿+, 𝐿−, 𝐿0)which differ only in the three small balls shown.
Figure from [45, Fig. 8.1].

Remark. An alternative characterisation of the Alexander polynomial: it is the characteristic poly-
nomial of the linear map 𝑡∗ ∶ 𝐻1(𝑋∞, ℚ) → 𝐻1(𝑋∞, ℚ) where 𝑡 is the translation map of the cyclic
cover.

One can compute the Alexander polynomial inductively using the skein relations discovered by
Conway [17]—actually, the relationswere given byAlexander [5] but Conwaywas the first (according
to Birman [9, §2]) to observe that they allow the reconstruction of the Alexander polynomial without
the ambiguity of divisibility by units in ℤ[𝑡±1]. We say that a triple (𝐿+, 𝐿−, 𝐿0) of oriented links is a
Conway triple if they are the same except in the neighbourhood of one point where they differ as
shown in Fig. 4.7.

4.10 Theorem. For oriented links 𝐿, there is a polynomial 𝑓𝐿 ∈ ℤ[𝑡−1/2, 𝑡1/2] characterised by

(a) (inductive base) 𝑓unknot(𝑡) = 1, and

(b) (skein relation) whenever three orientable links 𝐿+, 𝐿−, and 𝐿0 are the same except in , then

𝑓𝐿+ − 𝑓𝐿− = (𝑡−1/2 − 𝑡1/2)𝑓𝐿0 .

Further, the polynomial 𝑓𝐿 agrees with the Alexander polynomial Δ𝐿 up to units in ℤ[𝑡±1/2].

The polynomial 𝑓𝐿 (which we will from now on denote Δ𝐿) is called the Alexander–Conway
polynomial. A triple which are equal apart from the nei

Proof. Construct a Seifert surface 𝐹0 for 𝐿0 which locally looks like the one shown in Fig. 4.7, let
𝐴0 be a Seifert matrix for 𝐹0, and define 𝑓𝐿0 = det(𝑡1/2𝐴0 − 𝑡−1/2𝐴⊤

0 ). This surface extends to Seifert
surfaces 𝐹± for 𝐿± by adding twisted strips as shown. Choose a generating set {𝑓2,… , 𝑓𝑛} for𝐻1(𝐹0, ℤ)
and extend it to a generating set for 𝐻1(𝐹±, ℤ) by adding the additional curves 𝑓1 shown. Let 𝐴0 be
the Seifert form matrix for 𝐹0. Then the Seifert matrices for 𝐹± are respectively

𝐴+ = [𝑛 − 1 ∗
∗ 𝐴0

] and 𝐴− = [𝑛 ∗
∗ 𝐴0

]

for some integer 𝑛. It is easily checked that the corresponding determinants 𝑓𝐿+ and 𝑓𝐿− satisfy the
skein relation. mAk

4.11 Exercises. 1. Draw a Seifert surface for the (3, 4, 3) pretzel knot.

2. Show that the skein relations are invariant under Reidemeister moves.

3. Give the genera for the Seifert surfaces of Figs. 4.3 and 4.4.
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4. Let 𝐿 be the link consisting of two parallel trefoil knot complements. Construct a surface
spanned by 𝐿 by taking a narrow rectangular strip of paper and tying it up in a trefoil knot
with the two short ends suitably identified. Show that this surface is non-orientable. Draw a
Seifert surface for 𝐿.

5. Show that for any oriented link 𝐿, Δ𝐿(𝑡) = Δ𝐿(𝑡−1); and for any oriented knot 𝑘, Δ𝑘(1) = ±1.

6. In this long exercise, we will compute the Alexander–Conway polynomials (or ‘A–C polynomi-
als’ for short) for all 2-bridge knots, following [15, §12C].
Define the Fibonacci polynomials fib𝑛(𝑧) by

fib0(𝑧) = 0, fib1(𝑧) = 1,
fib𝑛+1(𝑧) = 𝑧 fib𝑛(𝑧) + fib𝑛−1(𝑧),

fib−𝑛(𝑧) = (−1)𝑛+1 fib𝑛(𝑧) for 𝑛 ≥ 0.

(a) Show that the Fibonacci polynomials for 𝑛 ≥ 0 are of the form

𝑓2𝑛−1 = 1 + 𝑎1𝑧2 + 𝑎2𝑧4 +⋯+ 𝑎𝑛−1𝑧2𝑛−2
𝑓2𝑛 = 𝑧(𝑏0 + 𝑏1𝑧2 + 𝑏2𝑧4 +⋯+ 𝑏𝑛−1𝑧2𝑛−2)

for some 𝑎𝑖, 𝑏𝑖 ∈ ℤ, with 𝑎𝑛−1 = 𝑏𝑛−1 = 1.

Let 𝑘 = 𝔟(𝛼, 𝛽) be a two-bridge knot—so 𝛼 ≡ 𝛽 ≡ 1 (mod 2). Represent this knot by the braid

𝜎𝑎12 𝜎−2𝑏11 ⋯𝜎𝑎𝑘2

where 𝑘 = (𝑚 + 1)/2. (There is always a unique generalised Euclidean algorithm of this form,
[15, Proposition 12.7].)

(b) Using the skein relations, show that the A–C polynomial of the 4-plat defined by 𝜎𝑎2 for
𝑎 > 0 is Δ𝑎(𝑧) = (−1)𝑎+1 fib𝑎(𝑧).

(c) Show that Δ−𝑎 = (−1)𝑎+1Δ𝑎.
(d) Assume that 𝑎 > 0, 𝑏 > 0, and 𝑐 ≠ −1. Show that the A–C polynomial of the 4-plat

defined by 𝜎𝑎2𝜎−2𝑏1 𝜎𝑐2 is

Δ𝑎𝑏𝑐(𝑧) = Δ𝑎−1(𝑧)Δ𝑐(𝑧) + Δ𝑎(𝑧)Δ𝑐+1(𝑧) − 𝑏𝑧Δ𝑎(𝑧)Δ𝑐(𝑧).

Hint: use the skein relations on the double points of 𝜎𝑎2 from top to bottom.
(e) Use (1) to show that if 𝑐 > 0,

degΔ𝑎𝑏𝑐 = 𝑎 + 𝑐 − 1 and |LC(Δ𝑎𝑏𝑐)| = |𝑏 + 1|

and if 𝑐 < 0 then
degΔ𝑎𝑏𝑐 = 𝑎 − 𝑐 − 1 and |LC(Δ𝑎𝑏𝑐)| = |𝑏|.

One can also show that if 𝑎 < 0, 𝑏 < 0, and 𝑐 ≠ 1 then

Δ𝑎𝑏𝑐 = Δ𝑎+1Δ𝑐 + Δ𝑎Δ𝑐−1 − 𝑏𝑐Δ𝑎Δ𝑐

and so degΔ𝑎𝑏𝑐 = |𝑎| + |𝑐| − 1, 𝐶(Δ𝑎𝑏𝑐) = |𝛽| + 1 − 𝜂 where 𝜂 = 1 or 0 according to whether
𝑐 > 0 or 𝑐 < 0. But the proof is boring so just take it for granted. We continue.
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(f) Suppose that 𝛽 = 𝜎𝑎12 𝜎−2𝑏11 𝛽′ and 𝛽′ = 𝜎𝑎22 𝜎−2𝑏23 ⋯ where 𝑎1 > 0 and 𝑎2 > 0. Show that
the A–C polynomial of 𝛽 is

Δ𝛽 = Δ𝑎1Δ𝜎2𝛽′ + Δ𝑎1−1Δ𝛽′ − 𝑏1𝑧Δ𝑎1Δ𝛽′

and degΔ𝛽 = degΔ𝑎1Δ𝜎1𝛽′ .
(g) Conclude by induction that

degΔ𝑘 = |𝑎1| − 1 + ∑
𝑗>1

||𝑎𝑗 || and |LC(Δ𝑘)| =
𝑘−1
∏
𝑗=1

(||𝑏𝑗 || + 1 − 𝜂𝑗).

