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Introductory remarks

These notes are an introduction to the actions of Möbius transformations on hyperbolic space, and
the manifolds which are constructed via taking quotients of the space by the group action.

Primary references are [6, 34]. See also [38] for geometric fundamentals.

v



vi INTRODUCTORY REMARKS



Chapter 1

Möbius transformations

The goal for this chapter is to introduce the notion of a Möbius transformation on ℝ̂𝑛 (which we
shall, in the case 𝑛 = 2, call a ‘fractional linear transformation’ and consider with the natural action
on ℂ̂).

1.1 Differentiability

Suppose𝑈 ⊆ ℝ𝑛 is open, and let 𝑓 ∶ 𝑈 → ℝ𝑛 be a function. We say that 𝑓 is differentiable at some
𝑥 ∈ 𝑈 if there exists a linear map 𝑑𝑓𝑥 ∶ ℝ𝑛 → ℝ𝑛 such that there exists an open neighbourhood 𝑉
of 𝑥 such that for all 𝑦 ∈ 𝑉,

𝑓(𝑦) − 𝑓(𝑥) = 𝑑𝑓𝑥(𝑦 − 𝑥) + ℴ(𝑦 − 𝑥)

where ℴ is a function with ℴ(0) = 0 and lim𝑦→𝑥
‖ℴ(𝑦−𝑥)‖
‖𝑦−𝑥‖

→ 0.

We shall be interested in maps ℝ𝑛 → ℝ𝑛 and ℂ → ℂ which ‘locally preserve angles’. We will
wish to define this as ‘have differentials which preserve angles’.

Let 𝐴 ∈ GL(𝑛,ℝ). We say 𝐴 is orthogonal if (𝐴𝑥,𝐴𝑦) = (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ ℝ𝑛. It is easy
to prove (using the fact that 𝐴 and 𝐴𝑡 are adjoint operators) that this is equivalent to the condition
𝐴𝑡𝐴 = 𝐼, and that the set of all such operators forms a subgroup 𝑂(𝑛) ≤ GL(𝑛,ℝ). An orthogonal
map is precisely a linear Euclidean isometry; and all Euclidean isometries are of the form𝐴𝑥+𝑎 for
some 𝐴 ∈ 𝑂(𝑛) and some 𝑎 ∈ ℝ𝑛.

In the complex case, we say 𝐴 ∈ GL(𝑛,ℂ) is unitary if (𝐴𝑥,𝐴𝑦) = (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ ℂ𝑛.
Again, it is easy to prove that this is equivalent to the condition 𝐴∗𝐴 = 𝐼 (where 𝐴∗ is the conjugate
transpose of 𝐴), and that we have defined a subgroup 𝑈(𝑛) ≤ GL(𝑛,ℂ).

We say that 𝑓 is conformal at 𝑥 if the operator 𝑑𝑓𝑥 is a non-zero scalar multiple of some orthog-
onal matrix; we say that 𝑓 is orientation preserving or reversing according to whether det𝑑𝑓𝑥 is
positive or negative.

We may identify ℂ with ℝ2 (in this case, differentiable maps are called holomorphic), and ask
for 𝑧 ∈ 𝑈 that the linear map 𝑑𝑓𝑧 is in fact multiplication by some𝑤 ∈ ℂ; doing this, we deduce the
Cauchy-Riemann equations,

𝜕𝑢
𝜕𝑥

= 𝜕𝑣
𝜕𝑦
, 𝜕𝑢

𝜕𝑦
= −𝜕𝑣

𝜕𝑥

(where we are writing 𝑧 = 𝑥 + 𝑖𝑦 and 𝑤 = 𝑢 + 𝑖𝑣, so 𝑓(𝑥 + 𝑖𝑦) = 𝑢 + 𝑖𝑣). In any case, we see that

1



2 CHAPTER 1. MÖBIUS TRANSFORMATIONS

𝑑𝑓𝑥 has matrix representation

𝐴 = [ 𝑎 𝑏
−𝑏 𝑎]

for 𝑎 = 𝜕𝑢
𝜕𝑥

and 𝑏 = 𝜕𝑢
𝜕𝑦
. A simple computation then shows that 𝐴𝑡𝐴 = (det𝐴)𝐼, so 𝑑𝑓𝑥 is an

orthogonal transformationwheneverdet𝑑𝑓𝑥 ≠ 0. In otherwords, a holomorphicmap𝑓 is conformal
away from its critical points. Note also, det𝐴 = 𝑎2 + 𝑏2 ≥ 0; so holomorphic maps are orientation
preserving.

We briefly discuss now a central example of conformal maps.

1.1.1 Example. A linear fractional transformation is a map 𝑓 ∶ ℂ→ ℂ such that

𝑓(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

for all 𝑧 ∈ ℂ, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ. Note that 𝑓 is defined and holomorphic at every point except
𝑧 = −𝑑∕𝑐.

Consider now ℙℂ1 with homogenous coordinates; there is a natural action of End(2,ℂ) on this
space, namely by direct multiplication. Consider the computation

𝐴 = [𝑎 𝑏
𝑐 𝑑] [

𝑧
1] = [𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑]

which shows that this natural action gives us (whenever 𝑧 ≠ −𝑑∕𝑐) precisely the action of 𝑓 on the
copy of ℂ in ℙℂ1 with second coordinate 1. In this way we have a natural identification between

the group of non-singular fractional linear transformations (those with
|||||||
𝑎 𝑏
𝑐 𝑑

|||||||
≠ 0) and the group

PSL(2,ℂ). It is natural then to view fractional linear transformations as acting on theRiemann sphere
ℂ̂ ≔ ℂ∪{∞}, sending−𝑐∕𝑑 ↦∞ and∞↦ 𝑎∕𝑐 (with 𝑎∕𝑐 ≔∞when 𝑐 = 0). Wewill use the symbol
𝕄 to denote the group of fractional linear transformations with their action on the Riemann sphere.

Now suppose 𝑓 is singular, so
|||||||
𝑎 𝑏
𝑐 𝑑

|||||||
= 0. This implies that the kernel of the matrix𝐴 as it acts as

a linear map on ℝ2 is nontrivial. If dimker𝐴 = 2, then 𝐴 is the zero transformation and thus does
not even act on ℙℂ1. On the other hand, if dimker𝐴 = 1 then dim im 𝑎 = 1; that is, 𝑓 is a partial
function on ℙℂ1 which sends all the points in its domain of definition to a single line inℝ2 and thus
a single point in ℙℂ1.

Finally, we note that given any three points 𝑧1, 𝑧2, 𝑧3 ∈ ℂ and any other three points𝑤1, 𝑤2, 𝑤3 ∈
ℂ there is a fractional linear transformation sending each 𝑧𝑖 to the respective 𝑤𝑖 (fractional linear
transformations are triply transitive). Indeed, it suffices to show this when (𝑤1, 𝑤2, 𝑤3) = (0, 1,∞);
and then the map

𝑧 ↦
𝑧 − 𝑧1
𝑧 − 𝑧3

𝑧2 − 𝑧3
𝑧2 − 𝑧1

works.

1.2 The general Möbius group
In this section, we follow essentially [6, section 3.1] and [14, chapter 5].

Let 𝑎 ∈ ℝ𝑛 and 𝑟 > 0. We write 𝑆(𝑎, 𝑟) for the sphere of radius 𝑟, centred at 𝑎. There is a natural
notion of a reflection through 𝑆(𝑎, 𝑟).
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1.2.1Proposition. For any𝑥 ∈ ℝ𝑛⧵{𝑎}, there is aunique point𝑥′ on the ray ⃖⃗𝑎𝑥 such that ‖𝑥′ − 𝑎‖‖𝑥 − 𝑎‖ =
𝑟2.

Proof. There is a unique intersection point between the ray and the sphere 𝑆(𝑎, 𝑟2∕‖𝑥 − 𝑎‖). mAk

We usually consider the sphere 𝑆(𝑎, 𝑟) as a subset of the space ℝ̂𝑛 ≔ ℝ𝑛 ∪ {∞}. In this case, we
define a transformation 𝜙 ∶ ℝ̂𝑛 → ℝ̂𝑛 that sends each 𝑥 ∈ ℝ𝑛 ⧵ {𝑎} to the point 𝑥′ of ℝ𝑛 defined
by Proposition 1.2.1, and which swaps 𝑎 and∞. We call this transformation the sphere inversion
with respect to 𝑆(𝑎, 𝑟).

It is fairly easy to write down a formula for the action of 𝜙 on ℝ𝑛 ⧵ {𝑎}:

1.2.2 Proposition. If 𝜙 is sphere inversion with respect to 𝑆(𝑎, 𝑟), then

𝜙(𝑥) ≔ 𝑎 + (
𝑟

‖𝑥 − 𝑎‖
)
2

(𝑥 − 𝑎).

Proof.

‖𝜙(𝑥) − 𝑎‖ =
‖‖‖‖‖‖‖‖‖‖‖
(

𝑟
‖𝑥 − 𝑎‖

)
2

(𝑥 − 𝑎)
‖‖‖‖‖‖‖‖‖‖‖
= 𝑟2

‖𝑥 − 𝑎‖
. mAk

It is clear by looking at this formula that 𝜙 is continuous at all points of ℝ̂𝑛 except possibly 𝑎 and
∞. We may place a topology on ℝ̂𝑛 to make 𝜙 continuous at every point; in order to do this, we will
need some geometric information about 𝜙.

1.2.3 Lemma. Let𝜙 be a sphere inversionwith respect to a sphere 𝑆; then𝜙 is an involution of ℝ̂𝑛 which
exchanges the interior and the exterior of 𝑆. mAk

Notation. If 𝑥, 𝑦 ∈ ℝ𝑛, we use the notation |𝑥, 𝑦| for the Euclidean distance ‖𝑥 − 𝑦‖. We shall use
𝑑(⋅, ⋅) to denote another metric on ℝ𝑛 (the chordal metric) later on.

1.2.4 Lemma. Let 𝑥, 𝑦 ∈ ℝ𝑛 be points, and let 𝜙 be sphere inversion with respect to 𝑆(𝑎, 𝑟); then

|||𝜙(𝑥), 𝜙(𝑦)||| =
𝑟2

|𝑥, 𝑎||𝑎, 𝑦|
|𝑥, 𝑦|.

Proof. It is easy to see that the triangles 𝑎𝑥𝑦 and 𝑎𝜙(𝑦)𝜙(𝑥) are similar (indeed, the angle at 𝑎 is
shared and one other angle on both triangles is a right angle). Then

|||𝜙(𝑥), 𝜙(𝑦)|||
|𝑥, 𝑦|

=
|||𝑎, 𝜙(𝑥)|||
|𝑎, 𝑦|

= |𝑎, 𝑥|
|𝑎, 𝑥|

|||𝑎, 𝜙(𝑥)|||
|𝑎, 𝑦|

= 𝑟2

|𝑥, 𝑎||𝑎, 𝑦|

completes the proof. mAk

1.2.5 Theorem. Let𝐻 ⊆ ℝ𝑛 be a sphere or a hyperplane (when we embed hyperplanes ofℝ𝑛 into ℝ̂𝑛,
we will always consider them as spheres through the point∞), and let 𝜙 be the sphere inversion with
respect to 𝑆 = 𝑆(𝑎, 𝑟). Then 𝜙(𝐻) is a sphere or a hyperplane.

More precisely:

1. The image under 𝜙 of a hyperplane containing 𝑎 is a hyperplane containing 𝑎.

2. The image under 𝜙 of a hyperplane not containing 𝑎 is a sphere containing 𝑎.

3. The image under 𝜙 of a sphere containing 𝑎 is a hyperplane not containing 𝑎.
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(a) Case that 𝑝 lies inside 𝑆. (b) Case that 𝑝 lies outside 𝑆.

Figure 1.1: Proof of Lemma 1.2.6.

4. The image under 𝜙 of a sphere not containing 𝑎 is a sphere not containing 𝑎.

We use the following lemma.

1.2.6 Lemma (Jakob Steiner, 1826). Let 𝑆 = 𝑆(𝑎, 𝑟) be a sphere. If two lines through a point 𝑝 meet 𝑆
at points 𝑎, 𝑎′ and 𝑏, 𝑏′ respectively then |||𝑝, 𝑎|||

||||𝑝, 𝑎
′|||| =

|||𝑝, 𝑏|||
||||𝑝, 𝑏

′||||.

We call the constant value of the product the power of 𝑝 with respect to 𝑆.

Proof. If 𝑝 is inside the sphere (Fig. 1.1a), we have similar triangles 𝑎𝑝𝑏′ and 𝑏𝑝𝑎′ whence we obtain
|||𝑝, 𝑎|||∕

||||𝑝, 𝑏
′|||| =

|||𝑝, 𝑏|||∕
||||𝑝, 𝑎

′||||. If 𝑝 is outside the sphere (Fig. 1.1b), consider a point 𝑡 such that the line
𝑝𝑡 is tangent to 𝑆. The triangles 𝑝𝑡𝑎 and 𝑎′𝑡𝑝 are similar, whence |||𝑝, 𝑡|||∕|𝑡, 𝑎| =

||||𝑎
′, 𝑡||||∕

|||𝑡, 𝑝|||; thus
|||𝑡, 𝑝|||

2 = |𝑡, 𝑎|||||𝑡, 𝑎
′||||, which is independent of the choice of 𝑎. mAk

Proof of Theorem 1.2.5. 1. Let 𝐻 be a hyperplane containing 𝑎; then for any 𝑥 ∈ 𝐻, the ray ⃖⃗𝑎𝑥
lies in 𝐻; hence 𝜙(𝑥) ∈ 𝐻. Since 𝜙 is its own inverse, 𝜙−1(𝑥) ∈ 𝐻 for all 𝑥 ∈ 𝐻, and thus
𝜙(𝜙−1(𝑥)) = 𝑥 exhibits 𝑥 as the image of a point in𝐻, i.e. 𝜙(𝐻) is bijective on𝐻.

2. Let 𝐻 be a hyperplane disjoint from 𝑎, let 𝑥 be the foot of the perpendicular from 𝐻 to 𝑎, and
write 𝑥′ for 𝜙(𝑥) (Fig. 1.2). We claim that 𝜙(𝐻) is the sphere 𝑆′ with diameter [𝑎, 𝑥′]. Indeed,
pick 𝑦 ∈ 𝐻, and let 𝑦′ be the intersection of the ray ⃖⃗𝑎𝑦 and the sphere 𝑆′. The triangles 𝑎𝑥𝑦
and 𝑎𝑦′𝑥′ are similar, hence

|𝑎, 𝑦|
|𝑎, 𝑥|

=
||||𝑎, 𝑥

′||||
|𝑎, 𝑦′|

⟹ |𝑎, 𝑦|||||𝑎, 𝑦
′|||| =

||||𝑎, 𝑥
′|||||𝑎, 𝑥| = 𝑟2

so 𝑦′ = 𝜙(𝑦); as in (1) it is easy to see that 𝜙 is bijective between𝐻 and 𝑆′.

3. Apply (2) to 𝜙−1.
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Figure 1.2: Image under inversion of a hyperplane not through the centre of inversion.

4. Surprisingly difficult; for a different approach, see [14, section 5.4] (via cross ratios). Let 𝑆′ =
𝑆(𝑎′, 𝑟′) be a sphere not containing𝑎; write𝑝 for the power of𝑎with respect to𝑆′ (Lemma1.2.6),
and let 𝜓 be themap 𝑥 ↦ 𝑟2

𝑝
(𝑥−𝑎)+𝑎. This is a Euclidean dilation with centre 𝑎, so the image

𝜓(𝑆′) is a sphere 𝑆′′. In particular, if 𝑥 is any point of 𝑆′ then [𝜓(𝑎′), 𝜓(𝑥)] is a radius of 𝑆′′. We
have by the properties of dilations that

|||𝑎, 𝜓(𝑥)|||
|||𝑎, 𝜓(𝑎′)|||

= 𝑟2
𝑝 .

Let 𝑦 be the other intersection point of ⃖⃖⃗𝑎, 𝑥 and 𝑆′. By the properties of the power of 𝑎, we have
|𝑎, 𝑦||𝑎, 𝑥| = 𝑝. Substituting in the above display and cancelling, we have

|||𝑎, 𝜓(𝑥)|||
|𝑎, 𝑥|

= 𝑟2

|𝑎, 𝑦||𝑎, 𝑥|
⟹ |||𝑎, 𝜓(𝑥)||||𝑎, 𝑦| = 𝑟2

and thus 𝜓(𝑥) is the image of 𝑥 under the spherical transformation with respect to 𝑆. We have
therefore shown that 𝜙↾𝑆′ = 𝜓, and in particular 𝜙(𝑆′) = 𝑆′′. mAk

Based on this theorem, we will view hyperplanes as ‘spheres through infinity’ and hyperplane
reflections as generalised sphere inversions. In particular, a reflection will be a map 𝜙 ∶ ℝ̂𝑛 → ℝ̂𝑛

which is either a sphere inversion or the reflection across a hyperplane (extended to fix∞).

1.2.7 Proposition. Letℬ be the set of subsets of ℝ̂𝑛 consisting of the following:

• For each 𝑟 > 0 and each 𝑎 ∈ ℝ𝑛, the set 𝐵(𝑎, 𝑟) ≔ {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥 − 𝑎‖ < 𝑟};

• For each 𝑟 > 0, the set 𝐵(∞, 𝑟) ≔ {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ > 𝑟} ∪ {∞}.

Thenℬ is a basis for a topology on ℝ̂𝑛.
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Proof. Recall that a basis satisfies two properties: (1), for all 𝑥 ∈ ℝ̂𝑛, there exists 𝐵 ∈ ℬ such that
𝑥 ∈ 𝐵; and (2), if 𝑥 ∈ 𝐵1 ∩ 𝐵2 for 𝐵1, 𝐵2 ∈ ℬ then there exists 𝐶 ∈ ℬ such that 𝑥 ∈ 𝐶 ⊆ 𝐵1 ∩ 𝐵2.
Clearly (1) is satisfied. For (2), let 𝐵1, 𝐵2 ∈ ℬ; we have three possibilities. If 𝐵1 and 𝐵2 are Euclidean
balls, then (2) is satisfied since Euclidean balls form a basis for the usual topology on ℝ𝑛. If 𝐵1 =
𝐵(∞, 𝑟1) and 𝐵2 = 𝐵(∞, 𝑟2) are balls about infinity, then 𝐵1 ∩ 𝐵2 = 𝐵(∞,max{𝑟1, 𝑟2}) ∈ ℬ. Finally,
suppose 𝐵1 = 𝐵(𝑎, 𝑟1) and 𝐵2 = 𝐵(∞, 𝑟2) for 𝑎 ∈ ℝ𝑛. Both of these have open intersection with ℝ𝑛,
so 𝐵1 ∩ 𝐵2 contains a Euclidean ball around each of its elements. mAk

Wecall the topology generated byℬ the inversive topology on ℝ̂𝑛. Clearlyℝ𝑛 has the Euclidean
topology as a subspace of ℝ̂𝑛.

1.2.8 Proposition. Let 𝜙 ∶ ℝ̂𝑛 → ℝ̂𝑛 be a reflection. Then 𝜙 is continuous with respect to the inversive
topology.

Proof. . It suffices to check that 𝜙−1(𝐵) = 𝜙(𝐵) is open for each 𝐵 ∈ ℬ. For reflections, this is an easy
exercise. The case of spherical inversions is also easy to do using Theorem 1.2.5 and Lemma 1.2.3:
𝜙−1 = 𝜙 sends interiors and exteriors of spheres (Euclidean open balls and open balls around infinity,
respectively) to interiors and exteriors of spheres or open half-planes. mAk

We now show that the inversive topology is in fact a metric topology. We will do this by pulling
back the chordal metric of the 𝑛-sphere via stereographic projection.

Consider the natural injection ⋅̃ ∶ ℝ̂𝑛 → ℝ̂𝑛+1 defined by (𝑎1,… , 𝑎𝑛)∼ ≔ (𝑎1,… , 𝑎𝑛, 0) on ℝ𝑛

and sending∞ → ∞. Let 𝑆𝑛 denote the 𝑛-sphere embedded in ℝ̂𝑛+1, namely 𝑆𝑛 = 𝑆(0, 1) ⊆ ℝ𝑛+1.
Define the projection map 𝜋 ∶ ℝ𝑛+1 → 𝑆𝑛 by stereographic projection away from 𝑒𝑛+1; we find
𝜆 ∈ (0, 1] such that for 𝑥 ∈ ℝ𝑛,

1 = ‖𝜆𝑥̃ + (1 − 𝜆)𝑒𝑛+1‖
2 = 𝜆2‖𝑥‖2 + (1 − 𝜆)2 ⟹ 0 = 𝜆2

(
‖𝑥‖2 + 1

)
− 2𝜆

and thus 𝜆 = 2
‖𝑥‖2+1

; so

𝜋(𝑥̃) = 2

‖𝑥‖2 + 1
𝑥̃ +

‖𝑥‖2 − 1

‖𝑥‖2 + 1
𝑒𝑛+1.

Defining 𝜋(∞) ≔∞, we obtain a bijection 𝜋 ∶ ℝ̂𝑛 → 𝑆𝑛. We may define therefore a pullback metric
on ℝ̂𝑛, via

(1.2.9) 𝑑(𝑥, 𝑦) ≔ ‖𝜋(𝑥̃) − 𝜋(𝑦̃)‖.

This is the chordal metric on ℝ̂𝑛.

1.2.10 Theorem. The metric topology on ℝ̂𝑛 induced by the chordal metric is precisely the inversive
topology.

Proof. We give an explicit formula for 𝑑:

(1.2.11) 𝑑(𝑥, 𝑦) =

⎧
⎪

⎨
⎪
⎩

2‖𝑥 − 𝑦‖
(1 + ‖𝑥‖)2)1∕2(1 + ‖𝑦‖)2)1∕2

𝑥, 𝑦 ∈ ℝ𝑛

2

1 + ‖𝑥‖2
𝑦 = ∞.

One can obtain this formula by realising that stereographic projection fromℝ𝑛 to 𝑆𝑛 is precisely the
sphere reflection in 𝑆(𝑒𝑛+1,

√
2) and using the formulae ‖𝑥̃ − 𝑒𝑛+1‖

2 = 1 + ‖𝑥‖2 and Lemma 1.2.4.
It is easy to see now that every open set of one topology is open in the other. mAk
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Wenowhave ametric topologywith the property that every reflection𝜙 ∶ ℝ̂𝑛 → ℝ̂𝑛 is continuous
with respect to it.

1.2.12 Definition. The group of homeomorphisms of ℝ̂𝑛 generated by the set of reflections is the
general Möbius group; an element of this group is aMöbius transformation. We use GM(𝑛) to
denote this group.

Since every Euclidean isometry is a finite composition of (hyperplane) reflections (this is proved
geometrically in [13, chapter 3], and algebraically as [6, theorem 3.1.3]), we see that Isom(𝑛) ≤
GM(𝑛).

More interestingly, the fractional linear transformations of Example 1.1.1 are Möbius transfor-
mations.

1.2.13 Lemma. The complex inversionmap 𝑧 ↦ 𝑧−1 is a Möbius transformation in ℝ̂2.

Proof. Let 𝑧 = 𝑟 exp(𝑖𝜃); then 𝑧−1 = 𝑟−1 exp(−𝑖𝜃), so 𝑧 ↦ 𝑧−1 is the composition of inversion in the
unit circle and reflection across the real axis. mAk

1.2.14 Proposition. Let 𝑓 be the fractional linear transformation given on ℂ̂ by the matrix [𝑎 𝑏
𝑐 𝑑].

Then

𝑓(𝑧) = 𝑎
𝑐 −

𝑎𝑑 − 𝑏𝑐
𝑐2

(𝑧 + 𝑑
𝑐 )

−1

and so 𝑓 is the composition of a translation, complex inversion, dilation, and a second translation. In
particular, 𝑓 ∈ GM(2). mAk

We finally remark that there is a second natural generating set of GM(𝑛), distinct from the set of
all reflections.

1.2.15 Proposition. The group GM(𝑛) is generated by the set of transformations ℝ̂𝑛 → ℝ̂𝑛 consisting
of:

1. The orthogonal transformations 𝑂(𝑛) (which are taken to fix∞);

2. The sphere inversion with respect to 𝑆(0, 1), 𝑥 ↦ 𝑥∗ ≔ ‖𝑥‖−2𝑥;

3. The real dilations about 0, 𝑥 ↦ 𝑘𝑥 for all 𝑘 ∈ ℝ>0 (which are taken to fix∞); and

4. The translations, 𝑥 ↦ 𝑥 + 𝑎 for all 𝑎 ∈ ℝ𝑛 (which are taken to fix∞).

Proof. It is clear (e.g. by the formula of Proposition 1.2.2) that a sphere inversion in 𝑆(𝑎, 𝑟) is precisely
a composition of a translation 𝑥 ↦ 𝑥 − 𝑎, sphere inversion through the unit sphere, dilation by 𝑟2,
and translation by 𝑎.

Note also, every Euclidean reflection is an orthogonal transformation composed with a transla-
tion. mAk

1.3 Geometric properties of the general Möbius group
We already know that fractional linear transformations are conformal, being holomorphic. We now
consider the general case. In this section, we follow essentially [6, section 3.2].

1.3.1 Theorem. Every reflection is orientation-reversing and conformal. Thus every element ofGM(𝑛)
is conformal; and an element is orientation-reversing or preserving as it is a product of an odd or an
even number of reflections, respectively.
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Proof. Elementary but tedious computations with derivatives, see [6, theorem 3.1.6]. mAk

The following theorem essentially gives the converse to Proposition 1.2.14: every orientation-
preserving Möbius transformation in ℝ̂2 is a fractional linear transformation.

1.3.2 Theorem. Let 𝑓 ∶ ℂ̂ → ℂ̂ be a continuous injection, entire on ℂ. Then 𝑓 is a fractional linear
transformation.

Proof. Let 𝑔 be a fractional linear map sending 𝑓(∞)↦∞, and let ℎ = 𝑔𝑓; then ℎ is also a holomor-
phic injection of ℂ̂. Since ℎ fixes∞, ℎ(ℂ) ⊆ ℂ and so ℎ↾ℂ is an injective entire function. By Picard’s
little theorem ([2, theorem 5 of chapter 8]), since ℎ is non-constant it has imageℂ orℂ⧵ {𝑧} for some
𝑧 ∈ ℂ. On the other hand, ℎ is a homeomorphism onto ℎ(ℂ) and so the latter is simply-connected;
this means ℎ(ℂ) = ℂ and ℎ is bijective.

Now note, by continuity lim𝑧→∞ ℎ(𝑧) = ∞. Thus ℎ has a pole at ∞, so ℎ(1∕𝑧) has a pole at
0. Thus we may expand ℎ(1∕𝑧) at 0 in the form ℎ(1∕𝑧) = 𝑧−𝑘

∑∞
𝑛=0 𝑎𝑛𝑧

𝑛 for some 𝑘 ∈ ℤ, and so
ℎ(𝑧) = 𝑧𝑘

∑∞
𝑛=0 𝑎𝑛𝑧

−𝑛 at 0. Since ℎ does not have a pole at 0, there must be only positive powers in
the expansion and so ℎ is polynomial; and since ℎ is injective, we must have that the degree of the
polynomial is 1. Thus ℎ(𝑧) = 𝑎𝑧 + 𝑏. Now 𝑓 = 𝑔−1ℎ; and the composition of two fractional linear
maps is fractional linear. mAk

1.3.3 Corollary. Let 𝑓 ∶ ℝ̂2 → ℝ̂2 be a Möbius transformation. Then:

1. If 𝑓 is orientation preserving, then 𝑓 is a fractional linear transformation.

2. If 𝑓 is orientation reversing, then 𝑓 is a fractional reflection: a map which acts on ℂ̂ as

𝑧 ↦ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

for some 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ.

Proof. The orientation preserving case is precisely Theorem1.3.2. Suppose𝑓 is orientation reversing;
let 𝑔 be the map 𝑧 ↦ 𝑧, which is a reflection and hence Möbius. The composition 𝑓𝑔 is orientation
preserving and so by part 1, (𝑓𝑔)(𝑧) = 𝑎𝑧+𝑏

𝑐𝑧+𝑑
for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ. Then 𝑓(𝑧) = (𝑓𝑔𝑔)(𝑧) = 𝑎𝑧+𝑏

𝑐𝑧+𝑑
as

required. mAk

Recall, we defined 𝕄 to be the group of fractional linear transformations acting on ℂ̂. We will
write M(𝑛) for the subgroup of GM(𝑛) of those Möbius transformations which are orientation pre-
serving, with their natural action on ℝ̂𝑛; identifying ℂ̂ and ℝ̂2 gives a natural identification 𝕄 =
M(2), and we will continue to avoid treating these group actions as being different.

1.3.4 Lemma. Möbius transformations are transitive on spheres.

Proof. Let 𝑆 ⊆ ℝ̂𝑛 be a sphere; it suffices to show that there is a transformation mapping 𝑆 to the
plane 𝑥𝑛 = 0. If 𝑆 is a plane, a Euclidean motion suffices. Otherwise, pick a point 𝑥 ∈ 𝑆 and take a
Möbius transformation sending 𝑥 →∞, then this reduces to the plane case. mAk

1.3.5 Lemma. Let 𝜎 be the Euclidean reflection in ℝ̂𝑛 with respect to the plane 𝑆 with equation 𝑥𝑛 = 0.
If 𝜙 is any Möbius transformation that fixes 𝑆 pointwise, then 𝜙 = 𝜎 or 𝜙 is the identity.
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Proof. Let 𝑎 ∈ 𝑆 and 𝑟 > 0 and consider 𝑆′ = 𝑆(𝑎, 𝑟); since 𝑎,∞ ∈ 𝑆, 𝜙 fixes 𝑎 and ∞ and 𝑆′ is
mapped to a Euclidean sphere 𝑆′′ = 𝑆(𝑏, 𝑠). Since 𝑆′ is orthogonal to 𝑆, 𝑆′′ is also orthogonal to 𝑆.
Thus the centre of 𝑆′′ must also lie on 𝑆. In particular, if 𝑥 is a point of 𝑆′′ ∩ 𝑆 we have |𝑥, 𝑏| = 𝑠;
but 𝑆′′ ∩ 𝑆 = 𝑆′ ∩ 𝑆 since 𝜙 fixes 𝑆 pointwise, so such an 𝑥 has |𝑥, 𝑎| = 𝑟. Thus the points of
𝑆′′ ∩ 𝑆 = 𝑆′ ∩ 𝑆 form a circle simultaneously of centre 𝑎 and radius 𝑟, and centre 𝑏 and radius 𝑠; this
is nonsense unless 𝑎 = 𝑏 and 𝑟 = 𝑠. In particular, 𝑆′′ = 𝑆′ and 𝜙 fixes 𝑆′ (possibly not pointwise).