(h) It is a classical theorem that the genus of an alternating knot is (𝑑 + 1)/2 where 𝑑 is the
degree of its A–C polynomial. Compute the genus of every 2-bridge knot. Conclude also
that there are infinitely many knots of positive genus.

4.2 Quantum invariants
Wewill give a very fast introduction to the theory of quantum knot invariants, following various sec-
tions of [38]. The philosophy is that these invariants arise from the representation theory of quan-
tum groups, and so we will first introduce these objects. It is remarkable that, despite including the
Alexander polynomials as a special case, entirely new techniques (beyond those of classical topology
or Thurston’s geometric ideas) are required to understand them.

4.12 Definition. Let 𝑉 be a vector space over a field 𝑘. A linear automorphism 𝑐 ∈ Aut(𝑉 ⊗ 𝑉) is
called an 𝑅-matrix if it is a solution of the Yang-Baxter equation,

(𝑐 ⊗ id𝑉 )(id𝑉 ⊗𝑐)(𝑐 ⊗ id𝑉 ) = (id𝑉 ⊗𝑐)(𝑐 ⊗ id𝑉 )(id𝑉 ⊗𝑐).

Remark. TheYang-Baxter equation arises naturallywhen studying factorisations of 𝑆-matrices; these
are matrices which represent quantum scattering operators.

Computing solutions to the Yang-Baxter equation is incredibly hard.

4.13 Example. If 𝜏 ∈ Aut(𝑉 ⊗ 𝑉) is the map 𝜏(𝑢 ⊗ 𝑣) ≔ 𝑣 ⊗ 𝑢, then 𝜏 is an 𝑅-matrix since
(1, 2)(2, 3)(1, 2) = (2, 3)(1, 2)(2, 3) in 𝑆3.

4.14 Example. Let𝑉 be a finite dimensional vector space over 𝑘with basis {𝑒1,… , 𝑒𝑁}. For 𝑝, 𝑞 ∈ 𝑘∗
and {𝑟𝑖,𝑗}1≤𝑖,𝑗≤𝑁 any 𝑁 × 𝑁 matrix of scalars with 𝑟𝑖𝑖 = 𝑞 for all 𝑖 and 𝑟𝑖𝑗𝑟𝑗𝑖 = 𝑞 when 𝑖 ≠ 𝑗, define
an automorphism 𝑐 ∈ Aut(𝑉 ⊗ 𝑉) by

𝑐(𝑒𝑖 ⊗ 𝑒𝑖) ≔ 𝑞𝑒𝑖 ⊗ 𝑒𝑖

𝑐(𝑒𝑖 ⊗ 𝑒𝑗) ≔ {𝑟𝑗𝑖𝑒𝑗 ⊗ 𝑒𝑖 if 𝑖 < 𝑗;
𝑟𝑗𝑖𝑒𝑗 ⊗ 𝑒𝑖 + (𝑞 − 𝑝𝑞−1)𝑒𝑖 ⊗ 𝑒𝑗 if 𝑖 > 𝑗.

This can be shown by direct computation(!) to be an 𝑅-matrix. Further, it satisfies a quadratic mini-
mal polynomial

𝑐2 − (𝑞 − 𝑝𝑞−1)𝑐 − 𝑝 id𝑉⊗𝑉 = 0.
As a special case, take 𝑝 = 𝑞2 and 𝑟𝑖𝑗 = 𝑞 for all 𝑖, 𝑗. Then 𝑐(𝑇) = 𝑞𝑇 for all 𝑇 ∈ 𝑉 ⊗ 𝑉 .
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It will turn out that solutions to the Yang-Baxter equation may be manufactured from objects
called ‘braided bialgebras’—the first hint to this is that the Yang-Baxter equation ‘looks’ like theArtin
braid relations, Eq. (3.21). We therefore take some time to define bialgebras, and what it means for
them to be braided. The most useful example to keep in mind is the classical duality from algebraic
geometry:
4.15 Example. Throughout much of the following, keep in mind that we can view affine 𝑛-space
𝔸𝑛𝑘 as being the space of algebraic maps 𝑘[𝑥1,… , 𝑥𝑛] → 𝑘; sticking to the affine line 𝑛 = 1, we can
define maps Δ ∶ 𝑘[𝑥] → 𝑘[𝑥, 𝑦] = 𝑘[𝑥] ⊗ 𝑘[𝑦] and 𝜀 ∶ 𝑘[𝑥] → 𝑘 by

Δ(𝑥) = 𝑥 + 𝑦 and 𝜀(𝑥) = 0;
identifying 𝑘[𝑥, 𝑦]with𝔸2𝑘,Δ is exactly encoding addition and 𝜀 encodes existence of additive identity
in 𝔸1:- given 𝑃 ∶ 𝑘[𝑥] → 𝑘 and 𝑄 ∶ 𝑘[𝑥] → 𝑘, the addition 𝑃 + 𝑄 ∶ 𝑘[𝑥] → 𝑘 is the map defined by
the diagram

𝑘[𝑥] 𝑘[𝑥] ⊗ 𝑘[𝑦] 𝑘[𝑦]

𝑘 𝑘 ⊗ 𝑘[𝑦] 𝑘

𝑘 ⊗ 𝑘 = 𝑘.

𝑃

Δ

𝑃

Δ

𝑄

𝑄

Thus 𝑘[𝑥] has two algebraic structures:- the usual algebra structure with the usual multiplication
𝑘[𝑥] × 𝑘[𝑥] → 𝑘[𝑥], and some kind of comultiplication 𝑘[𝑥] → 𝑘[𝑥] ⊗ 𝑘[𝑥] which is encoding the
abelian group structure on 𝔸2.
4.16 Definition. An algebra is a triple (𝐴, 𝜇, 𝜂) where 𝐴 is a vector space and 𝜇 ∶ 𝐴 ⊗ 𝐴 → 𝐴 and
𝜂 ∶ 𝑘 → 𝐴 are linear maps which make the following diagrams commute:

(Ass.)
𝐴⊗ 𝐴⊗ 𝐴 𝐴⊗ 𝐴

𝐴⊗ 𝐴 𝐴

𝜇⊗id

id⊗𝜇 𝜇
𝜇

(Un.)
𝑘 ⊗ 𝐴 𝐴⊗ 𝐴 𝐴⊗ 𝑘

𝐴

𝜂⊗id

≃
𝜇

id⊗𝜂

≃

4.17 Definition. A coalgebra is a triple (𝐶, Δ, 𝜀)where 𝐶 is a vector space and Δ ∶ 𝐶 → 𝐶⊗𝐶 and
𝜀 ∶ 𝐶 → 𝑘 are linear maps making the following diagrams commute:

(Coass.)
𝐶 𝐶 ⊗ 𝐶

𝐶 ⊗ 𝐶 𝐶

Δ

Δ id⊗Δ
Δ⊗id

(Coun.)
𝑘 ⊗ 𝐶 𝐶 ⊗ 𝐶 𝐶 ⊗ 𝑘

𝐶.

𝜀⊗id 𝜀⊗id

≃ Δ ≃
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4.18 Example. Let 𝑋 be a set, let 𝐶 = 𝑘{𝑋} = ⊕𝑥∈𝑋𝑘𝑥 be the vector space with basis 𝑋 . There is
a coalgebra structure on 𝑘{𝑋} given by Δ(𝑥) = 𝑥 ⊗ 𝑥 and 𝜀(𝑥) = 1. There is also a natural algebra
structure on 𝐶∨: it is the algebra of functions 𝑋 → 𝑘, with unit the constant function 𝜀 ∶ 𝑋 → 𝑘.

4.19 Example. Let 𝐴 = 𝑀𝑛(𝑘) be the algebra of 𝑛 × 𝑛matrices over 𝑘. Let {𝐸𝑖𝑗} be the usual basis,
and let {𝑥𝑖𝑗} be the dual basis. Then we have a coalgebra structure on 𝐴∨ given by

Δ(𝑥𝑖𝑗) =
𝑛
∑
𝑘=1

𝑥𝑖𝑘 ⊗ 𝑥𝑘𝑗 and 𝜀(𝑥𝑖𝑗) = 𝛿𝑖𝑗 .

The tensor product of two coalgebras (𝐶, Δ, 𝜀) and (𝐶′, Δ′, 𝜀′) has a natural coalgebra structure:
the comultiplication is 𝐶⊗𝐶′ → 𝐶⊗𝐶′⊗𝐶⊗𝐶 given by (id⊗𝜏𝐶,𝐶′ ⊗ id) ∘ (Δ⊗Δ′) and the counit
is 𝜀 ⊗ 𝜀′.

4.20 Example. 𝑘{𝑋} ⊗ 𝑘{𝑌} ≃ 𝑘{𝑋 × 𝑌} as a coalgebra: the isomorphism is (𝑢 ⊗ 𝑣) ↦ (𝑢, 𝑣).

4.21 Lemma. Let𝐻 be a vector space equipped simultaneously with an algebra structure (𝐻, 𝜇, 𝜂) and
a coalgebra structure (𝐻, Δ, 𝜀). Give 𝐻 ⊗ 𝐻 the induced structures of a tensor product of algebras and
of coalgebras.

The following two statements are equivalent:

1. The maps 𝜇 and 𝜂 are morphisms of coalgebras.

2. The maps Δ and 𝜀 are morphisms of algebras.

Proof. Diagram pushing. mAk

Such a vector space satisfying the conditions of Lemma 4.21 is a bialgebra.

4.22 Example. Le 𝑋 be a set with a unital monoid structure, i.e. there is an associative map 𝜇 ∶
𝑋 × 𝑋 → 𝑋 with left and right unit 𝑒. Then 𝜇 induces an algebra structure on 𝑘{𝑋} with unit 𝑒. Now
Δ(𝑥𝑦) = 𝑥𝑦⊗𝑥𝑦 = (𝑥⊗𝑥)(𝑦⊗𝑦) = Δ(𝑥)Δ(𝑦) so Δ is a morphism of the algebra structure. Similarly
𝜀(𝑥𝑦) = 1 = 𝜀(𝑥)𝜀(𝑦) so 𝜀 is a morphism. Thus 𝑘{𝑋} is a bialgebra.

4.23 Definition. Let (𝐻, 𝜇, 𝜂, Δ, 𝜀) be a bialgebra. We say that it is quasi-cocommutative if there
exists an invertible element 𝑅 of the algebra𝐻⊗𝐻 such that for all 𝑥 ∈ 𝐻,Δop(𝑥) = 𝑅Δ(𝑥)𝑅−1 where
Δop = 𝜏𝐻,𝐻 ∘Δ is the opposite coproduct. An element 𝑅 verifying this condition is called a universal
𝑅-matrix.

The quasi-commutative bialgebra (𝐻, 𝜇, 𝜂, Δ, 𝜀, 𝑅) is called braided if the universal 𝑅-matrix 𝑅 =
∑𝑖 𝑠𝑖 ⊗ 𝑡𝑖 satisfies the two additional conditions

(Δ ⊗ id)(𝑅) = (∑
𝑖
𝑠𝑖 ⊗ 1⊗ 𝑡𝑖) (∑

𝑖
1 ⊗ 𝑠𝑖 ⊗ 𝑡𝑖) = ∑

𝑖,𝑗
𝑠𝑖 ⊗ 𝑠𝑗 ⊗ 𝑡𝑖𝑡𝑗

(id⊗Δ)(𝑅) = (∑
𝑖
𝑠𝑖 ⊗ 1⊗ 𝑡𝑖) (∑

𝑖
𝑠𝑖 ⊗ 𝑡𝑖 ⊗ 1) = ∑

𝑖,𝑗
𝑠𝑖𝑠𝑗 ⊗ 𝑡𝑖 ⊗ 𝑡𝑗 .

To make this somewhat less opaque, let us introduce some notation.
Notation. Let 𝐻 be an algebra, and let 𝑅 = ∑𝑖 𝑠𝑖 ⊗ 𝑡𝑖 ∈ 𝐻 ⊗ 𝐻. For any pair (𝑎, 𝑏) of elements of
{1, 2, 3} write 𝑅𝑎𝑏 for the element of 𝐻 ⊗ 𝐻 ⊗ 𝐻 which is of the form ∑𝑖 𝑢1,𝑖 ⊗ 𝑢2,𝑖 ⊗ 𝑢3,𝑖 where
𝑢𝑎,𝑖 = 𝑠𝑖, 𝑢𝑏,𝑖 = 𝑡𝑖, and 𝑢𝑐,𝑖 = 1 (𝑐 being the index which is neither 𝑎 nor 𝑏).
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In this notation, the braiding conditions become

(Δ ⊗ id)(𝑅) = 𝑅13𝑅23
(id⊗Δ)(𝑅) = 𝑅13𝑅12.

4.24 Example (Sweedler’s four-dimensional bialgebra). Let 𝐻 be the algebra generated by 𝑥 and 𝑦
with relations 𝑥2 = 1, 𝑦2 = 0, 𝑥𝑦 = −𝑦𝑥. The underlying vector space has basis {1, 𝑥, 𝑦, 𝑥𝑦}. Define
a coalgebra structuure on 𝐻 by

Δ(𝑥) = 𝑥 ⊗ 𝑥, 𝜀(𝑥) = 1;
Δ(1) = 1 ⊗ 𝑦 + 𝑦 ⊗ 𝑥, 𝜀(𝑦) = 0.

For any scalar 𝜆, set

𝑅𝜆 =
1
2(1 ⊗ 1 + 1 ⊗ 𝑥 + 𝑥 ⊗ 1 − 𝑥 ⊗ 𝑥) + 𝜆

2 (𝑦 ⊗ 𝑦 + 𝑦 ⊗ 𝑥𝑦 + 𝑥𝑦 ⊗ 𝑥𝑦 − 𝑥𝑦 ⊗ 𝑦) .

Then any 𝑅𝜆 is a universal 𝑅-matrix making 𝐻 into a braided bialgebra.

As promised, these braided bialgebras are machines that can manufacture many more solutions
to the Yang-Baxter equation:

4.25Theorem. Fix a braided bialgebra (𝐻, 𝜇, 𝜂, Δ, 𝜀, 𝑅). Let𝑉 and𝑊 be two𝐻-modules. The universal
𝑅-matrix produces a natural map 𝑉 ⊗𝑊 → 𝑊 ⊗𝑉 defined by

𝑐𝑅𝑉,𝑊 (𝑣 ⊗ 𝑤) ≔ 𝜏𝑉,𝑊 (𝑅(𝑣 ⊗ 𝑤))

with inverse
(𝑐𝑅𝑉,𝑊 )−1(𝑤 ⊗ 𝑣) ≔ 𝑅−1(𝑣 ⊗ 𝑤).