Let 𝑥 ∈ ℝ̂𝑛 ⧵ 𝑆, and let 𝑦 = 𝜙(𝑥). Pick 𝑎 ∈ 𝑆 and let 𝑆′ be a sphere with centre 𝑎 through 𝑥 (so
the radius 𝑟 of 𝑆′ is ‖𝑥 − 𝑎‖). By the first paragraph, 𝑆′ is fixed by 𝜙, so 𝑦 ∈ 𝑆′.

If 𝑎 = 0, then we see that ‖𝑥‖ = ‖𝑦‖. Taking 𝑎 = 𝑒𝑖 for 𝑖 ∈ [𝑛−1], we see that ‖𝑥 − 𝑒𝑖‖ = ‖𝑦 − 𝑒𝑖‖
so ‖𝑥‖2−2(𝑥, 𝑒𝑖)+1 = ‖𝑦‖2−2(𝑦, 𝑒𝑖)+1 for all 𝑖; cancelling, we see that 𝑥𝑖 = 𝑦𝑖 for all such 𝑖. Further,
𝑥21 +⋯ + 𝑥2𝑛 = 𝑦21 +⋯ + 𝑦2𝑛 and so 𝑥2𝑛 = 𝑦2𝑛 and hence 𝑥𝑛 = ±𝑦𝑛: so 𝜙 either fixes ℝ̂𝑛 ⧵ 𝑆 pointwise
or is the reflection across 𝑆. mAk

1.3.6 Theorem. Let 𝜎 the sphere inversion with respect to a sphere 𝑆. If 𝜙 is anyMöbius transformation
that fixes 𝑆 pointwise, then 𝜙 = 𝜎 or 𝜙 is the identity.

Proof. By Lemma 1.3.4 there is a Möbius transformation 𝜓 sending 𝑆 to the plane 𝑥𝑛 = 0. Then the
conjugation 𝜓𝜎𝜓−1 fixes the plane pointwise and is not the identity since 𝜎 is nontrivial. Hence by
Lemma 1.3.5, 𝜓𝜎𝜓−1 is reflection across the plane.

Nownote, by application of the same lemmawehave that𝜓𝜙𝜓−1 is either the identity or reflection
across the plane. If 𝜓𝜙𝜓−1 is the identity, then 𝜙 is the identity. If 𝜓𝜙𝜓−1 = 𝜓𝜎𝜓−1, then 𝜙 = 𝜎. mAk

Note, in the proof of the theoremwe showed that any reflection 𝜎 is always conjugate via themap
𝜓 given by Lemma 1.3.4 to the reflection across the plane 𝑥𝑛 = 0. Thus

1.3.7 Corollary. Any two reflections are conjugate in GM(𝑛). mAk

1.3.8 Proposition. Let 𝑥, 𝑦, 𝑢, 𝑣 ∈ ℝ̂4 be distinct. The cross-ratio of these points is the number

[𝑥, 𝑦, 𝑢, 𝑣] =
‖𝑥 − 𝑢‖‖𝑦 − 𝑣‖
‖𝑥 − 𝑦‖‖𝑢 − 𝑣‖

.

A function 𝜙 ∶ ℝ̂𝑛 → ℝ̂𝑛 is a Möbius transformation iff it preserves cross ratios.

Proof. Weuse Proposition 1.2.15. It is clear that orthogonalmaps and translations preserve the cross-
ratio (they preserve distances), and that dilations preserve it (the scale factors cancel). Thus to show
that all Möbius transformations fix the cross ratio it suffices to check the reflection 𝜙 in 𝑆𝑛. But note
that by Lemma 1.2.4 we have

‖𝜙(𝑥) − 𝜙(𝑦)‖ =
‖𝑥 − 𝑦‖
‖𝑥‖‖𝑦‖

and the norms of the points 𝑥, 𝑦, 𝑢, 𝑣 cancel symmetrically in the formula for the cross-ratio.
Suppose now that 𝜙 is a map preserving the cross-ratio. By composing 𝜙 with a suitable Möbius

transformation we may assume that 𝜙 fixes∞. For 𝑥, 𝑦, 𝑢, 𝑣 ∈ ℝ𝑛, the ratio [∞, 𝑦, 𝑢, 𝑣]∕[𝑥, 𝑦,∞, 𝑣]
is invariant under 𝜙. Hence

‖∞− 𝑢‖‖𝑦 − 𝑣‖
‖∞− 𝑦‖‖𝑢 − 𝑣‖

‖𝑥 − 𝑦‖‖∞− 𝑣‖
‖𝑥 −∞‖‖𝑦 − 𝑣‖

=
‖∞− 𝜙(𝑢)‖‖𝜙(𝑦) − 𝜙(𝑣)‖
‖∞− 𝜙(𝑦)‖‖𝜙(𝑢) − 𝜙(𝑣)‖

‖𝜙(𝑥) − 𝜙(𝑦)‖‖∞− 𝜙(𝑣)‖
‖𝜙(𝑥) −∞‖‖𝜙(𝑦) − 𝜙(𝑣)‖

and cancelling we obtain
‖𝜙(𝑥) − 𝜙(𝑦)‖

𝑥 − 𝑦 =
‖𝜙(𝑢) − 𝜙(𝑣)‖

𝑢 − 𝑣
so 𝜙 is a Euclidean similarity and thus is a Möbius transformation. mAk

1.3.9 Corollary. If 𝜙 is a Möbius transformation which fixes∞ then 𝜙 is a Euclidean similarity. mAk
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1.4 Isometric spheres
Fix some 𝜙 ∈ GM(𝑛) which does not fix ∞; let 𝛼 = 𝜙−1(∞) and let 𝛼′ = 𝜙(∞); hence 𝜙 maps
the family ℒ of spheres through 𝛼 and ∞ to the family ℒ′ of spheres through ∞ and 𝛼′. Since 𝜙
is conformal, 𝜙 sends the family 𝒮 of spheres orthogonal to the family ℒ to the family 𝒮′ of spheres
orthogonal toℒ′. Note, though, that these families are precisely the spheres around𝛼 and the spheres
around 𝛼′ respectively.

Note that 𝜙 acts continuously on the radii of the spheres of 𝒮. Consider the natural action of 𝜙 on
the closure of this set, [0,∞] (where 0 is the radius of the point-sphere around 𝛼 and∞ is the radius
of the point-sphere around∞). By the Brouwer fixed point theorem, the action on the set has a fixed
point. However, 𝜙 swaps 0 and∞. Thus there exists some 𝑅 ∈ [0,∞) such that 𝜙(𝑆(𝛼, 𝑅)) = 𝑆(𝛼′, 𝑅);
and since 𝜙 is conformal, it preserves the chordal metric on 𝑆(𝛼, 𝑅) (as the chordal metric between
two points 𝑥 and 𝑦 is determined only by the radius 𝑅 and the angle of the triangle 𝑥𝛼𝑦.).

In fact, wemay bemore precise: wewill show that the action of𝜙 on [0,∞] ismonotone decreasing
and so the fixed point is unique. We will also compute explicitly the radius 𝑅.

1.4.1 Lemma. Let 𝜙 ∈ GM(𝑛) fix 0 and leave the unit ball 𝐵𝑛 invariant. Then 𝜙 ∈ 𝑂(𝑛).

Proof. Note by continuity that 𝜙 leaves 𝑆𝑛−1 invariant; let 𝜎 be the reflection in 𝑆𝑛. Then 𝜙−1𝜎𝜙 fixes
𝑆𝑛 and by Theorem 1.3.6 either 𝜙−1𝜎𝜙 = 𝜎 or 𝜙−1𝜎𝜙 is the identity. Note, 𝜙−1𝜎𝜙(0) = 𝜙−1𝜎(0) =
𝜙−1(∞); since 𝜙(0) ≠ ∞, it therefore cannot be the case that 𝜙−1𝜎𝜙(0) = 0; so 𝜙−1𝜎𝜙 = 𝜎, and 𝜎
and 𝜙 commute. Thus 𝜙(∞) = 𝜙𝜎(0) = 𝜎𝜙(0) = 𝜎(0) = ∞; and by Corollary 1.3.9, 𝜙 is a Euclidean
similarity. Since 𝜙 leaves 𝑆𝑛−1 invariant and fixes the origin, it is immediate that 𝜙 ∈ 𝑂(𝑛). mAk

1.4.2 Theorem. Let 𝜙 ∈ GM(𝑛).

1. If 𝜙 fixes∞, then there exists 𝐴 ∈ 𝑂(𝑛), 𝑟 > 0, and 𝑥0 ∈ ℝ𝑛 such that 𝜙(𝑥) = 𝑟(𝐴𝑥) + 𝑥0 for all
𝑥 ∈ ℝ𝑛.

2. If 𝜙 does not fix∞, then there exists𝐴 ∈ 𝑂(𝑛), 𝑟 > 0, 𝑥0 ∈ ℝ𝑛, and a sphere inversion 𝜎 such that
𝜙(𝑥) = 𝑟𝐴𝜎𝑥 + 𝑥0 for all 𝑥 ∈ ℝ𝑛.

Proof. For (1), let 𝑥0 = 𝜙(0) and let 𝑟 be the radius of 𝜙(𝑆𝑛−1). Then 𝜓 ∶ ℝ̂𝑛 → ℝ̂𝑛 defined by 𝜓(𝑥) =
(𝑥 − 𝑥0)∕𝑟 has the property that 𝜓𝜙 fixes∞ and preserves 𝐵𝑛. By Lemma 1.4.1, the map 𝜓𝜙 ∈ 𝑂(𝑛)
and the result follows. For (2), compose 𝜙 with a sphere inversion 𝜎 sending∞↦ 𝜙−1(∞). mAk

1.4.3 Corollary. Let 𝜙 ∈ GM(𝑛). There is a unique 𝛼 ∈ ℝ𝑛 and 𝑅 > 0 such that 𝜙 acts isometrically
on 𝑆(𝛼, 𝑅).

Proof. By the theorem, we may write 𝜙(𝑥) = 𝑟𝐴𝜎𝑥+ 𝑥0 for some 𝜎 a reflection with respect to some
sphere 𝑆(𝛼, 𝑠). Note that 𝛼 is necessarily 𝜙−1(∞). By Lemma 1.2.4,

‖𝜙(𝑥) − 𝜙(𝑦)‖ = 𝑟‖𝜎(𝑥) − 𝜎(𝑦)‖ =
𝑟𝑠2‖𝑥 − 𝑦‖

‖𝑥 − 𝛼‖‖𝛼 − 𝑦‖
.

Let 𝑅 = 𝑠
√
𝑟, and let 𝑆 = 𝑆(𝛼, 𝑅). Observe that the value

lim
𝑦→𝑥

‖‖‖‖‖‖‖
𝜙(𝑦) − 𝜙(𝑥)

𝑦 − 𝑥
‖‖‖‖‖‖‖
= 𝑅2

‖𝑥 − 𝛼‖‖𝛼 − 𝑦‖

is equal to 1 if and only if 𝑥 ∈ 𝑆. Further, note that the value is greater than 1 precisely when 𝑥 is
inside 𝑆, and less than 1 when 𝑥 is outside 𝑆; and this shows the monotonicity property mentioned
above with respect to radii of points about 𝛼. mAk
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1.5 The half-plane model of hyperbolic space

There is a natural action ofGM(𝑛) on the space ℝ̂𝑛+1. We discuss this action now, essentially follow-
ing [6, section 3.3].

1.5.1 Lemma. Given a sphere 𝑆 ⊆ ℝ̂𝑛 and an affine embedding 𝑗 ∶ ℝ𝑛 ↪ ℝ𝑛+1, there is a unique
sphere 𝑆𝑗 with the following properties:

1. 𝑆𝑗 is orthogonal to 𝑗(ℝ𝑛);

2. 𝑆𝑗 ∩ 𝑗(ℝ𝑛) = 𝑆.

Proof. If 𝑆 = 𝑆(𝑎, 𝑟) then define 𝑆𝑗 ≔ 𝑆(𝑗(𝑎), 𝑟); if 𝑆 is a hyperplane through 𝑢 with normal vector
𝑛 then define 𝑆𝑗 to be the hyperplane through 𝑗(𝑢) with normal vector 𝑗(𝑛). Uniqueness is evident:
suppose 𝑆 is a sphere, then 𝑆𝑗 clearly must be a sphere and the only spheres orthogonal to an affine
hyperplane have their centre on the hyperplane; if 𝑆 is a hyperplane, for 𝑆𝑗 to be orthogonal to 𝑗(ℝ𝑛)
the normal vectors of 𝑆𝑗 must lie in 𝑗(ℝ𝑛). mAk

1.5.2 Proposition. Given an affine embedding 𝑗 ∶ ℝ𝑛 ↪ ℝ𝑛+1 and a choice of a preferred half-space
𝐻+ bounded by 𝑗(ℝ𝑛+1), for every 𝜙 ∈ GM(𝑛) there exists a unique 𝜙𝑗 ∈ GM(𝑛 + 1) preserving 𝐻+

such that 𝜙𝑗(𝑗𝑠) = 𝑗(𝜙𝑠) for all 𝑠 ∈ ℝ̂𝑛. This is the Poincaré extension of 𝜙.

Proof. Suppose first that 𝜙 is a reflection across some sphere 𝑆 ⊆ ℝ̂𝑛. Define 𝜙𝑗 to be the reflection
across 𝑆𝑗 in ℝ̂𝑛+1. The 𝜙𝑗 clearly extend the action of 𝜙 in the following way: 𝜙𝑗(𝑗𝑠) = 𝑗(𝜙(𝑠)) for all
𝑠 ∈ ℝ̂𝑛. It is also clear that the 𝜙𝑗 preserve the half-spaces of 𝑗(ℝ𝑛+1).

Wemay decompose an arbitrary 𝜙 ∈ GM(𝑛) into a product 𝜙 = 𝜎1⋯𝜎𝑘 where each 𝜎𝑖 is a reflec-
tion; then 𝜙𝑗 ≔ 𝜎𝑗1⋯𝜎𝑗𝑘 clearly has the correct properties. Further, if 𝜙

𝑗
1 and 𝜙

𝑗
2 are two extensions of

𝜙 in the given sense then (𝜙𝑗1)
−1𝜙𝑗2 fixes each point of the hyperplane 𝑗(ℝ

𝑛) and thus by Theorem1.3.6
we have (𝜙𝑗1)

−1𝜙𝑗2 is either reflection across 𝑗(ℝ
𝑛) or the identity; but (𝜙𝑗1)

−1 and 𝜙𝑗2 preserve 𝐻
+ so

their product does too, and so the product is the identity. mAk

Since ⋅𝑗 preserves composition, we therefore have a group embedding GM(𝑛) ↪ GM(𝑛 + 1) for
every embedding 𝑗. We now fix a preferred embedding 𝑗, and thus a preferred group embedding.