1. The map 𝑐𝑅𝑉,𝑊 is an isomorphism of𝐻-modules.

2. For any triple (𝑈, 𝑉,𝑊) of𝐻-modules:

(𝑐𝑅𝑉,𝑊 ⊗ id𝑈)(id𝑉 ⊗𝑐𝑅𝑈,𝑊 )(𝑐𝑅𝑈,𝑉 ⊗ id𝑊 ) = (id𝑊 ⊗𝑐𝑅𝑈,𝑉 )(𝑐𝑅𝑈,𝑊 ⊗ id𝑉 )(id𝑈 ⊗𝑐𝑅𝑉,𝑊 )

Hence if𝑈 = 𝑉 = 𝑊 we conclude that 𝑐𝑅𝑉,𝑉 satisfies the Yang-Baxter equation for any𝐻-module
𝑉 . mAk

For a proof, see [38, §VIII.3]. This shows that the representation theory of these braided bialgebras
is something one might want to study in its own right, and this is how Vaughan Jones came upon
his polynomial (actually he came via von Neumannn algebras, which are related quantum objects:
braided categories give representations of von Neumann algebras).

That aside, our main theorem is the following.

4.26 Theorem. Let Link be the set of all oriented links in 𝕊3. There exists a unique map Link →
ℤ[𝑥±1, 𝑦±1] denoted by 𝐿 ↦ 𝑃𝐿, defined up to ambient isotopy, such that

1. The value of 𝑃 on the unknot is 1, and

2. Whenever (𝐿+, 𝐿−, 𝐿0) is a Conway triple, we have 𝑥𝑃𝐿+ − 𝑥−1𝑃𝐿− = 𝑦𝑃𝐿0 .
The polynomial 𝑃𝐿 is called (variously) the two-variable Jones polynomial and theHOMFLY

polynomial of 𝐿; it was introduced following V.F.R. Jones’ discovery of a new one-variable knot
invariant [35, 36] by various authors simultaneously [29]. The Alexander polynomial is the special
case Δ𝐿(𝑡) = 𝑃𝐿(1, 𝑡) and the classical Jones polynomial is 𝑉 𝐿(𝑡) = 𝑃𝐿(𝑡−1, 𝑡1/2 − 𝑡−1/2).
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Figure 4.8: The unknot fits into a Conway triple.

4.27 Definition. Let Λ = ℤ[𝑥±1, 𝑦±1] be the Laurent polynomial ring, let Λ[Link] be the free Λ-
module generated by the isotopy classes of oriented links, and let Υ be the quotient of Λ[Link] by the
Λ-submodule generated by the relators

(4.28) 𝑥𝐿+ − 𝑥−1𝐿− − 𝑦𝐿0

where (𝐿+, 𝐿−, 𝐿0) runs over all Conway triples. This module is the skein module (of 𝕊3).

Theorem 4.26 can be deduced from the following proposition:

4.29 Proposition. Let 𝑄 ∶ Λ → Υ be the Λ-linear map sending 1 ↦ [𝑂], where 𝑂 denotes the unknot
and where [⋅] denotes taking the class of a knot in the quotient module Υ . Themap𝑄 is an isomorphism
of Λ-modules.

In other words, the Λ-module generated by links modulo skein conditions is cyclic.

4.30 Corollary. The map 𝐿 ↦ 𝑃𝐿 ≔ 𝑄−1(𝐿) clearly satisfies the relations of Theorem 4.26 and is
unique by injectivity of 𝑄.

Thus it ‘suffices’ to prove Proposition 4.29.

Proof of surjectivity in Proposition 4.29. Step I: We show that Υ is generated by the isotopy classes
[𝑂⊗𝑛] for 𝑛 > 0, where ⊗ is used to denote isolated disjoint union. This is done by induction on
crossing number: set Υ𝑚 is the submodule of Υ generated by links with crossing number ≤ 𝑚 and
observe that Υ is the direct limit of ⋯ → Υ𝑚 → Υ𝑚+1 → ⋯ (all maps inclusions). Clearly Υ0 is
generated by the unknot. For [𝐿] ∈ Υ𝑚 ⧵ Υ𝑚−1, draw a diagram for 𝐿 with 𝑚 crossings. There is a
Conway triple (𝐿+, 𝐿−, 𝐿0) with 𝐿 = 𝐿+ or 𝐿 = 𝐿− and such that 𝐿0 has less than𝑚 crossings. Using
the skein module relation Eq. (4.28) we see [𝐿+] = 𝑥−2[𝐿−] (mod Υ𝑚−1). Thus changing one of the
crossings in 𝐿 changes its class modulo Υ𝑚−1 by a unit. But every link is obtained by taking a union
of disjointly embedded unknots and swapping crossings; hence 𝐿 is generated over Λ by classes of
the form [𝑂⊗𝑛] and classes in Υ𝑚−1.

Step II: Now it remains to see that every [𝑂⊗𝑛] is generated in Υ by the class of the unknot. To
see this observe that ([𝑂⊗𝑛], [𝑂⊗𝑛], [𝑂⊗(𝑛+1)]) is a Conway triple (Fig. 4.8) so

[𝑂⊗(𝑛+1)] = 𝑥 − 𝑥−1
𝑦 [𝑂⊗𝑛]

and the result follows by induction. mAk

Remark. In the surjectivity proof, we did not really use any properties ofΛ, just topological facts and
the skein relations.

For the injectivity part of Proposition 4.29 wewill really need somemachinery. It will follow from
the following proposition (which is somehow defining the correct inverse of𝑄 on a basis forΛ[Link]):
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4.31 Proposition. Let 𝑞 ∈ ℂ∗ not be a root of unity and let𝑚 > 1 be an integer. There exists a unique
map Φ𝑚,𝑞 ∶ Link → ℂ which is well-defined up to isotopy, such that

1. The value of Φ𝑚,𝑞 on the unknot is

Φ𝑚,𝑞(𝑂) =
𝑞𝑚 − 𝑞−𝑚
𝑞 − 𝑞−1

(and this is non-zero by the assumption on 𝑞), and

2. whenever (𝐿+, 𝐿−, 𝐿0) is a Conway triple, we have

𝑞𝑚Φ𝑚,𝑞(𝐿+) − 𝑞−𝑚Φ𝑚,𝑞(𝐿−) = (𝑞 − 𝑞−1)Φ𝑚,𝑞(𝐿0).

Proof of injectivity of Proposition 4.29 from Proposition 4.31. Define a ring map 𝜁𝑞,𝑚 ∶ Λ → ℂ by
𝜁𝑞,𝑚(𝑥) = 𝑞𝑚 and 𝜁𝑞,𝑚(𝑦) = 𝑞 − 𝑞−1; this gives a Λ-module structure on ℂ and so we extend Φ𝑚,𝑞
to a Λ-linear map Φ′

𝑚,𝑝 ∶ Λ[Link] → ℂ. By the skein-like relation defining Φ𝑚,𝑝 we have for every
Conway triple (𝐿+, 𝐿−, 𝐿0) that

Φ′
𝑚,𝑝 (𝑥𝐿+ − 𝑥−1𝐿− − 𝑦𝐿0) = 𝜁𝑚,𝑝(𝑥)Φ𝑚,𝑝(𝐿+) − 𝜁𝑚,𝑝(𝑥−1)Φ𝑚,𝑝(𝐿−) − 𝜁𝑚,𝑝Φ𝑚,𝑝(𝐿0)

= 𝑞𝑚Φ𝑚,𝑞(𝐿+) − 𝑞−𝑚Φ𝑚,𝑞(𝐿−) − (𝑞 − 𝑞−1)Φ𝑚,𝑞(𝐿0)
= 0.