1.5.3 Definition. If 𝑥 ∈ ℝ𝑛, define 𝑥̃ to be the point (𝑥1,… , 𝑥𝑛, 0) ∈ ℝ𝑛+1 and define ∞̃ = ∞.
Further, define 𝐻𝑛+1 to be the half-space (excluding∞)

{(𝑥1,… , 𝑥𝑛, 𝑦) ∈ ℝ𝑛+1 ∶ 𝑦 > 0}

and let 𝜙̃ denote the image of 𝜙 ∈ GM(𝑛) under the group embedding induced by ⋅̃ and the choice of
the preferred half-space 𝐻𝑛+1.

1.5.4 Lemma. Let 𝑥, 𝑦 ∈ 𝐻𝑛+1. Then, for all 𝜙 ∈ GM(𝑛), we have

‖𝑦 − 𝑥‖2

𝑦𝑛+1𝑥𝑛+1
=

‖‖‖‖𝜙̃𝑦 − 𝜙̃𝑥‖‖‖‖
2

(𝜙̃𝑦)𝑛+1(𝜙̃𝑥)𝑛+1
.

Proof. It suffices to show that the equality holds whenever 𝜙 is a reflection. If 𝜙 is inversion in 𝑆(𝑎, 𝑟)
then we have by Proposition 1.2.2 that

(𝜙̃𝑥)𝑛+1 = 𝑎̃𝑛+1 +
𝑟2

‖𝑥 − 𝑎̃‖2
(𝑥 − 𝑎̃)𝑛+1 =

𝑟2𝑥𝑛+1
‖𝑥‖2

;
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from Lemma 1.2.4 we then have
‖‖‖‖𝜙̃𝑦 − 𝜙̃𝑥‖‖‖‖

2

(𝜙̃𝑦)𝑛+1(𝜙̃𝑥)𝑛+1
=

𝑟4‖𝑥 − 𝑦‖2

‖𝑥 − 𝑎̃‖2‖𝑎̃ − 𝑦‖2
1

(𝜙̃𝑦)𝑛+1(𝜙̃𝑥)𝑛+1

=
𝑟4‖𝑥 − 𝑦‖2

‖𝑥‖2‖𝑦‖2
‖𝑥‖2‖𝑦‖2

𝑟4𝑥𝑛+1𝑦𝑛+1

which completes the proof. mAk

In fact, we can do even better:

1.5.5 Theorem. Endow𝐻𝑛+1 with the Riemann metric 𝑔 given by

𝑔 ≔
(𝑑𝑥1)2 +⋯ + (𝑑𝑥𝑛+1)2

𝑥2𝑛+1
.

(compare [32, theorem3.7]). ThenGM(𝑛)acts as a group of isometries of𝐻𝑛+1, in the sense that 𝑔 = 𝜙∗𝑔
for all 𝜙 ∈ GM(𝑛).

Proof. We neglect the proof, just use Lemma 1.2.4 to compute 𝑑𝜙𝑥 and then compute the pullback
in the same manner as Lemma 1.5.4. mAk

1.5.6 Definition. The space 𝐻𝑛+1 endowed with the metric 𝑔 of Theorem 1.5.5 is called the half-
plane model of hyperbolic (𝑛 + 1)-space. We write 𝜌(𝑥, 𝑦) for the distance between 𝑥, 𝑦 ∈ 𝐻𝑛+1

with respect to 𝑔.

Further, we remark without proof that geodesics in𝐻𝑛+1 are of two kinds: Euclidean semicircles
orthogonal to ℝ𝑛, and Euclidean rays orthogonal to ℝ𝑛.

Recall that the function cosh ∶ ℂ→ ℂ is defined by

cosh 𝑧 ≔ 1
2 (exp(𝑥) + exp(−𝑥)) .

The following theoremgives a ‘global’ formula for theRiemannianmetric in thehalf-spacemodel.

1.5.7 Theorem. If 𝑥, 𝑦 ∈ 𝐻𝑛+1 then

cosh 𝜌(𝑥, 𝑦) = 1 +
‖𝑥 − 𝑦‖2

2𝑥𝑛+1𝑦𝑛+1
.

Proof. Note first that the coordinates of the Riemann metric 𝑔 are

𝑔𝑖𝑗 =
⎧

⎨
⎩

0 𝑖 ≠ 𝑗
1 𝑖 = 𝑗 ≤ 𝑛
𝑥−2𝑛+1 𝑖 = 𝑗 = 𝑛 + 1.

Hence det 𝑔 = 𝑥−2𝑛+1, and the Riemann volume form is 𝑑𝑉𝑔 =
√
det 𝑔𝑑𝑥1∧⋯∧𝑑𝑥𝑛+1 = |||𝑥𝑛+1|||

−1𝑑𝑥1∧
⋯ ∧ 𝑑𝑥𝑛+1.

Suppose now that 𝑥 = 𝑠𝑒𝑛+1 and 𝑦 = 𝑡𝑒𝑛+1. The geodesic joining 𝑥 and 𝑦 is the Euclidean
segment 𝛾 through them; thus

𝜌(𝑥, 𝑦) =∫
𝛾

|||𝑥𝑛+1|||
−1𝑑𝑥1 ∧⋯ ∧ 𝑑𝑥𝑛+1 =

𝑡

∫
𝑠

|||𝑥𝑛+1|||
−1𝑑𝑥𝑛+1 = |||log 𝑡∕𝑠|||,
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and by direct substitution,

cosh 𝜌(𝑥, 𝑦) = 1
2 (exp(log 𝑡∕𝑠) + exp(− log 𝑡∕𝑠)) =

1
2 (

𝑡
𝑠 +

𝑠
𝑡 ) =

𝑡2 + 𝑠2
2𝑠𝑡 = 1+

(𝑡 − 𝑠)2

2𝑠𝑡 = 1+
‖𝑥 − 𝑦‖2

2𝑥𝑛+1𝑦𝑛+1
.

Now, let 𝑦 and 𝑦′ be arbitrary. Let 𝑆 be the (unique) Euclidean circle containing 𝑦 and 𝑦′ which is
orthogonal to the hyperbolic line at infinity, ℝ̂𝑛 (we continue to use the half-planemodel, so this is the
line {𝑥𝑛+1 = 0}). Let𝛼 and𝛽 be the intersection points 𝑆∩ℝ̂𝑛; at least one of these is not∞, say𝛼 ≠∞.
Let 𝜎 ∈ GM(𝑛) be sphere inversion in 𝑆(𝛼, 1); this sends 𝛼 ↦∞, and sends 𝛽 ↦ 𝜎(𝛽). In particular,
the map 𝑔 ∈ GM(𝑛) given by 𝑔(𝑥) = 𝜎(𝑥) − 𝜎(𝛽) sends (𝛼, 𝛽) ↦ (∞, 0), and the Poincaré extension
𝑔 must therefore send 𝑆 onto some geodesic in 𝐻3 with points at infinity 0,∞ ∈ ℝ̂𝑛. The only such
geodesic is the 𝑥𝑛+1-axis, and so the map 𝑔 sends 𝑦 and 𝑦′ onto the 𝑥𝑛+1-axis, say 𝑔(𝑦) = 𝑠𝑒𝑛1 and
𝑔(𝑦′) = 𝑡𝑒𝑛+1. Now note that both sides of the equality in the statement are preserved by the action
of GM(𝑛), the left side because GM(𝑛) is a group of isometries and the right side by Lemma 1.5.4. In
particular,

cosh 𝜌(𝑥, 𝑦) = cosh 𝜌(𝑔𝑥, 𝑔𝑦) = cosh 𝜌(𝑠𝑒𝑛+1,𝑡𝑒𝑛+1)

= 1 +
(𝑡 − 𝑠)2

2𝑠𝑡 = 1 +
‖𝑔𝑥 − 𝑔𝑦‖2

2(𝑔𝑥)𝑛+1(𝑔𝑦)𝑛+1
= 1 +

‖𝑥 − 𝑦‖2

2𝑥𝑛+1𝑦𝑛+1

where we used our above computation that the result held on the 𝑥𝑛+1-axis. mAk

1.6 The ball model of hyperbolic space
See also [6, section 3.4].

Let 𝜋 ∶ ℝ̂𝑛 → 𝑆𝑛 be the usual stereographic projection from the north pole 𝑒𝑛+1 of 𝑆𝑛, acting
on the preferred embedding ℝ̂𝑛∼. Recall that 𝜋 acts as the restriction of the sphere inversion 𝜙 with
respect to the sphere 𝑆(𝑒𝑛+1,

√
2). Since 𝜙(𝑒𝑛+1) = ∞ and 𝜙 maps ℝ̂𝑛∼ onto 𝑆𝑛, we must have that

the upper half-space is mapped to the exterior of 𝑆𝑛 (the connected component of ℝ̂𝑛 ⧵𝑆𝑛 containing
∞) and the lower half-space is mapped to the open ball 𝐵𝑛+1. Thus, if 𝜎 denotes reflection in ℝ̂𝑛∼,
the composition 𝑓 ≔ 𝜙𝜎 is a Möbius transformation mapping𝐻𝑛+1 ∼

,→ 𝐵𝑛+1.
We may give an explicit formula for this composition:

(1.6.1) 𝑓(𝑥) = 𝑒𝑛+1 +
2

‖𝜎𝑥 − 𝑒𝑛+1‖
2 (𝜎𝑥 − 𝑒𝑛+1) = 𝑒𝑛+1 +

2

‖𝑥 − 2𝑥𝑛+1 − 𝑒𝑛+1‖
2 (𝑥 − 2𝑥𝑛+1 − 𝑒𝑛+1).

One can show that 𝑓 induces the following Riemann metric on 𝐵𝑛+1 from the hyperbolic Rie-
mann metric on 𝐻𝑛+1:

(1.6.2) 𝑔 ≔ 2
(𝑑𝑥1)2 +⋯ + (𝑑𝑥𝑛+1)2

1 − ‖𝑥‖2
.

This is the ball model of hyperbolic 𝑛 + 1-space. The canonical picture is included as Fig. 1.3.
Sincewe define themetric on𝐵𝑛+1 in this way, every isometry of𝐵𝑛+1 is of the form𝑓𝑔𝑓−1, where

𝑔 is an isometry of𝐻𝑛+1. Because 𝑓 ∈ GM(𝑛+1), the groupGM(𝑛) is conjugate inGM(𝑛+1) to the
subgroup of GM(𝑛 + 1) leaving 𝐵𝑛+1 invariant.

Compare Eq. (1.6.2) with Eq. (1.2.11). We have the following philosophy:

• The preservation of the ball metric of 𝐻𝑛+1 by GM(𝑛) is equivalent to the preservation of the
chordal metric of 𝜕𝐻𝑛+1 = 𝑆𝑛 = ℝ̂𝑛.
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Figure 1.3: M. C. Escher, Circle Limit I, 1958.

• The preservation of the half-space metric of𝐻𝑛+1 is equivalent to the semi-preservation of the
usual metric of 𝜕𝐻𝑛+1 via Lemma 1.2.4.

The general idea of the remainder is to study the action of special subgroups (Kleinian groups)
𝐺 ≤ 𝕄 on sets of the form

𝐻3 ∪ Ω(𝐺)

where Ω(𝐺) is a ‘nice’ subset (the regular set) of 𝜕𝐻2 = ℂ̂, and the quotient spaces 𝐻3 ∪ Ω(𝐺)∕𝐺
obtained by gluing together elements of the boundary of 𝜕𝐻2 according to this action. We shall see
that the resulting space is very general.



Chapter 2

Classification of fractional linear
transformations

In this chapter, we reduce to the case 𝑛 = 2; thus we will consider only Möbius transformations
which act on the Riemann sphere. We will follow a selection of topics from [34, chapter I] and [6,
chapter 4].

2.1 Matrix analysis
See [6, section 2.2].

Recall that we may identify𝕄 and PSL(2,ℂ). In order to study𝕄, we will need some invariants
of elements of 𝕄; the easiest way to define numerical invariants is in terms of the matrices that we
may write down to represent them. To this end, we study the space of matrices End(2,ℂ).

2.1.1 Lemma. The map [𝐴, 𝐵]↦ tr(𝐴𝐵∗) is an inner product on End(2,ℂ) as a complex vector space.

Proof. Note that tr(𝐴𝐵∗) = 𝐴11𝐵11 + 𝐴12𝐵12 + 𝐴21𝐵21 + 𝐴22𝐵22, so tr(𝐴𝐵∗) is just another way of
writing the usual inner product on ℂ4 = ℂ2×2. mAk

We therefore obtain a norm ‖𝐴‖ ≔
√
[𝐴,𝐴] and thus a metric topology on End(2,ℂ). We have

some additional relations beyond the usual axioms for a norm and metric.

2.1.2 Lemma. Let 𝐴, 𝐵 ∈ End(2,ℂ). Then

1. |det𝐴|‖‖‖‖𝐴
−1‖‖‖‖ = ‖𝐴‖,

2. |||[𝐴, 𝐵]||| ≤ ‖𝐴‖‖𝐵‖,

3. |𝐴𝐵| ≤ |𝐴||𝐵|, and

4. 2|det𝐴| ≤ ‖𝐴‖2.

Proof. By direct computation with coordinates we obtain (1). Introduce the auxillary quantity 𝐶 =
[𝐵,𝐴]𝐴 − ‖𝐴‖2𝐵; since ‖⋅‖ is a norm we have

[
[𝐵,𝐴]𝐴 − ‖𝐴‖2𝐵, [𝐵,𝐴]𝐴 − ‖𝐴‖2𝐵

]
= ‖𝐶‖2 ≥ 0

15



16 CHAPTER 2. CLASSIFICATION OF FRACTIONAL LINEAR TRANSFORMATIONS

and expanding the left hand size via the inner product axioms gives (2).

Suppose𝐴𝐵 = [𝑝 𝑞
𝑟 𝑠]. Then

|||𝑝|||
2 = |𝐴11𝐵11 + 𝐴12𝐵21|

2; this latter is ‖(𝑥, 𝑦)‖2 for 𝑥 = (𝐴11, 𝐴12)

and 𝑦 = (𝐵11, 𝐵21) and so by Cauchy-Schwartz we havs |||𝑝|||
2 ≤ (|𝐴11|

2 + |𝐴12|
2)(|𝐵11|

2 + |𝐵21|
2).

Writing similar formulae for |||𝑞|||
2, |𝑟|2, |𝑠|2 allows us to write ‖𝐴𝐵‖2 = |||𝑝|||

2 +⋯+ |𝑠|2 in terms of the
entries of 𝐴 and 𝐵; these entries in the sum factor to give |𝐴||𝐵|.

Finally for (4) note that |det𝐴| ≤ |𝐴11𝐴22| + |𝐴12𝐴21| by the triangle inequality, so

‖𝐴‖2−2|det𝐴| ≥ |𝐴11|
2+⋯+|𝐴22|

2−2(|𝐴11𝐴22|+|𝐴12𝐴21|) = (‖𝐴11‖−‖𝐴22‖)2+(‖𝐴12‖−‖𝐴21‖)2 ≥ 0.

This proves the lemma. mAk

We finally give some convergence results.

1. A sequence (𝐴𝑛 ∶ 𝑛 ∈ ℕ) in End(2,ℂ) converges iff the sequences ((𝐴𝑛)𝑖,𝑗 ∶ 𝑛 ∈ ℕ) all
converge.

2. The functions ‖⋅‖, tr, and det are all continuous with respect to the metric topology: ‖⋅‖ by
definition, and tr and det because they are polynomial in the coefficients so can be viewed as
polynomial maps ℂ4 → ℂ.

3. In GL(2,ℂ), the map 𝐴 ↦ 𝐴−1 is continuous (it is polynomial in the entries) and 𝐴𝑛𝐵𝑛 → 𝐴𝐵
for (𝐴𝑛), (𝐵𝑛) sequences (because it converges componentwise); thus GL(2,ℂ) is a topological
group with respect to the metric.

2.2 The norm
Recall that we may identify𝕄 and PSL(2,ℂ).

2.2.1 Lemma. Let 𝑔 ∈ 𝐺, and let 𝐴, 𝐵 ∈ SL(2,ℂ) be representatives of 𝑔 in PSL(2,ℂ). Then

1. ‖𝐴‖ = ‖𝐵‖;

2. tr2𝐴 = tr2 𝐵.

Of course, tr𝐴 is not well-defined!

Proof. Note, for 𝐴 ∈ GL(2,ℂ) we have det(𝜆𝐴) = 𝜆2𝐴. If 𝐴 and 𝐵 are equivalent matrices in
PSL(2,ℂ) then 𝜆𝐴 = 𝐵; but det𝐴 = 1 = det𝐵, so 𝜆2 = 1 and 𝜆 = ±1. Thus either 𝐴 = 𝐵 (in
which case ‖𝐴‖ = ‖𝐵‖ and tr2𝐴 = tr2 𝐵 trivially) or 𝐴 = −𝐵 (in which case ‖𝐴‖ = ‖𝐵‖ since
the norm depends on absolute values of components only, and tr2𝐴 = tr2 𝐵 since (𝐴11 + 𝐴22)2 =
(−𝐴11 − 𝐴22)2). mAk

In this section, we study the first of these invariants (the norm). It turns out that the trace squared
is a more useful invariant, as it will allow us to detect global geometric properties of the group ele-
ments. We shall study it in the next section.

Recall thatGM(2) and hence𝕄 acts naturally on ℝ̂3 and𝐻3. It will be convenient to describe the
geometry of this action in terms of the quaternions.

2.2.2 Definition. The quaternion algebra is the algebra ℍ generated by the set {𝟏, 𝐢, 𝐣,𝐤} over ℝ
with the relations 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1. The congugate 𝑞 of 𝑞 = 𝑥𝟏+𝑦𝐢+𝑢𝐣+𝑣𝐤 is defined to be
𝑥𝟏−𝑦𝐢−𝑢𝐣−𝑣𝐤. We identify the complex numbers with the image of the injection 𝑥+𝑦𝑖 ↦ 𝑥𝟏+𝑦𝐢.
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Note, if 𝑧 = 𝑥 + 𝑦𝑖 and 𝑤 = 𝑢 + 𝑣𝑖 then 𝑧 +𝑤𝐣 = 𝑥 + 𝑦𝐢+ 𝑢𝐣+𝑤𝐤. We shall write this as 𝑧 +𝑤𝑗
to emphasise that 𝑧 and 𝑤 are possibly not real. This gives us the useful laws

(𝑧1+𝑤1𝑗)(𝑧2+𝑤2𝑗) = (𝑧1𝑧2−𝑤1𝑤2)+(𝑧1𝑤2+𝑤1𝑧2)𝑗, 𝑗𝑧 = 𝑧𝑗, (𝑧+𝑤𝑗)(𝑧 + 𝑤𝑗) = |𝑧|2+ |𝑤|2.

Identify ℂ × ℝ with a 3-dimensional subspace of ℍ via the embedding (𝑧, 𝑡) = (𝑥 + 𝑖𝑦, 𝑡) ↦
𝑥𝟏 + 𝑦𝐢 + 𝑡𝐣 = 𝑡𝑗; hence we can write

𝐻3 = {𝑧 + 𝑡𝑗 ∶ 𝑧 ∈ ℂ, 𝑡 ∈ ℝ>0} ⊆ ℝ̂3

𝜕𝐻3 = ℂ̂.

Now consider the action of𝕄 on𝐻3 via the Poincaré extension.

2.2.3 Lemma. Suppose 𝑓 ∈ 𝕄 is of the form 𝑓(𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑

, where we take a representative in SL(2,ℂ);
then 𝑓 ∶ 𝐻3 → 𝐻3 has the form

𝑓(𝑞) = (𝑎𝑞 + 𝑏)(𝑐𝑞 + 𝑑)−1.

Proof. Recall (Proposition 1.2.14) that we may write 𝑓 in the form

𝑓(𝑧) = 𝑎
𝑐 −

𝑎𝑑 − 𝑏𝑐
𝑐2

(𝑧 + 𝑑
𝑐 )

−1
.

The Poincaré extension of 𝑓 will be a similar formula, but with the reflections in 𝑆(0, 1) and 𝑦 = 0
replaced.

Indeed, if 𝑞 ∈ 𝐻3 is of the form 𝑞 = 𝑧 + 𝑡𝑗 then the reflection in 𝑆(0, 1) is 𝑞∗ ≔ 𝑞∕|||𝑞|||
2 =

(𝑧+ 𝑡𝑗)∕(|𝑧|2+ 𝑡2), and the reflection in 𝑦 = 0 of 𝑞∗ is (𝑧+ 𝑡𝑗)∕(|𝑧|2+ 𝑡2). Hence (assuming we have
chosen the coordinates 𝑎, 𝑏, 𝑐, 𝑑 so the corresponding matrix is in SL(2,ℂ))

𝑓(𝑞) = 𝑎
𝑐 −

1
𝑐2

𝑧 + 𝑑∕𝑐 + 𝑡𝑗
|||𝑧 + 𝑑∕𝑐|||

2 + 𝑡2
;

with routine algebra, one can rearrange this to obtain that

𝑓(𝑞) =
(𝑎𝑧 + 𝑏)(𝑐𝑧 + 𝑑) + 𝑎𝑐𝑡2 + |𝑎𝑑 − 𝑏𝑐|𝑡𝑗

|𝑐𝑧 + 𝑑|2 + |𝑐|2𝑡2
= (𝑎(𝑧 + 𝑡𝑗) + 𝑏) (𝑐(𝑧 + 𝑡𝑗) + 𝑑)−1 . mAk

We shall identify 𝑔 and 𝑔 from now on.

2.2.4 Example. A warning: consider the transformation 𝑔 given by 𝑧 ↦ 1∕𝑧. With the obvious

matrix representation 𝐴 = [0 1
1 0], note that using the lemma above we have that 𝑔(𝑗) = 𝑗−1 = −𝑗.

Clearly this is nonsense, as we constructed the Poincaré extension such that preserved the sign of the
𝑗th component. The issue of course is that det𝐴 = −1; to remedy this, we must multiply 𝐴 through

by the constant (det𝐴)−1∕2 = −𝑖 to obtain the representative 𝐴′ = [ 0 −𝑖
−𝑖 0 ] which does have the

correct determinant; then the lemma gives 𝑔(𝑗) = (−𝑖)(−𝑖𝑗)−1 = (−𝑖)(−𝑘)−1 = −𝑖𝑘 = 𝑗, as expected
(since the Poincaré extension of the circle inversion through the unit circle is the circle inversion
through the unit sphere, and 𝑗 lies on this sphere).
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2.2.5 Example. Suppose 𝑔 ∈ 𝕄, represented by thematrix𝐴 = [𝑎 𝑏
𝑐 𝑑] ∈ SL(2,ℂ), has the property

𝑔(𝑗) = 𝑗. Then

(𝑎𝑗 + 𝑏) = 𝑗 (𝑐𝑗 + 𝑑)

= 𝑐𝑗2 + 𝑑𝑗

= 𝑑𝑗 − 𝑐

so 𝑎 = 𝑑 and 𝑏 = −𝑐. In particular,

𝐴−1 = [𝑑 −𝑐
𝑐 𝑑

]
−1

= [
𝑑 𝑐
−𝑐 𝑑

] = 𝐴∗

and 𝐴 ∈ SU(2,ℂ).
Conversely, if 𝐴 ∈ SU(2,ℂ) then 𝐴 has the given form and thus, running the argument back-

wards, 𝑔 fixes 𝑗.

2.2.6 Proposition. If 𝑔 ∈ 𝕄, then ‖𝑔‖2 = 2 cosh 𝜌(𝑗, 𝑔(𝑗)).

Proof. Combine the formula

𝑔(𝑗) =
𝑏𝑑 + 𝑎𝑐 + 𝑗

|𝑑|2 + |𝑐|2

from the previous lemma with the expression from Theorem 1.5.7, to obtain

cos 𝜌(𝑗, 𝑔(𝑗)) = 1 + 1
2(|𝑑|

2 + |𝑐|2)
‖‖‖‖‖‖‖‖‖
𝑗 −

𝑏𝑑 + 𝑎𝑐 + 𝑗

|𝑑|2 + |𝑐|2

‖‖‖‖‖‖‖‖‖

2

= 1 + 1
2(|𝑑|2 + |𝑐|2)

‖‖‖‖‖(|𝑑|
2 + |𝑐|2 − 1)𝑗 − 𝑏𝑑 − 𝑎𝑐

‖‖‖‖‖
2

= 1 + 1
2(|𝑑|2 + |𝑐|2)

(
|||||𝑏𝑑 + 𝑎𝑐

|||||
2
+ (|𝑑|2 + |𝑐|2)2 − 2(|𝑑|2 + |𝑐|2) + 1) ;

noting that
|||||𝑏𝑑 + 𝑎𝑐

|||||
2
+ 1 = (|𝑎|2 + |𝑏|2)(|𝑐|2 + |𝑑|2), we have

cos 𝜌(𝑗, 𝑔(𝑗)) = 1 + 1
2(|𝑑|2 + |𝑐|2)

(
(|𝑎|2 + |𝑏|2)(|𝑐|2 + |𝑑|2) + (|𝑑|2 + |𝑐|2)2 − 2(|𝑑|2 + |𝑐|2)

)

= 1 + 1
2

(
|𝑎|2 + |𝑏|2 + |𝑑|2 + |𝑐|2 − 2

)

= 1
2
‖𝑔‖2

as desired. mAk

2.2.7Theorem. Suppose 𝑔 ∈ 𝕄 is represented by thematrix𝐴 = [𝑎 𝑏
𝑐 𝑑] ∈ SL(2,ℂ). Let𝑓 ∶ 𝐻3 → 𝐵3

be the map of Eq. (1.6.1). Then the following are equivalent:

1. 𝐴 ∈ SU(2,ℂ),
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2. 𝑔(𝑗) = 𝑗,

3. ‖𝑔‖2 = 2,

4. 𝑓𝑔𝑓−1 ∈ 𝑂(3), and

5. 𝑔 is an isometry of (𝐶̂, 𝑑) (where 𝑑 is the chordal metric).

Proof. The equivalence of (1) and (2) is Example 2.2.5. The equivalence of (2) and (3) is Proposi-
tion 2.2.6.

Now (2) is equivalent to 𝑓𝑔𝑓−1(0) = 0, since 𝑓 maps 𝑒𝑛+1 ↦ 0. Hence by Lemma 1.4.1 we are
done.

Finally, recall the chordal metric is defined by

𝑑(𝑥, 𝑦) =

⎧
⎪

⎨
⎪
⎩

2‖𝑥 − 𝑦‖
(1 + ‖𝑥‖)2)1∕2(1 + ‖𝑦‖)2)1∕2

𝑥, 𝑦 ∈ ℂ

2

1 + ‖𝑥‖2
𝑦 = ∞.

Thus to show that 𝑔 is an isometry is equivalent to showing that for all 𝑧 ∈ ℂ,
||||𝑔
′(𝑧)||||

1 + |||𝑔(𝑧)|||
2 =

1
1 + |𝑧|2

.

Now we compute
||||𝑔
′(𝑧)||||

1 + |||𝑔(𝑧)|||
2 =

|||𝑎(𝑐𝑧 + 𝑑) − 𝑐(𝑎𝑧 + 𝑏)|||

|𝑐𝑧 + 𝑑|2 (1 +
||||||
𝑎𝑧+𝑏
𝑐𝑧+𝑑

||||||

2
)

= |𝑎𝑑 − 𝑏𝑐|

|𝑐𝑧 + 𝑑|2 (1 +
||||||
𝑎𝑧+𝑏
𝑐𝑧+𝑑

||||||

2
)

= 1

|𝑎𝑧 + 𝑏|2 + |𝑐𝑧 + 𝑑|2

and so 𝑔 is an isometry iff |𝑎𝑧 + 𝑏|2+|𝑐𝑧 + 𝑑|2 = 1+|𝑧|2 for all 𝑧 ∈ ℂ. Expandingwe find |𝑎𝑧 + 𝑏|2+
|𝑐𝑧 + 𝑑|2 = (|𝑎|2 + |𝑐|2)|𝑧|2 + (|𝑏|2 + |𝑑|2) + 2Re(𝑎𝑏 + 𝑐𝑑)𝑧 and comparing coefficients we have
𝑎𝑏 + 𝑐𝑑 = 0 and |𝑎|2 + |𝑐|2 = |𝑏|2 + |𝑑|2 = 1; these equalities are equivalent to 𝐴∗ = 𝐴−1. This
shows the equivalence of (1) and (5). mAk

2.2.8 Corollary. The classical symmetry groups of the regular solids in 𝐵3 are precisely the finite sub-
groups of SU(2,ℂ). mAk

2.3 Fixed points and conjugacy classes

2.3.1 Lemma. A non-identity element of𝕄 has either one or two fixed points in ℂ̂.

Proof. Fix a representative 𝐴 ∈ SL(2,ℂ) for the transformation. Since we are working over ℂ, 𝐴 has
either one or two distinct eigenvalues. Thus we have three possibilities:
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• A single eigenvalue with algebraic multiplicity 2 and geometric multiplicity 1: in this case, we
have a single fixed line in ℂ2 and thus a single fixed point in ℂ̂.

• A single eigenvalue with algebraic multiplicity 2 and geometric multiplicity 2: in this case, we
have that every element of ℂ2 lies in this eigenspace, and 𝐴 acts on ℂ̂ as the identity.

• Two distinct eigenvalues each with algebraic multiplicity 1 and geometric multiplicity 1: in
this case, we have a two distinct fixed lines in ℂ2 and thus two fixed points in ℂ̂. mAk

As a consequence of this we get a simple proof that𝕄 is sharply triply transitive: if 𝑓 and 𝑔 both
send (𝑤1, 𝑤2, 𝑤3) ↦ (𝑧1, 𝑧2, 𝑧3) then the composition 𝑓𝑔−1 has three fixed points and thus is the
identity.

We proceed to classify the elements of𝕄 according to their fixed points.

2.3.1 One fixed point
If 𝑓 ∈ 𝕄 has a unique fixed point, it is called parabolic.

2.3.2 Lemma. Every parabolic element 𝑓 ∈ 𝕄 is conjugate to the translation 𝑧 ↦ 𝑧 + 1.

Proof. Let 𝑧1 be the fixed point of 𝑓, let 𝑧2 be any other point, and let 𝑧3 = 𝑓(𝑧2). Let 𝑔 be the
fractional linear map sending the triple (𝑧1, 𝑧2, 𝑧3)↦ (∞, 0, 1). Then 𝑓𝑔𝑓−1 has a unique fixed point
at∞ andmaps 1 to 0. Recall that a fractional linear transformation fixing∞ is of the form 𝑧 ↦ 𝑎𝑧+𝑏,
and such amap sends 1 to 0 iff 𝑏 = 1. Further, 𝑧 = 𝑎𝑧+1 ⟹ (1−𝑎)𝑧 = 1 so such a transformation
has a finite fixed point iff 𝑎 ≠ 1. Thus 𝑓𝑔𝑓−1 is the prototype translation. mAk

Since trace is conjugation invariant, we see that 𝑓 ∈ 𝕄 is parabolic iff tr2 𝑓 = 4.