Thus Φ′
𝑚,𝑝 factors through the projection Λ[Link] → Υ , call the factor map Φ″

𝑚,𝑝 ∶ Υ → ℂ.
Using this, we will prove that 𝑄 ∶ Λ → Υ is injective. Suppose 𝑓 ∈ ker𝑄, i.e. 𝑓 ∈ Λ is a

Laurent polynomial such that 𝑄(𝑓) = 𝑓[𝑂] is zero in Υ . Map this into ℂ with Φ″
𝑚,𝑝: 0 = Φ″

𝑚,𝑝(0) =
Φ″
𝑚,𝑝(𝑓(𝑥, 𝑦)[𝑂]) = 𝑓(𝑞𝑚, 𝑞1 − 𝑞−1)Φ𝑚,𝑝(𝑂). Since Φ𝑚,𝑝(𝑂) is non-zero, 𝑓(𝑞𝑚, 𝑞1 − 𝑞−1) = 0. Since

this is true for infinitely many 𝑚 (so infinitely many values in the first parameter), 𝑓 must have a
factor 𝑥 − (𝑞1 − 𝑞−1). But this must hold for all 𝑞, hence 𝑓 = 0. mAk

The injectivity of𝑄 is thus reduced to the study of the (purported) mapsΦ𝑚,𝑝 of Proposition 4.31.
This is what we will concern ourselves with for the remainder, and it is here that we get to a connec-
tion with quantum groups. The path is roughly the following:

(I) Form a category of tangles (which contains in particular all links, as automorphisms).

(II) Show that a certain class of 𝑅-matrices induces representations from this category to the cate-
gory of vector spaces.

(III) Exhibit a particular 𝑅-matrix which induces a representation, sending automorphisms of the
tangle category (representing links) to automorphisms which are dilations and hence can be
represented by scalars.

Things should be clearer as we go. First we define tangles, which generalise braids (and which
are not to be confused with the rational tangles we studied earlier).

Let 𝑘, 𝑙 be nonnegative integers. A tangle 𝐿 of type (𝑘, 𝑙) is the (isotopy class of a) union of a finite
number of pairwise disjoint simple oriented piecewise linear arcs inℂ×[0, 1] such that the boundary
𝜕𝐿 is a subset of ℂ × {0, 1} and in fact 𝐿 ∩ ℂ × {0} = {1, 2,… , 𝑘} and 𝐿 ∩ ℂ × {1} = {1, 2,… , 𝑙}; the
example in Fig. 4.9 is of type (3, 5). We allow 𝑘 or 𝑙 to be zero, in which case there are no boundary
points of 𝐿 on the corresponding copy of ℂ. We also allow polygonal loops which do not intersect
ℂ × {0, 1} at all. The isotopy classes of tangles without boundary are exactly the isotopy classes of links.
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Figure 4.9: A tangle of type (3, 5).

Given a tangle 𝐿 of type (𝑘, 𝑙) we define two finite sequences 𝑠(𝐿) and 𝑏(𝐿) of symbols from the
alphabet {+, −}. If 𝑘 = 0 (resp. 𝑙 = 0) then set 𝑠(𝐿) = () (resp. 𝑏(𝐿) = ()). Otherwise we define 𝑠(𝐿) =
(𝜀1,… , 𝜀𝑘) and 𝑏(𝐿) = (𝜂1,… , 𝜂𝑙) where 𝜀𝑖 = + (resp. 𝜂𝑗 = −) if (𝑖, 0) is an endpoint (resp. (𝑗, 1) is a
starting point) of 𝐿, otherwise 𝜀𝑖 = − (resp. 𝜂𝑖 = −): the tangle of Fig. 4.9 has 𝑏(𝐿) = (+,−,+,−,−)
and 𝑠(𝐿) = (−,+,−).

Define a categoryTan, the tangle category, to have object set consisting of finite (possibly empty)
sequences of symbols from the alphabet {+, −} and morphism set consisting of all isotopy classes of
tangles, such that the origin of a morphism 𝐿 is 𝑠(𝐿) and the target of 𝐿 is 𝑏(𝐿).

We also equip Tan with a tensor product structure; if 𝜀 = (𝜀1,… , 𝜀𝑘) and 𝜂 = (𝜂1,… , 𝜂𝑙) are two
objects then we set 𝜀 ⊗ 𝜂 ≔ (𝜀1,… , 𝜀𝑘, 𝜂1,… , 𝜂𝑙) and if 𝐿 and𝑀 are two tangles we set 𝐿 ⊗ 𝑀 to be
the tangle consisting of ‘𝐿 and𝑀 placed side-by side’. This tensor product has a unit, namely (), and
endomorphisms of this unit are exactly the tangles without boundary.

We wish to study representations (i.e. functors) from Tan to the category Vec(𝑘) of finite dimen-
sional vector spaces over 𝑘.2 More precisely, a representation 𝐹 ∶ Tan → Vec(𝑘) is a functor which
commutes with the tensor products up to equality, not just isomorphism and which preserves the
tensor unit (sends () ↦ 𝑘). Observe that if 𝐿 is a link, so an automorphism of (), then 𝐹(𝐿) is an
automorphism of 𝑘: it is therefore multiplication by a scalar, and so 𝐹 induces a map Link → 𝑘. This
concludes (I).

Given a vector spaces 𝑈,𝑉 , we define:

• the evaluation map, ev𝑉 ∶ 𝑉∨ ⊗𝑉 → 𝑘 by ev𝑉 (𝑣𝑖 ⊗ 𝑣𝑗) = ⟨𝑣𝑖, 𝑣𝑗⟩ = 𝛿𝑖,𝑗 ;

• the coevaluation map, 𝛿𝑉 ∶ 𝑘 → 𝑉 ⊗ 𝑉∨ by 𝛿𝑉 = ∑𝑖 𝑣𝑖 ⊗ 𝑣𝑖;

• the partial tanspose 𝑓+ ∶ 𝑈∨ ⊗ 𝑉 → 𝑈∨ ⊗ 𝑉 of 𝑓 ∶ 𝑉 ⊗ 𝑈 → 𝑉 ⊗ 𝑈 is defined on block
matrices by:

if [𝑓] = [
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵
]

then [𝑓+] = [
𝑎11𝐵 ⋯ 𝑎𝑛1𝐵
⋮ ⋱ ⋮

𝑎1𝑚𝐵 ⋯ 𝑎𝑛𝑚𝐵
] .

• the partial trace tr2 ∶ End(𝑈 ⊗ 𝑉) → End(𝑈) to be the unique linear map such that for all
𝜙 ∈ End(𝑈) and 𝜓 ∈ End(𝑉), tr2(𝜙 ⊗ 𝜓) = tr(𝜙)𝜓.

2Actually, we take Vec(𝑘) to be an equivalent category such that tensor associativity𝑈 ⊗ (𝑉 ⊗𝑊) ≃ (𝑈 ⊗𝑉)⊗𝑊 is
actually an equality not just isomorphism, but this is a technical point [38, Proposition XI.5.1].
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Tan
𝐹−→ Vec(𝑘)

𝑋+ = ↦ 𝑐

𝑋− = ↦ 𝑐−1

∪ = ↦ 𝛿𝑉

∩ = ↦ ev𝑉

∪⃐ = ↦ (id𝑉∨ ⊗𝜇−1)𝛿𝑉∨

∩⃐ = ↦ ev𝑉∨(𝜇 ⊗ id𝑉∨).