2.3.3 Lemma. If 𝑔 is parabolic with fixed point 𝑥 ∈ ℂ̂, then there is a unique non-zero 𝑝 ∈ ℂ such that
the matrix

• [1 𝑝
0 1] if 𝑥 = ∞;

• [1 + 𝑝𝑥 −𝑝𝑥2
𝑝 1 − 𝑝𝑥] if 𝑥 ≠∞

is a representative of 𝑔 in SL(2,ℂ).

The representative of Lemma 2.3.3 is the normal form of the element 𝑔.

Proof. If 𝑥 = ∞ then 𝑔 is of the form 𝑔(𝑧) = 𝑎𝑧 + 𝑏; since 𝑔 has no finite fixed point we must have

𝑎 = 1; and we may take 𝐴 = [1 𝑏
0 1]. On the other hand, suppose 𝑥 ≠ ∞. Since𝕄 ≃ PSL(2,ℂ) we

may choose a unique representative matrix 𝐴 ∈ SL(2,ℂ) with trace 2 (the two representatives have

traces ±2 respectively), say 𝐴 = [𝑎 𝑏
𝑐 𝑑]. If 𝑥 = 0 then 𝑓(0) = 𝑏∕𝑑 so 𝑏 = 0 and thus det𝐴 = 𝑎𝑑,

given that 𝑎𝑑 = 1 and 𝑎 + 𝑑 = 2 we have 𝑎 = 𝑑 = 1 and 𝑓(𝑧) = 𝑧
𝑐𝑧+1

so we may take 𝑝 = 𝑐.
Conversely, suppose 𝑥 ≠ 0; then we may pick a unique 𝑝 such that 𝑎 = 1 + 𝑝𝑥 and 𝑏 = 1 − 𝑝𝑥
(namely, take 𝑝 = (𝑎 − 1)∕𝑥 and then 𝑏 = 2 − 𝑎 = 2 − (1 + 𝑝𝑥) = 1 − 𝑝𝑥). Thus

1 = det𝐴 = det [1 + 𝑝𝑥 𝑏
𝑐 1 − 𝑝𝑥] = 1 − 𝑝2𝑥2 − 𝑏𝑐
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and so 𝑏𝑐 = −𝑝2𝑥2. Further, 𝑥 is a fixed point of 𝑓 and so

((1 + 𝑝𝑥)𝑥 + 𝑏) = (𝑐𝑥 + (1 − 𝑝𝑥))𝑥 ⟹ (2𝑝 − 𝑐)𝑥2 = −𝑏;

substituting we have (2𝑝 − 𝑐)𝑐𝑥2 = 𝑝2𝑥2, thus 0 = 𝑝2 − 2𝑝𝑐 + 𝑐2 = (𝑝 − 𝑐)2 and 𝑐 = 𝑝; this shows
𝑏 = −𝑝𝑥2 as required. mAk

2.3.2 Two fixed points
Consider the family ℰ of maps ℯ𝑘2 ∈ 𝕄, indexed by 𝑘 ∈ ℂ∗, 𝑘 ≠ ±1, defined by

ℯ𝑘2(𝑧) ≔ 𝑘2𝑧.

Clearly each of thesemaps has exactly two fixed points, 0 and∞. We call the value 𝑘2 themultiplier
of ℯ𝑘2 , and note that tr2 ℯ𝑘2 = (𝑘 + 𝑘−1)2.

2.3.4 Lemma. The map tr2 sets up a 2-1 map from the space ℰ to ℂ ⧵ {0, 4}, with preimages being of
the form {𝑘2, 𝑘−2}.

Proof. Suppose 𝑡 ∈ ℂ ⧵ {0, 4}. We wish to solve 𝑡2 = (𝑘 + 𝑘−1)2 for 𝑘2. Rearranging, we obtain
0 = 𝑘4 + (2 − 𝑡2)𝑘2 + 1 which is a quadratic polynomial in 𝑘2 with discriminant 𝑡4 − 4𝑡2. This
polynomial in 𝑡2 has solutions precisely when 𝑡2 ∈ {0, 4} which are precisely the disallowed values;
thus each tr2 comes from precisely two distinct values for 𝑘2: if one is 𝑘2, the other is 𝑘−2. mAk

By Lemma 2.3.4, conjugacy classes in ℰ consist of at most two elements. Note that a given ℯ𝑘2
has the property that, for all 𝑧 ∈ ℂ∗,

lim
𝑡→∞

|||||ℯ
𝑡
𝑘2(𝑧)

||||| =
||||(𝑘

2)𝑡𝑧|||| = {
0 ||||𝑘

2|||| < 1
∞ ||||𝑘

2|||| > 1

and so the fixed points of each map consist of one attractive and one repelling point; given any ele-
ment ℯ𝑘2 , the element ℯ𝑘−2 has the same trace but swapped nature of the fixed points. This suggests
the following, which is too trivial even to be a lemma:

2.3.5 Observation. The maps ℯ𝑘2 and ℯ𝑘−2 are congruent in𝕄.

Proof. Take the obvious map swapping 0 and∞, namely 𝑧 ↦ 1∕𝑧. Conjugating by this map works.
mAk

If ||||𝑘
2|||| = 1, we call ℯ𝑘2 a rotation; if 𝑘2 ∈ (0,∞) ⧵ {1} then we call ℯ𝑘2 a dilation.

2.3.6 Lemma. The element ℯ𝑘2 is a rotation if and only if tr2 ℯ𝑘2 ∈ (0, 4). The element ℯ𝑘2 is a dilation
if and only if tr2 ℯ𝑘2 ∈ (4,∞).

Proof. Note that ||||𝑘
2|||| = 1 implies that tr2 ℯ𝑘2 = (𝑘+𝑘)2 = 4(Re 𝑘)2 and so tr2 ℯ𝑘2 ∈ [0, 4]; and we are

neglecting ±1 so the endpoints of the interval are not attained. Similarly, 𝑘2 ∈ (0,∞) ⧵ {1} implies
tr2 ℯ𝑘2 = (𝑘 + 𝑘−1)2 is a positive real number; if 𝑘 ≠ 0 then ||||𝑘 + 𝑘−1|||| ≥ 2 with equality exactly at
𝑘 = ±1 (e.g. consider the local extrema of the hyperbola with equation 𝑦 = 𝑥 + 1∕𝑥).

For the converses, suppose (𝑘 + 𝑘−1)2 ∈ (0,∞); in particular, 𝑘 + 𝑘−1 is real. Write 𝑘 = 𝑎 + 𝑏𝑖;
then we have 0 = Im(𝑘+ 𝑘−1) = 𝑏− 𝑏∕(|𝑎|2 + |𝑏|2) and either 𝑏 = 0 or |𝑘|2 = |𝑎|2 + |𝑏|2 = 1. Thus
if (𝑘 + 𝑘−1)2 ∈ (0,∞) then ℯ𝑘2 is either a rotation or a dilation. We then use the first direction to see
that if tr2 ℯ𝑘2 ∈ (0, 4) then ℯ𝑘2 is a rotation, otherwise we obtain a contradiction; and similarly for
the dilation case. mAk
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Figure 2.1: The shapes of the orbits of the different types of fractional linear transformation.

In particular, we see that the classes of rotations and dilations are disjoint. (Of course we could
also see this by seeing that the map sending each ℯ𝑘2 to its unique conjugate, namely 𝑘2 ↦ 𝑘−2,
preserves the classes.)

2.3.7 Definition. Let 𝑔 ∈ 𝕄 have precisely two fixed points in ℂ̂. We call 𝑔 variously:

• elliptic, if 𝑔 is conjugate to a rotation;

• hyperbolic, if 𝑔 is conjugate to a dilation;

• strictly loxodromic, if 𝑔 is neither elliptic nor hyperbolic.

The class of loxodromic elements is the union of the classes of hyperbolic and strictly loxodromic
elements.

We shall prove in a moment that every element with two distinct fixed points lies in one of these
classes. The four possibilities for the type of an element of𝕄 are therefore parabolic, elliptic, strictly
loxodromic, or hyperbolic. The names come from the shapes of the orbits; see Fig. 2.1.

2.3.8 Proposition. An 𝑔 ∈ 𝕄 with two distinct fixed points in ℂ̂ is conjugate to precisely two transfor-
mations of the form ℯ𝑘2 .

Proof. Let 𝑧1 and 𝑧2 be the two fixed points of 𝑔; pick any transformation 𝑓 ∈ 𝕄 sending 𝑧1 ↦ 0 and
𝑧2 ↦ ∞; the resulting map 𝑓𝑔𝑓−1 fixes 0 and∞, hence is an element of ℰ. Then Observation 2.3.5
shows that 𝑓𝑔𝑓−1 has at least two elements ofℰ in its conjugacy class, and Lemma 2.3.4 shows it has
at most two. mAk

In fact, the two conjugacy class representatives in ℰ correspond to a choice of order of the fixed
points of 𝑔. In the case that 𝑔 is loxodromic it is possible to distinguish the fixed points via their
flow properties; we shall always choose the representative with ||||𝑘

2|||| > 1, so that the attractive fixed
point is conjugated to ∞. If 𝑔 is elliptic and 𝑘2 ≠ −1, we order the fixed points by choosing the
representative 𝑘2 in the upper half-plane (that is, the representative such that 𝑘2 = exp(𝑖𝜃) with
0 < 𝜃 < 𝜋). If 𝑘2 = 1 then the transformation 𝑧 ↦ 1∕𝑧 swaps 0↔∞ and commutes with −1, so we
cannot intrinsicly distinguish between the fixed points; if one of the fixed points is∞we distinguish
that one, otherwise we will always choose 𝑘 = 𝑖 as the distinguished conjugate.

2.3.9 Corollary. Two elements 𝑓, 𝑔 ∈ 𝕄 are conjugate if and only if tr2 𝑓 = tr2 𝑔.
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Proof. One direction was Lemma 2.2.1. It remains to show that tr2 𝑓 = tr2 𝑔 implies 𝑓 ∼ 𝑔. If
tr2 𝑓 = 4, this was the content of the previous section (parabolic elements form a conjugacy class of
𝕄 and are thus characterised by their tr2, which is 4). Otherwise, 𝑓 and 𝑔 have two fixed points. If
tr2 𝑓 = tr2 𝑔, then both 𝑓 and 𝑔 are conjugate to the same element of ℰ (since conjugacy classes of ℰ
are precisely given by the value of tr2, by Observation 2.3.5 and Lemma 2.3.4) and we are done. mAk

We now turn to the problem of finding a normal form for the transformations with two fixed
points.

2.3.10 Lemma. Let 𝑔 be a transformation with fixed points 𝑥 and 𝑦; order the fixed points so that the
distinguished fixed point is 𝑦. Then the matrix

𝐴 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1
𝑥−𝑦

[
𝑥𝑘−1 − 𝑦𝑘 𝑥𝑦(𝑘 − 𝑘−1)
𝑘−1 − 𝑘 𝑥𝑘 − 𝑦𝑘−1

] 𝑥, 𝑦 ≠∞

[
𝑘−1 𝑦(𝑘 − 𝑘−1)
0 𝑘

] 𝑥 = ∞

[
𝑘 𝑥(𝑘−1 − 𝑘)
0 𝑘−1

] 𝑦 = ∞

is a representative for 𝑔 in SL(2,ℂ); this is the normal form of 𝑔.

Proof. It suffices to check that 𝑦 is the distinguished fixed point of𝐴 in each case, and that 𝑔(0) = 𝐴0,
𝑔(1) = 𝐴(1), and 𝑔(∞) = 𝐴(∞). These are routine calculations. mAk

The difference between hyperbolic and strongly loxodromic elements may also be described in
terms of invariant discs. We note that when we say disc we will always mean either the interior of a
Euclidean circle, or a half-plane.

2.3.11 Proposition. Let 𝑔 be a loxodromic element. Then 𝑔 is hyperbolic iff there is an open disc 𝐷 in
ℂ̂ left invariant by 𝑔; otherwise 𝑔 is strongly loxodromic.

Proof. Suppose 𝑔 is hyperbolic; conjugate 𝑔 via 𝑓 to some element 𝑧 ↦ 𝜆2𝑧with 𝜆2 > 1. This element
fixes the upper half-plane of ℂ̂, and so 𝑔 fixes the inverse image of this half-plane under 𝑓 (which is
the interior of a circle). Conversely, if 𝑔 is conjugate to some element 𝑧 ↦ 𝑟 exp(𝑖𝜃)𝑧 with 𝜃 ≠ 0 then
this conjugate fixes no Euclidean disc (discs centred at 0 are mapped to strictly larger discs, and discs
not centred at 0 are rotated off themselves) and no half-space (either the boundary line is rotated off
itself, or the half-spaces bounded by it are exchanged if the line passes through 0 and 𝜃 = 𝜋). mAk

2.3.3 The trace of an element
We now have the necessary results to completely classify the conjugacy classes of𝕄.

2.3.12 Proposition. Let 𝑔 ∈ 𝕄 be an arbitrary element. Then:

• tr2(𝑔) is real and lies in [0, 4) if and only if 𝑔 is elliptic;

• tr2(𝑔) = 4 if and only if 𝑓 is parabolic or the identity;

• tr2(𝑔) is real and lies in (4,∞) if and only if 𝑔 is hyperbolic;

• tr2(𝑔) does not lie in the segment [0, 4] if and only if 𝑔 is loxodromic.

Proof. Compute with the normal forms and use that tr2 is invariant under conjugacy. mAk
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We also give an alternative classification.

2.3.13 Proposition. Let 𝑔 ∈ 𝕄 be an arbitrary non-identity element. Then 𝑔 has at least one fixed
point in𝐻3 = 𝐻3 ∪ ℂ̂; in the following we consider the action of 𝑔 on this set.

• 𝑔 is elliptic ⟺ 𝑔 has a fixed point in𝐻3 ⟺ 𝑔 has infinitely many fixed points ⟺ the fixed
points of 𝑔 are precisely the points of the closure of a hyperbolic line (called the axis of 𝑔).

• 𝑔 is parabolic ⟺ 𝑔 is not elliptic, and has exactly one fixed point in ℂ̂.

• 𝑔 is loxodromic ⟺ 𝑔 is neither elliptic nor parabolic ⟺ 𝑔 has exactly two fixed points.

Remark. We take these to be the definition of the adjectives parabolic/loxodromic/elliptic when we
consider groups of isometries of ℍ𝑛 for 𝑛 > 2. Note that while some of these conditions are almost
trivial when we consider 𝑔 ∈ 𝕄, in the general case they are not (e.g. in general, elements might
have more than two fixed points on 𝜕𝐻3). Compare [34, section IV.C] and [6, definition 4.3.2].