Table 4.1: The six elementary tangles and images under the tensor representation 𝐹. This labelling
is consistent with Fig. 4.7.

4.32 Definition. Let 𝑉 be a finite dimensional vector space. An enhanced 𝑅-matrix on 𝑉 is a pair
(𝑐, 𝜇) where 𝑐 ∈ Aut(𝑉 ⊗ 𝑉) is an 𝑅-matrix and 𝜇 ∈ Aut(𝑉) satisfies

𝑐(𝜇 ⊗ 𝜇) = (𝜇 ⊗ 𝜇)𝑐
tr2(𝑐±1(id𝑉 ⊗𝜇)) = id𝑉

(𝜏𝑐∓1)+(id𝑉∨ ⊗𝜇)(𝑐±1𝜏)+(id𝑉∨ ⊗𝜇−1) = id𝑉∨⊗𝑉 .

The point is that these conditions on an 𝑅-matrix allow us to manufature representations of Tan.
4.33 Theorem. Given an enhanced 𝑅-matrix (𝑐, 𝜇) on a finite dimensional vector space 𝑉 there exists
a unique representation Tan → Vec(𝑘) such that on objects, 𝐹((+)) = 𝑉 and 𝐹((−)) = 𝑉∨; and on
morphisms the six relations of Table 4.1 (depending on the data of the 𝑅-matrix) hold.

Proof. We can actually write down generators and relations for the morphisms in the tangle cate-
gory [38, Theorem XII.2.2] and the generators are exactly the six elementary tangles of Table 4.1,
so uniqueness holds so long as the map respects the relations. It is a lengthy computation to see
that this respectfulness condition is encoded by the definition of an enhanced 𝑅-matrix [38, Theo-
rem XII.4.2]. mAk

This completes part (II) of our plan.
We will now prove Proposition 4.31 and thus injectivity of 𝑄 and thus well-definedness of the

HOMFLY polynomial.

Proof of Proposition 4.31. Let 𝑘 be a field, 𝑞 ∈ 𝑘∗, and 𝑚 > 1 an integer. Let 𝑉𝑚 = 𝑘{𝑣1,… , 𝑣𝑚}.
Define a linear map 𝑐𝑚 ∈ Aut(𝑉𝑚 ⊗𝑉𝑚) by

𝑐𝑚(𝑣𝑖 ⊗ 𝑣𝑖) ≔ 𝑞−𝑚𝑞𝑒𝑖 ⊗ 𝑒𝑖

𝑐𝑚(𝑣𝑖 ⊗ 𝑣𝑗) ≔ 𝑞−𝑚 {𝑒𝑗 ⊗ 𝑒𝑖 if 𝑖 < 𝑗;
𝑒𝑗 ⊗ 𝑒𝑖 + (𝑞 − 𝑞−1)𝑒𝑖 ⊗ 𝑒𝑗 if 𝑖 > 𝑗.

This is a (scalar multiple of a) special case of Example 4.14 where all the 𝑟𝑖𝑗 = 1 and 𝑝 = 1. Hence
𝑐𝑚 is an 𝑅-matrix that additionally satisfies the relation

(4.34) 𝑞𝑚𝑐𝑚 − 𝑞−𝑚𝑐−1𝑚 = (𝑞 − 𝑞−1) id𝑉𝑚⊗𝑉𝑚 .
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Define an automorphism 𝜇𝑚 ∈ 𝑉𝑚 by 𝜇𝑚(𝑣𝑖) = 𝑞𝑚−2𝑖+1𝑣𝑖. This automorphism has trace

tr𝜇𝑚 = 𝑞𝑚 − 𝑞−𝑚
𝑞 − 𝑞−1

(it is easy to calculate this since 𝜇𝑚 is diagonal).
One can now show that the pair (𝑐𝑚, 𝜇𝑚) is an enhanced 𝑅-matrix for 𝑉𝑚. In particular, by The-

orem 4.33 we have a unique representation 𝐹𝑚,𝑞 ∶ Tan → Vec(𝑘); and one can also show by directly
applying 𝐹𝑚,𝑞 to the quadratic Eq. (4.34) that

(*) 𝑞𝑚𝐹𝑚,𝑞(𝑋+) − 𝑞−𝑚𝐹𝑚,𝑞(𝑋−) = (𝑞 − 𝑞−1)(𝐹𝑚,𝑞)(𝑋0)

where (𝑋+, 𝑋−, 𝑋0) are the three tangles of Fig. 4.7, and

𝐹𝑚,𝑞(𝑂) = tr(𝜇𝑚) =
𝑞𝑚 − 𝑞−𝑚
𝑞 − 𝑞−1

(this is a computation using the relations of Eq. (4.28)).
Now, take 𝑘 = ℂ and 𝑞 ∈ ℂ∗ a non-root-of-unity. Restrict 𝐹𝑚,𝑞 to oriented links in ℂ × (0, 1) (i.e.

tangles of type (0, 0)); call this map 𝐹. Since these links are endomorphisms of () in Tan, 𝐹(𝐿) for a
tangle 𝐿 is a linear ℂ-endomorphism of ℂ and hence is a complex number. We have just seen that
𝐹(𝑂) = 𝑞𝑚−𝑞−𝑚

𝑞−𝑞−1
, and so we only need to prove that 𝐹 satisfies condition (2) of Proposition 4.31: that

if (𝐿+, 𝐿−, 𝐿0) is a Conway triple, then

(†) 𝑞𝑚𝐹(𝐿+) − 𝑞−𝑚𝐹(𝐿−) = (𝑞 − 𝑞−1)𝐹(𝐿0).

As an exercise, you can show that there exist tangles 𝐿1, 𝐿2, 𝐿3, 𝐿4 such that

𝐿+ = 𝐿1 ∘ (𝐿2 ⊗𝑋+ ⊗ 𝐿3) ∘ 𝐿4
𝐿− = 𝐿1 ∘ (𝐿2 ⊗𝑋− ⊗ 𝐿3) ∘ 𝐿4
𝐿0 = 𝐿1 ∘ (𝐿2 ⊗𝑋0 ⊗ 𝐿3) ∘ 𝐿4

Substitute these into (†), and use the fact that 𝐹 commutes with⊗, to find that

(†) = 𝐹(𝐿1) (𝐹(𝐿2) ⊗ 𝑆 ⊗ 𝐹(𝐿3)) 𝐹(𝐿4)

where 𝑆 is exactly the relation of (*), so is killed, and hence (†) vanishes. mAk

4.35 Exercises. 1. Show that if 𝑐 ∈ Aut(𝑉 ⊗ 𝑉) is an 𝑅-matrix then so are 𝜆𝑐, 𝑐−1, and 𝜏 ∘ 𝑐 ∘ 𝜏
where 𝜏 is the map of Example 4.13 and 𝜆 is a scalar.

2. Show that the map 𝑐 of Example 4.14 is an 𝑅-matrix and verify that it satisfies the given poly-
nomial.

3. (a) Show that the dual vector space of a coalgebra 𝐶 is an algebra: consider the map 𝜆 ∶
𝐶∨ ⊗ 𝐶∨ → (𝐶 ⊗ 𝐶)∨ defined by (𝑓 ⊗ 𝑔)(𝑢 ⊗ 𝑣) ≔ 𝑔(𝑣) ⊗ 𝑓(𝑢) and define 𝐴 = 𝐶∨,
𝜇 = Δ∨ ∘ 𝜆 and 𝜂 = 𝜀∨.

(b) Show that in Example 4.18, the algebra structure defined on 𝑘{𝑋}∨ is indeed the natural
one we gave in (a) above.

(c) Show that the dual vector space of a finite dimensional algebra is a coalgebra. Hint: in
the finite dimensional setting, 𝜆 is an isomorphism. Compare Example 4.19.
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4. Define cocommutativity of a bialgebra 𝐴. Show that the flip 𝜏𝑉,𝑊 ∶ 𝑉 ⊗𝑊 → 𝑊 ⊗𝑉 is an
isomorphism of 𝐴-modules when 𝐴 is cocommutative. Show that addition in 𝔸1 is cocommu-
tative in 𝑘[𝑥].

5. (Fun for 334 students.) Let (𝐻, 𝜇, 𝜂, Δ, 𝜀) be a bialgebra. Define a convolution operation on
Hom(𝐻,𝐻) by the composition

𝐻 𝐻 ⊗𝐻 𝐻 ⊗𝐻 𝐻.Δ 𝑓⊗𝑔 𝜇

An endomorphism 𝑆 ∈ Hom(𝐻,𝐻) is a antipode for the bialgebra𝐻 if 𝑆∗id𝐻 = id𝐻 ∗𝑆 = 𝜂∘𝜀.
AHopf algebra is a bialgebra with an antipode. Define the commutative algebras

𝑀(2) = 𝑘[𝑎, 𝑏, 𝑐, 𝑑]
𝐺𝐿(2) = 𝑀(2)[𝑡]/((𝑎𝑑 − 𝑏𝑐)𝑡 − 1)

𝑆𝐿(2) = 𝐺𝐿(2)/(𝑡 − 1) = 𝑀(2)/(𝑎𝑑 − 𝑏𝑐 − 1).

(a) Show that for any commutative algebra 𝐴 there are bijections Hom(𝐺𝐿(2), 𝐴) ≃ GL2(𝐴)
and Hom(𝑆𝐿(2), 𝐴) ≃ SL2(𝐴), where GL2 and SL2 are the classical matrix algebras over
𝐴.

(b) Define Δ ∶ 𝑀(2) → 𝑀(2) ⊗𝑀(2) ≃ 𝑘[𝑎′, 𝑎″, 𝑏′, 𝑏″, 𝑐′, 𝑐″, 𝑑′, 𝑑″] by

Δ(𝑎) = 𝑎′𝑎″ + 𝑏′𝑐″, Δ(𝑏) = 𝑎′𝑏″ + 𝑏′𝑑″
Δ(𝑐) = 𝑐′𝑎″ + 𝑑′𝑐″, Δ(𝑑) = 𝑐′𝑏″ + 𝑑′𝑑″.

Show that for any commutative algebra 𝐴, Δ corresponds to usual matrix multiplication
in𝑀2(𝐴).

(c) Show that Δ(𝑎𝑑 − 𝑏𝑐) = (𝑎″𝑑″ − 𝑏″𝑐″)(𝑎″𝑑″ − 𝑏″𝑐″).
(d) Observe that Δ induces maps 𝐺𝐿(2) → 𝐺𝐿(2) ⊗ 𝐺𝐿(2) and 𝑆𝐿(2) → 𝑆𝐿(2) ⊗ 𝑆𝐿(2).
(e) Define suitable morphisms 𝐺𝐿(2) → 𝑘 and 𝑆𝐿(2) → 𝑘 corresponding to units, and suit-

able automorphisms of𝐺𝐿(2) and 𝑆𝐿(2) corresponding to inversions. Check that you now
have a Hopf algebra structure on 𝐺𝐿(2) and 𝑆𝐿(2).

6. (Fun for 334 students who also like quantum field theory.) The affine plane is the algebra gen-
erated freely by 𝑥 and 𝑦modulo the relation 𝑦𝑥 = 𝑥𝑦. The quantum commutation relation
is the relation 𝑦𝑥 = 𝑞𝑥𝑦, where 𝑞 ∈ 𝑘∗. Let 𝐼𝑞 be the two-sided ideal of the free algebra 𝑘⟨𝑥, 𝑦⟩
generated by 𝑦𝑥 − 𝑞𝑥𝑦, and let the quantum plane be the quotient 𝑘𝑞[𝑥, 𝑦] ≔ 𝑘⟨𝑥, 𝑦⟩/𝐼𝑞.

(a) Let 𝑅 be an algebra without zero divisors. If 𝛼 is an algebra endomorphism of 𝑅, then an
𝛼-derivation of 𝑅 is a linearmap 𝛿 ∶ 𝑅 → 𝑅 such that for all 𝑎, 𝑏 ∈ 𝑅, 𝛿(𝑎𝑏) = 𝛼(𝑎)𝛿(𝑏)+
𝛿(𝑎)𝛼(𝑏). Given an injective algebra endomorphism 𝛼 ∶ 𝑅 → 𝑅 and an 𝛼-derivation 𝛿 of
𝑅 there exists a unique algebra structure on the free module of polynomials 𝑅[𝑡] such
that the natural inclusion 𝑅 → 𝑅[𝑡] is an algebra morphism and 𝑡𝑎 = 𝛼(𝑎)𝑡 + 𝛿(𝑎).
This algebra structure is called the Ore extension 𝑅[𝑡, 𝛼, 𝛿]. (A proof of existence and
uniqueness is [38, Theorem I.7.1].) If 𝑅 is (left) Noetherian, then so is the Ore extension
[38, Theorem I.8.3].
Show that if 𝛼 is the automorphism of 𝑘[𝑥] determined by 𝛼(𝑥) = 𝑞𝑥, then 𝑘𝑞[𝑥, 𝑦] is
isomorphic to the Ore extension 𝑘[𝑥][𝑦, 𝛼, 0]. Conclude that 𝑘𝑞[𝑥, 𝑦] is Noetherian with
no zero divisors and has basis {𝑥𝑖𝑦𝑗}𝑖,𝑗≥0.
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(b) Show also that for any pair (𝑖, 𝑗) of nonnegative integers, 𝑦𝑖𝑥𝑗 = 𝑞𝑖𝑗𝑥𝑗𝑦𝑖 and for any 𝑘-
algebra 𝑅 there is a natural bijection between Hom(𝑘𝑞[𝑥, 𝑦], 𝑅) and {(𝑋, 𝑌) ∈ 𝑅 × 𝑅 ∶
𝑌𝑋 = 𝑞𝑋𝑌}. These pairs are 𝑅-points of the quantum plane.

(c) Let 𝐴 be the algebra of smooth complex functions on ℂ ⧵ {0}. Let 𝑞 ∈ ℂ ⧵ {0, 1}. Consider
the elemenets of 𝑅 = Endlin.(𝐴) given by

𝜏𝑞(𝑓)(𝑥) = 𝑓(𝑞𝑥) and 𝛿𝑞(𝑓)(𝑥) =
𝑓(𝑞𝑥) − 𝑓(𝑥)

𝑞𝑥 − 𝑥 .

Show that (𝜏𝑞, 𝛿𝑞) is an 𝑅-point of 𝑘𝑞(𝑥, 𝑦) and justify the equation lim𝑞→1 𝛿𝑞 = 𝑑/𝑑𝑥.

7. (a) Compute the HOMFLY polynomial of the trefoil knot and the Hopf link.
(b) Show that if 𝐿 is a link and 𝐿′ is its mirror image then 𝑃𝐿′(𝑥, 𝑦) = 𝑃𝐿(𝑥−1, 𝑦−1). Conclude

that the trefoil knot is not amphichiral.

8. Show that the HOMFLY polynomial is invariant under mutation, hence does not distinguish
between the Kinoshita–Terasaka and Conway knots (Construction 1.15).