Proof of Proposition 2.3.13. • Suppose 𝑔 is elliptic; let it act on the half-space model of 𝐻3, and
conjugate to the element 𝑧 ↦ 𝑘2𝑧 for ||||𝑘

2|||| = 1. Then the Poincaré extension of 𝑔 clearly has as
fixed points exactly those points on the line 𝑥1 = 𝑥2 = 0. This shows both that 𝑔 has a fixed
point in𝐻3, and that it has infinitely many fixed points altogether, on a hyperbolic line.
Now suppose 𝑔 has infinitely many fixed points; since it has only two fixed points on ℂ̂, it must
have at least one fixed point in𝐻3 (here we use the deep result that∞ > 2).
Finally, we show that having a fixed point in 𝐻3 implies both having infinitely many fixed
points and being elliptic. Consider the action of 𝑔 on the ball model of 𝐻3, conjugated so that
the fixed point in𝐻3 is 0. By Lemma 1.4.1, 𝑔 ∈ 𝑂(3). The fixed points of 𝑔 are the points 𝑥 ∈ 𝐵3
such that 𝑔𝑥 = 1𝑥, i.e. the nullspace of (1 − 𝑔). This is a Euclidean subspace, in fact it must be
a line through the origin (it has either 1 or 2 intersection points with 𝜕𝐵3 and every flat has at
least 2 such intersection points if it has any); in particular, 𝑔 fixes pointwise a hyperbolic line.
The orbits of 𝜕𝐵3 are latitudes with respect to this axis, and in particular 𝑔 is an element with
two fixed points which are not attractive or repelling; thus 𝑔 is elliptic.

• Suppose 𝑔 is parabolic; then 𝑔 has not elliptic and has exactly one fixed point in ℂ̂ by definition.
Conversely, suppose 𝑔 is not elliptic; then 𝑔 is either loxodromic or parabolic by definition, and
if it has exactly one fixed point in ℂ̂ then it must be parabolic.

• The equivalence 𝑔 loxodromic ⟺ 𝑔 is neither elliptic nor parabolic is by consideration of
the trace, as above. Suppose 𝑔 has exactly two fixed points; note that 𝑔 cannot have any fixed
points in𝐻3, for then it would fix an entire hyperbolic line (as in the elliptic case) and so 𝑔 has
exactly two fixed points in ℂ̂. Since it is not elliptic, it must be loxodromic. Conversely, if 𝑔 is
loxodromic then, in particular, it is not elliptic, so it does not fix any points of𝐻3, and thus has
exactly two fixed points.

mAk

A stronger version of Proposition 2.3.11. Recall that we use disc to mean a Euclidean disc (i.e.
interior or exterior of a circle) or a half-plane in ℂ̂.

2.3.14 Proposition. An element 𝑔 ∈ 𝕄 leaves a disc invariant iff tr2 𝑔 ≥ 0.

Proof. Suppose tr2 𝑔 ≥ 0. By Proposition 2.3.12, we have that 𝑔 is one of the identity, elliptic,
parabolic, or hyperbolic. Clearly the identity fixes a disc. Parabolic transformations are conjugate
to 𝑧 ↦ 𝑧+ 1, which fixes the upper half-plane (in fact, any half-plane bounded by a horizontal line).
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Elliptic transformations are conjugate to 𝑧 ↦ 𝑘2𝑧 for ||||𝑘
2|||| = 1, every transformation of this type fixes

the unit disc (in fact, any disc about 0). Hyperbolic transformations are conjugate to 𝑧 ↦ 𝑘2𝑧 for
𝑘2 ∈ ℝ>0, which fixes the upper half-plane (in fact, any half-plane bounded by a line through 0).

Conversely, suppose tr2 𝑔 ∉ [0,∞). Then 𝑔 is strictly loxodromic, and we proved this case as
Proposition 2.3.11. mAk

In fact, note that if 𝑔 ∈ 𝕄 has tr2 𝑔 ≥ 0 and if 𝑧0 ∈ ℂ̂ is not a fixed point of 𝑔, then conjugating
𝑔 to be of a regular form (either 𝑧 ↦ 𝑧 + 1 or 𝑧 ↦ 𝑘2𝑧) sends 𝑧0 to a point distinct from∞ and 0;
in particular, there exists a disc bounded by a circle 𝑆 through 𝑧0 such that the interior and exterior
discs of 𝑆 are left invariant by 𝑔.

2.4 Commutators and fixed points

In this section, we shall study the behaviour of pairs of elements 𝑔, ℎ ∈ 𝕄 which share a fixed point
in ℂ̂ (Lemma 2.4.2) or in 𝐻3 (Theorem 2.4.7). See [6, pp. 68–74], as well as [34, p. I.D].

Let 𝐺 be a group acting on some set 𝑋. For 𝑔 ∈ 𝐺, write Fix𝑋 𝑔 for the set of all 𝑥 ∈ 𝑋 such
that 𝑔𝑥 = 𝑥. Recall also that the commutator of 𝑔, ℎ ∈ 𝐺 is the element [𝑔, ℎ] ≔ 𝑔ℎ𝑔ℎ−1ℎ−1
(so [𝑔, ℎ] = 1 ⟺ 𝑔ℎ = ℎ𝑔). Note that if 𝑔, ℎ ∈ 𝕄 have representatives 𝐴, 𝐵 ∈ SL(2,ℂ) then
[𝑔, ℎ] = [𝐴, 𝐵] (so the commutator is independent of the choice of matrix representatives).

2.4.1 Lemma. If 𝑔, ℎ ∈ 𝕄 act on ℂ̂, then 𝑔 and ℎ have a common fixed point iff tr[𝑔, ℎ] = 2.

Proof. Suppose 𝑔, ℎ have a common fixed point, 𝑥; let 𝑓 ∈ 𝕄 send 𝑥 ↦∞. Conjugation leaves trace
invariant, so it suffices to check that tr

[
𝑔𝑓 , ℎ𝑓

]
= 2; if some element 𝐴 ∈ PSL(2,ℂ) fixes∞, then the

lower-left entry of 𝐴 is zero. A simple computation shows that if 𝐴 and 𝐵 are two matrices with this
property, then 𝐴𝐵𝐴−1𝐵−1 has trace 2.

Conversely, suppose 𝑔 and ℎ have tr[𝑔, ℎ] = 2; we may assume that 𝑔 fixes∞, and so the matrix

representatives for 𝑔 and ℎ are respectively𝐴 = [𝑎 𝑏
0 𝑑] and 𝐵 = [𝑥 𝑦

𝑢 𝑣]. Using that𝐴, 𝐵 ∈ SL(2,ℂ)

we have
2 = tr[𝐴, 𝐵] = 𝑏2𝑢2 − 𝑏𝑢(𝑎 − 𝑑)(𝑣 − 𝑥) + 2𝑣𝑥 − (𝑎2 + 𝑑2)𝑢𝑦;

in the case that 𝑔 is parabolic, by Lemma 2.3.3 we have 𝑎 = 𝑑 = 1 and 𝑏 ≠ 0, so

2 = 𝑏2𝑢2 + 2𝑣𝑥 − 2𝑢𝑦 = 𝑏2𝑢2 + 2

so 𝑏2𝑢2 = 0 and 𝑢 = 0, so ℎ fixes∞. On the other hand, if 𝑔 is not parabolic we may conjugate again
to ensure that the second fixed point of 𝑔 is 0, and so by Lemma 2.3.10 we have 𝑏 = 0 and 𝑎 ≠ 𝑑. In
particular, using 𝑣𝑥 − 𝑢𝑦 = 1,

2 = 2𝑣𝑥 − (𝑎2 + 𝑑2)𝑢𝑦 = 2 + 2𝑢𝑦 − (𝑎2 + 𝑑2)𝑢𝑦 ⟹ 0 = (𝑎2 − 2𝑎𝑑 + 𝑑2) = 𝑢𝑦 = (𝑎 − 𝑑)2𝑢𝑦;

since 𝑎 ≠ 𝑑, 𝑢𝑦 = 0 and so either 𝑢 = 0 and ℎ(∞) = ∞, or 𝑦 = 0 and ℎ(0) = 0. mAk

2.4.2 Lemma. If 𝑔, ℎ ∈ 𝕄 are nontrivial and have a common fixed point in ℂ̂, then either

1. [𝑔, ℎ] = 1 and Fix 𝑔 = Fix ℎ; or

2. [𝑔, ℎ] is parabolic and Fix 𝑔 ≠ Fix ℎ.
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Proof. Again, if 𝑔 and ℎ have a common fixed point we may conjugate (which preserves the commu-
tator and the type of the transformation) so that∞ is a common fixed point. Note that tr[𝑔, ℎ] = 2
by Lemma 2.4.1, so either [𝑔, ℎ] = 1 or [𝑔, ℎ] is parabolic; a computation shows that

[𝑎 𝑏
0 𝑑] [

𝑥 𝑦
0 𝑣] [

𝑎 𝑏
0 𝑑]

−1

[𝑥 𝑦
0 𝑣]

−1

= [1
𝑏𝑣+𝑎𝑦−𝑏𝑥−𝑑𝑦

𝑑𝑣
0 1

] ,

so [𝑔, ℎ] = 1 iff 𝑏𝑣+𝑎𝑦− 𝑏𝑥−𝑑𝑦 = 0 iff 𝑏(𝑣−𝑥) = 𝑦(𝑎−𝑑): if 𝑎 = 𝑑, then 𝑏 = 0 and by the normal
forms if 𝑏 = 0 then either 𝑔 is parabolic (if 𝑎 ≠ 𝑑) or the identity (if 𝑎 = 𝑑); neither of these cases are
possible here, so we must have 𝑎 ≠ 𝑑 so 𝑔 has two fixed points. Conjugate again so that 𝑔 has fixed
points at 0 and∞, then we have

[𝑎 0
0 𝑑] [

𝑥 𝑦
0 𝑣] [

𝑎 𝑏
0 𝑑]

−1

[𝑥 𝑦
0 𝑣]

−1

= [1
𝑦(𝑎−𝑑)
𝑑𝑣

0 1
] ,

and thus, since this is the identity matrix and 𝑎 ≠ 𝑑, 𝑦 = 0 so ℎ has fixed points at 0 and∞.
Conversely, suppose the fixed points of 𝑔 and ℎ differ, conjugating the fixed points of 𝑔 to 0 and

∞ and computing the commutator as above shows that [𝑔, ℎ] ≠ 1. mAk

2.4.3 Theorem. Let 𝑔, ℎ ∈ 𝕄 be nontrivial. The following are equivalent:

1. [𝑔, ℎ] = 1 (𝑔 and ℎ commute);

2. 𝑔(Fixℂ̂ ℎ) = Fixℂ̂ ℎ and ℎ(Fixℂ̂ 𝑔) = Fixℂ̂ 𝑔;

3. Either:

(a) Fixℂ̂ ℎ = Fixℂ̂ 𝑔, or

(b) 𝑔 and ℎ have a common fixed point in 𝐻3, no common fixed point in ℂ̂, and the relations
𝑔2 = ℎ2 = (𝑔ℎ)2 = 1 hold;

4. Either:

(a) Fixℂ̂ ℎ = Fixℂ̂ 𝑔, or

(b) 𝑔 and ℎ are elliptic of order 2, and each exchanges the fixed points of the other.

Proof.

(1) ⟹ (2). Suppose 𝑔ℎ = ℎ𝑔. Let 𝑥 ∈ Fixℂ̂ ℎ, then 𝑔𝑥 = 𝑔ℎ𝑥 = ℎ𝑔𝑥, so 𝑔𝑥 ∈ Fixℂ̂ ℎ; hence
𝑔(Fixℂ̂ ℎ) ⊆ Fixℂ̂ ℎ. Converse inclusion is easy (consider 𝑔

−1).

(2) ⟹ (3). Suppose the closure properties of (2) hold, and that Fixℂ̂ ℎ ≠ Fixℂ̂ 𝑔. Pick some
𝑥 ∈ Fixℂ̂ 𝑔 ⧵ Fixℂ̂ ℎ. Then 𝑥, ℎ𝑥, ℎ

2𝑥 ∈ Fixℂ̂ 𝑔 since the latter is closed under left-multiplication
by ℎ. These cannot be distinct (ℎ has at most two fixed points), and ℎ𝑥 ≠ 𝑥 (by assumption)
so 𝑥 = ℎ2𝑥. In particular, 𝑔 has exactly two fixed points (ℎ and ℎ𝑥) which are exchanged by ℎ.
Conjugating, we may assume the fixed points of 𝑔 are 0 and ∞, so 𝑔𝑧 = 𝑎𝑧 (𝑎 ∈ ℂ); since ℎ
exchanges 0 and∞, we have ℎ𝑧 = 𝑏∕𝑧 (𝑏 ∈ ℂ). Then, for 𝑧 ∈ ℂ, ℎ2𝑧 = 𝑧 and (𝑔ℎ)2𝑧 = 𝑧. This
gives the relations. Finally, note that 𝑔 and ℎ both fix the point |𝑏|1∕2𝑗 (by direct substitution into
Lemma 2.2.3: note that the correct form for 𝑔 is 𝑞 ↦ ( 𝑎

|𝑎|1∕2
𝑞) 1

|𝑎|1∕2
etc.).



2.4. COMMUTATORS AND FIXED POINTS 27

(3) ⟹ (4). Suppose 𝑔 andℎ have a commonfixedpoint in𝐻3, in particular by Proposition 2.3.13
both are elliptic. Suppose 𝑥 is a fixed point of 𝑔, then 𝑔ℎ𝑥 = ℎ2𝑔ℎ𝑥 = ℎ𝑔𝑥 = ℎ𝑥 (since
𝑔ℎ𝑔ℎ = 1 ⟺ ℎ𝑔ℎ = 𝑔) and ℎ𝑥 is the other fixed point; this shows the exchange property.

(4) ⟹ (1). If Fixℂ̂ ℎ = Fixℂ̂ 𝑔 then Lemma 2.4.2 allows us to conclude that 𝑔ℎ = ℎ𝑔. On the
other hand, suppose 𝑔 and ℎ are elliptic of order 2, and each exchanges the fixed points of the
other. By conjugation, we may assume 𝑔(𝑧) = 𝑘2𝑧 for some 𝑘 ∈ ℂ; this uses 2-transitivity. Using
the further rigidity condition of 3-transitivity, conjugate one of the fixed points of ℎ to 1; so ℎ
interchanges 0 and∞ and fixes 1, so ℎ(𝑧) = 1∕𝑧. The other fixed point of ℎ is −1, so 𝑔 exchanges
±1, i.e. 𝑘2 = −1. Hence 𝑓(𝑧) = 1∕𝑧 and 𝑔(𝑧) = −𝑧, and these transformations commute.

mAk

These two theorems essentially complete the study of common fixed points in ℂ̂. We now move
to the technically harder study of common fixed points in 𝐻3.

Recall the notion of the axis of an elliptic element from Proposition 2.3.13. We write 𝐴𝑔 for the
axis of an elliptic element 𝑔. Note that 𝑔, ℎ ∈ 𝐺 have a common fixed point in𝐻3 iff𝐴𝑔∩𝐴ℎ∩𝐻3 ≠ ∅;
this is equivalent to requiring the fixed points of 𝑔 and ℎ to lie on some circle 𝑄, and to separate each
other on 𝑄 (picture).

2.4.4 Lemma. If 𝑔, ℎ, 𝑔ℎ are all elliptic, then the fixed points of 𝑔 and ℎ in ℂ̂ are concyclic. Further, if
[𝑔, ℎ] is either elliptic or 1, then 𝐴𝑔 and 𝐴ℎ intersect in𝐻3.