9. Let (𝐿+, 𝐿−, 𝐿0) be a Conway triple. Show that there exist tangles 𝐿1, 𝐿2, 𝐿3, 𝐿4 such that

𝐿+ = 𝐿1 ∘ (𝐿2 ⊗𝑋+ ⊗ 𝐿3) ∘ 𝐿4
𝐿− = 𝐿1 ∘ (𝐿2 ⊗𝑋− ⊗ 𝐿3) ∘ 𝐿4
𝐿0 = 𝐿1 ∘ (𝐿2 ⊗𝑋0 ⊗ 𝐿3) ∘ 𝐿4.

10. On representations of 𝐵𝑛, [38, §X.6.2]. Let 𝑉 be a vector space, 𝑐 ∈ Aut(𝑉 ⊗ 𝑉), and 𝑛 > 1 an
integer. For 1 ≤ 𝑖 ≤ 𝑛 − 1 define 𝑐𝑖 ∈ Aut(𝑉⊗𝑛) by

𝑐𝑖 =
⎧
⎨
⎩

𝑐 ⊗ id𝑉⊗𝑛−2 if 𝑖 = 1
id𝑉⊗𝑛−1 ⊗𝑐⊗ id𝑉⊗𝑛−𝑖−1 if 1 < 𝑖 < 𝑛 − 1
id𝑉⊗𝑛−2 if 𝑖 = 𝑛 − 1.

(a) Show that if |𝑖 − 𝑗| > 1 then 𝑐𝑖𝑐𝑗 = 𝑐𝑗𝑐𝑖.
(b) Show that 𝑐𝑖𝑐𝑖+1𝑐𝑖 = 𝑐𝑖+1𝑐𝑖𝑐𝑖+1 for all 𝑖 if and only if 𝑐 is an 𝑅-matrix (i.e. a solution of the

Yang-Baxter equation).
(c) Let 𝑐 ∈ Aut(𝑉 ⊗ 𝑉) be an 𝑅-matrix. Show that for any 𝑛 > 0 there exists a unique group

morphism 𝜌𝑐𝑛 ∶ 𝐵𝑛 → Aut(𝑉⊗𝑛) such that 𝜌𝑐𝑛(𝜎𝑖) = 𝑐𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1. (In other words,
𝑅-matrices manufacture representations from 𝐵𝑛 onto 𝑉⊗𝑛 for all 𝑛 ≥ 2.)

⨌

Since the university has only seen fit to provide us with two-dimensional blackboards, this
is the best I can do.
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Alexander ideal, 68
Alexander lemma, 57
Alexander module, 68
Alexander polynomial, 68
Alexander trick, 58
Alexander–Conway polynomial, 69, 74
algebra, 72
algebraic link, 15
alternating diagram, 13
amalgamated free product, 16
amphichiral, 10
antipode, 80
arc graph, 11
arcs, 10
Arnold’s cat map, 37
Artin generators, 50, 57

basis, 65
belt trick, 34, 59
bialgebra, 73

braided, 73
quasi-cocommutative, 73

big diagonal, 57
Birman exact sequence, 58

generalised, 59
braid group, 50
braid on 𝑛 strands, 49
bridge number, 11

capping exact sequence, 62
characteristic torus decomposition, 36
chiral pair, 10

Clifford algebras, 33
Clifford torus, 48
closure

of a braid, 50, 56
cloverleaf knot, 9
coalgebra, 72
cocommutativity, 80
coevaluation map, 77
complete manifold, 39
component

of a link, 9
configuration space, 57
connected sum, 13
continued fraction, 52
convolution, 80
Conway knot, 14
Conway triple, 69
Conway’s classification of rational tangles, 50
crossing number, 12

of a 2-bridge link, 47
cusp, 29

rank 1, 38
rank 2, 38

cusp torus, 42
cyclic covering, 66

Dehn filling, 42
Dehn surgery, 42
Dehn surgery coefficient, 42
derivation, 80
determinant

of a 2-bridge link, 47
Dirichlet region, 43

Eilenberg-Mazur swindle, 14
elementary ideal, 66
enhanced 𝑅-matrix, 77
Euclidean algorithm, 52
evaluation map, 77
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Farey word, 54
Fibonacci polynomials, 70
fibred solid torus, 35
fibres, 36
figure eight knot, 9

Riley’s representation, 54
Thurston’s proof of hyperbolicity, 30

finite presentation
for an 𝑅-module, 65

Fox knot, 10
framed knot, 15
free 𝑅-module, 65

genus of a link, 63
Gordon–Luecke theorem, 15
granny knot, 14

Halpern’s inequality, 43
Heckoid groups, 54
Heegard splitting, 48
HOMFLY polynomial, 74
Hopf algebra, 80
Hopf fibration, 24, 33
Hopf link, 24
hyperbolic 3-manifold, 29
hyperbolic Dehn filling space, 42
hyperbolic knot, 29

ideal jelly, 34
injectivity radius, 38

Jørgensen’s theorem on volumes, 43
Jones polynomial, 13, 74

Killing form, 32
Kinoshita–Terasaka knot, 14
Kleinian, 29
knot, 9
knot diagram, 10
knot invariant, 12
knots don’t cancel, 14

lens space, 48
level-preserving isotopy, 50
Lickorish–Wallace theorem, 43
Lie algebra, 32
Lie group, 32
link, 9
linking number, 13
Lobachevskii function, 40

locally 𝑋 , 28

mapping class group, 57
Margulis’ lemma, 38
model geometry, 27
modelled on (𝐺, 𝑋), 28
Mostow-Prasad rigidity theorem, 39
mutation, 14

nugatory crossing, 13

order, 22
Ore extension, 80

partial tanspose, 77
partial trace, 77
Perko pair, 13
permutation

of a braid, 57
plate trick, see belt trick
points of the quantum plane, 80
Polycut software, 49, 63
polygonal knot, 10
presentation matrix, 65
pretzel knot, 68
prime knot, 14, 15

quantum commutation relation, 80
quantum plane, 80
quaternions, 33

rational, 50
reduced diagram, 13
reducible diagram, 13
Reidemeister moves, 12
representation, 77
Riley polynomial, 54
Riley slice, 54
Riley’s construction of 𝑝-reps, 23
Riley–Thurston theorem on geometric struc-

tures, 32

satellite, 30
Schubert’s theorem on two-bridge links, 49
Seifert circles, 63
Seifert fibration, 36
Seifert form, 66
Seifert surface, 63
Seifert’s knot, 68
Seifert–Van Kampen theorem, 16
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sign, 10
skein module, 75
skein relations, 69
SnapPea algorithm, 41
SnapPy, 41
square knot, 14
stevedore’s knot, 25
Sweedler’s four-dimensional bialgebra, 74

Tait conjecture, first, 13
tame knot, 10, 15
tangle, 50, 76
tangle category, 77
thick-thin decomposition, 38
Thurston geometries, 28
Thurston’s Dehn filling theorem, 42
torsion

of a 2-bridge link, 47
torsion diagram, 45
torus knot, 17, 30

admit Seifert fibrations, 36
is algebraic, 25

trefoil knot, 9
˜SL(2, ℝ)-geometry, 34

tricolourable, 12
trivial fibred solid torus, 35
twisted 𝐼-bundle, 43

universal 𝑅-matrix, 73
unknot, 9
unknotting tunnel, 56
unordered configuration space, 57

Viergeflechte, 50

Weierstrass function, 35
wild knot, 10
Wirtinger presentation, 17

proof of, 19
writhe, 13, 15

Yang-Baxter equation, 71
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