Proof. We split into two cases: that 𝑔 and ℎ have a common fixed point in ℂ̂, and that they do not.

𝑔 and ℎ have a common fixed point. In this case, Fixℂ̂ 𝑔∪Fixℂ̂ ℎ has at most three points, so de-
termines a circle— this proves concyclicity. Now suppose [𝑔, ℎ] is either elliptic or 1. Considering the
cases in the conclusion of Lemma 2.4.2, we must actually have that [𝑔, ℎ] = 1 (as two noncommut-
ing elements with common fixed points must have a parabolic commutator and this is not possible
here by assumption) and so the fixed points of 𝑔 and ℎ coincide; hence the axes coincide (and have
infinitely many points of intersection).

𝑔 and ℎ have no common fixed point. For the second case, assume 𝑔 and ℎ have no common
fixed points, and conjugate the fixed points of 𝑔 to 0 and ∞; thus we have 𝑔(𝑧) = 𝑘2𝑧 for some

𝑘2 ∈ ℂ ⧵ {1} with ||||𝑘
2|||| = 1. Pick a matrix representative for ℎ, say [𝑎 𝑏

𝑐 𝑑] ∈ SL(2,ℂ). By direct

computation, tr2 ℎ = (𝑎 + 𝑑)2 and tr2(𝑔ℎ) = (𝑘𝑎 + 𝑘𝑑)2; each of these elements lies in [0, 4), so
𝜆 = 𝑎+𝑑 and 𝜇 = 𝑘𝑎+ 𝑘𝑑 lie in (−2, 2). We have 𝑑 = 𝜇−𝜆𝑘

𝑘−𝑘
and 𝑎 = 𝑑. Write 𝑎 = 𝑢+ 𝑖𝑣. Using this,

we compute that the fixed points of ℎ are

(2.4.5) 𝜁, 𝜉 = 𝑖
𝑐
(
𝑣 ± (1 − 𝑢2)1∕2

)
;

since |𝑎 + 𝑑| < 2, we have 𝑢2 = 1
4
(𝑎+𝑑)2 < 1 and so 𝜁 and 𝜉 are both on the line 𝐿 generated by 𝑖∕𝑐.

Suppose now that [𝑔, ℎ] is elliptic or 1; we have 0 ≤ tr2[𝑔, ℎ] < 4, and a further computation gives

tr2[𝑔, ℎ] = 4
(
1 + (|𝑎|2 − 1) sin2 𝜃

)2
where 𝜃 = arg 𝑘, so |𝑎|2 − 1 < 0. If |𝑎| = 1 then 𝑢2 + 𝑣2 = 1

so 𝑣 ± (1− 𝑢2)1∕2 takes on the value zero; this contradicts the assumption that 𝑔, ℎ have no common
fixed points and so |𝑎| < 1. i.e. (1 − 𝑢2)1∕2 > 𝑣. From Eq. (2.4.5) above, we may write 𝜁 = 𝑖𝑠∕𝑐 and
𝜉 = 𝑖𝑡∕𝑐 for 𝑠, 𝑡 ∈ ℝ and one of 𝑠 and 𝑡 is negative; hence the two fixed points of ℎ lie on opposite
sides of 0 on the line 𝐿, so separate the fixed points of 𝑔, and therefore 𝐴ℎ and 𝐴𝑔 intersect. mAk
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We now apply Lemma 2.4.4 to the study of subgroups of𝕄 generated by two elliptic elements.

2.4.6 Lemma. Let 𝑔, ℎ ∈ GM(3) be nontrivial elements of 𝕄 acting 𝐵3, fixing the origin (so every
nontrivial element of ⟨𝑔, ℎ⟩ is elliptic). Then either

• the elements of ⟨𝑔, ℎ⟩ have the same axis and the same fixed points, or

• there is some 𝑓 ∈ ⟨𝑔, ℎ⟩ such that 𝐴𝑔, 𝐴ℎ, 𝐴𝑓 are not coplanar.

Proof. By assumption, the axes 𝐴𝑔 and 𝐴ℎ are diameters of 𝐵3; assume 𝐴ℎ ≠ 𝐴𝑔, so 𝐴ℎ and 𝐴𝑔
determine a Euclidean plane 𝑃. Let 𝐷 denote the (unique) diameter of 𝐵3 orthogonal to 𝑃. If ℎ(𝐴𝑔)
does not lie in 𝑃, then 𝑓 = ℎ𝑔ℎ−1 has the property that 𝐴𝑓 = ℎ(𝐴𝑔); similarly, if 𝑔(𝐴ℎ) does not lie
in 𝑃, then take 𝑓 = 𝑔ℎ𝑔−1. Assume therefore that 𝑔(𝐴ℎ) and ℎ(𝐴𝑔) both lie in 𝑃. This shows that 𝑔
and ℎ preserve 𝑃, and so act as reflections across it; they therefore exchange the endpoints of 𝐷 and
so 𝑓 = 𝑔ℎ has axis 𝐷. mAk

2.4.7 Theorem. Let𝐺 ≤ 𝕄. The elements of𝐺 have a common fixed point in𝐻3 iff all the non-identity
elements of 𝐺 are elliptic.

Proof. It is trivial that if all the nontrivial elements of 𝐺 have a shared fixed point in 𝐻3 then they
are elliptic. The converse is slightly harder. Suppose every nontrivial element of 𝐺 is elliptic; we
may assume that 𝐺 contains two elements 𝑔, ℎ such that 𝐴𝑔 ≠ 𝐴ℎ (otherwise all the elements fix a
common axis and have infinitelymany shared fixed points). By Lemma 2.4.4, 𝑔 and ℎ have a common
fixed point in 𝐻3; let 𝐺 act on 𝐵3 and by conjugation send this common fixed point to 0. Note that
the hypotheses of Lemma 2.4.6 hold, and by assumption we are the second case of the conclusions:
there is some 𝑓 ∈ ⟨𝑔, ℎ⟩ such that𝐴𝑔, 𝐴ℎ, 𝐴𝑓 are not coplanar; and since every element of ⟨𝑔, ℎ⟩ fixes
0, all of 𝐴𝑔, 𝐴𝑓 , 𝐴ℎ are Euclidean diameters of 𝐵3.

Pick any nontrivial 𝑞 ∈ 𝐺. By Lemma 2.4.4, the fixed points of 𝑞 and 𝑔 in ℂ̂ are concyclic; let Π𝑔
be the Euclidean plane containing this circle. Since Π𝑔 contains the endpoints of 𝐴𝑞 and is a plane,
𝐴𝑞 ⊆ Π𝑔; similarly,Π𝑔 contains𝐴𝑔 andhence 0. Define similar planesΠℎ andΠ𝑓 , so 0 ∈ Π𝑔∩Πℎ∩Π𝑓
and 𝐴𝑞 ⊆ Π𝑔 ∩ Πℎ ∩ Π𝑓 .

Note thatΠ𝑔,Πℎ,Π𝑓 are distinct, otherwise𝐴𝑔, 𝐴ℎ, 𝐴𝑓 would be colinear. Hence the intersection
Π𝑔 ∩ Πℎ ∩ Π𝑓 is 0- or 1-dimensional, so is either 0 or 𝐴𝑞. In particular, 0 ∈ 𝐴𝑞 and so 𝑞(0) = 0: 0 is
a shared fixed point of 𝐺. mAk

2.4.8 Corollary. If 𝐺 ≤ 𝕄 is finite, then the elements of 𝐺 have a common fixed point in𝐻3.

Proof. If 𝐺 is finite, each element 𝑔 ∈ 𝐺 has finite order and so is elliptic; apply Theorem 2.4.7. mAk



Chapter 3

Kleinian groups

3.1 Discontinuous actions and the ordinary set

Fix a topological space 𝑋 and let 𝐺 be a group acting on 𝑋 via homeomorphisms.
We say that the action is:

• freely discontinuous (or properly discontinuous, or a covering space action) on 𝑋 if, for
every 𝑥 ∈ 𝑋, there exists a neighbourhood 𝑈 ∋ 𝑥 (called a nice neighbourhood) such that
𝑔𝑈 ∩𝑈 = ∅ for all 𝑔 ∈ 𝐺 nontrivial.

• proper if the continuous map Θ ∶ 𝐺 × 𝑋 → 𝑋 × 𝑋 defined by Θ(𝑔, 𝑥) = (𝑥, 𝑔𝑥) is proper.

• openly discontinuous if for every 𝑥, 𝑦 ∈ 𝑋 there exist neighbourhoods 𝑈 of 𝑥 and 𝑉 of 𝑦
such that 𝑈 ∩ 𝑔𝑉 = ∅ for all but finitely many 𝑔 ∈ 𝐺;

• weakly discontinuous if for every 𝑥 ∈ 𝑋 there exists a weakly nice neighbourhood 𝑈 of
𝑥 such that 𝑈 ∩ 𝑔𝑈 = ∅ for all but finitely many 𝑔 ∈ 𝐺;

• compactly discontinuous if for every 𝐾 ⊆ 𝑋 compact, 𝐾 ∩ 𝑔𝐾 = ∅ for all but finitely many
𝑔 ∈ 𝐺. If 𝐾 ⊆ 𝑋 is compact, define 𝐺𝐾 ≔ {𝑔 ∈ 𝐺 ∶ 𝐾 ∩ 𝑔𝐾 ≠ ∅}; then compact discontinuity
of the action is equivalent to |𝐺𝐾| <∞ for all 𝐾 compact.

We write ◦Ω(𝐺) for the largest subspace of𝑋 on which the restriction of the group action is freely
discontinuous (the free regular set), and we write Ω(𝐺) for the largest subspace of 𝑋 on which the
restriction of the group action is weakly discontinuous (the regular set). It is easy to see that both
of these subspaces are open in 𝑋. If the group 𝐺 is understood from context, we shall merely write
◦Ω and Ω.

The first set of relationships between the different concepts of discontinuity is as follows:

3.1.1 Theorem. Let 𝑋 be a topological space, and let 𝐺 be a group acting on 𝑋 by homeomorphisms.

29
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Then we have the following relationships:

The action is freely discontinuous 𝑋∕𝐺 is Hausdorff

(and)

The action is proper 𝐾 compact implies 𝐺𝐾 compact

The action is openly discontinuous The action is compactly discontinuous

The action is weakly discontinuous

𝐺 discrete
[33, prp. 12.25]

𝑋 Hausdorff and locally compact
[33, prp. 12.24]

𝑋 Hausdorff
[33, prp. 12.23]

𝐺 discrete
𝑋 Hausdorff and locally compact

[33, exercise 12.20]
𝐺 discrete

𝑋 Hausdorff and locally compact
[33, exercise 12.20]

Proof. References are given in the diagram, except for (1) the equivalence of ‘𝐾 compact implies 𝐺𝐾 ’
and ‘compactly discontinuous’ when 𝐺 is discrete — this is immediate from the fact that compact
subspaces of a discrete space are exactly the finite subspaces — and (2) the implication from ‘openly
discontinuous’ to ‘weakly discontinuous’ which follows when 𝑥 = 𝑦 and the neighbourhood of the
definition is taken to be 𝑈 ∩ 𝑉. mAk

We now reduce to the cases of interest: subgroups of𝕄 acting on ℂ̂ and𝐻3. Both of these spaces
are Hausdorff and locally compact. We will also often restrict ourselves to the case that 𝐺 is discrete;
with this setup, the notions of openly, and compactly discontinuous actions are equivalent and if the
action has these properties then we say the action is discontinuous. It will follow from Proposi-
tion 3.1.4 below that, in the case of𝕄 acting on ℂ̂, this is also equivalent to weak discontinuity.

We start with the action on 𝐻3; the characterisation is easy:

3.1.2 Theorem. A subgroup 𝐺 ≤ 𝕄 is discrete iff it acts discontinuously in𝐻3.

We shall need a lemma.

3.1.3 Lemma. Discrete subgroups of SL(2,ℂ) are countable. In fact, 𝐺 ≤ SL(2,ℂ) is discrete iff for all
𝑘 ∈ ℕ, the set 𝐺𝑘 = {𝐴 ∈ 𝐺 ∶ ‖𝐴‖ ≤ 𝑘} is finite.

Proof. Clearly the countability statement follows from the second statement: 𝐺 =
⋃

𝑘∈ℕ 𝐺𝑘 so is a
countable union of finite sets.

If each 𝐺𝑘 is finite, then 𝐺 cannot have any limit points as ‖⋅‖ is continuous. Conversely, if some
𝐺𝑘 is infinite then pick some sequence of distinct elements (𝐴𝑛) ⊆ 𝐺𝑘; if we write (𝐴𝑛)𝑖𝑗 for the
coordinates of 𝐴𝑛, note that

‖‖‖‖(𝐴𝑛)𝑖𝑗
‖‖‖‖ ≤ 𝑘 for all 𝑖, 𝑗 and so (since [−𝑘, 𝑘] is compact) there exists a

convergent subsequence of the (𝐴𝑛), say converging to some𝐴 ∈ End(2,ℂ). Since det is continuous,
we actually have 𝐴 ∈ SL(2,ℂ); hence 𝐺 has a limit point as a subspace of SL(2,ℂ). mAk

Proof of Theorem 3.1.2. Suppose 𝐺 is discrete. By Lemma 3.1.3, 𝐺 is countable (it is a homomorphic
image of SL(2,ℂ)), say {𝑔1,…}. By discreteness, ‖𝑔𝑖‖ → ∞. Now use Proposition 2.2.6 to see that
𝜌(𝑗, 𝑔𝑛(𝑗))→∞ as 𝑛 →∞. Nownote that a compact subset𝐾 ⊆ 𝐻3 lies in a hyperbolic ball𝐵 around
𝑗 (indeed, one can show that hyperbolic balls in the half-plane model are Euclidean balls, though of
different centre and radius), say of radius 𝑘. If 𝑔𝐾 ∩ 𝐾 ≠ ∅, then 𝑔𝐵 ∩ 𝐵 ≠ ∅ and so 𝜌(𝑗, 𝑔(𝑗)) < 2𝑘.
Since this quantity tends to∞, there can be only finitely many 𝑔 such that 𝑔𝐾 ∩ 𝐾 ≠ ∅. This shows
discontinuity.
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If 𝐺 is not discrete, pick distinct matrices 𝐴1, 𝐴2,… ∈ SL(2,ℂ) such that the images 𝑔1,… ∈ 𝐺
converge to 1. Note then that 𝑔𝑛(𝑥) → 𝑥 as 𝑛 → ∞ for all 𝑥 ∈ 𝐻3; in particular, the orbit 𝐺𝑥 has
a limit point in 𝐻3, which implies 𝐺 cannot act discontinuously (a limit point must be contained in
infinitely many translates of a neighbourhood of 𝑥). mAk

The theory is richer in the case of an action on ℂ̂.

3.1.4 Proposition. If the action of𝐺 ≤ 𝕄 on a𝐺-invariant space𝑋 ⊆ ℂ̂ is weakly discontinuous, then
it is in fact openly discontinuous.

Proof. Let 𝑥, 𝑦 ∈ 𝑋; using weak discontinuity, find weakly nice neighbourhoods 𝑈 ∋ 𝑥 and 𝑉 ∋ 𝑦;
without loss of generality, assume 𝑈 and 𝑉 are open discs centred at 𝑥 and 𝑦 respectively. There are
at most finitely many translates of 𝑥 in 𝑉 (since 𝑉 is a weakly nice neighbourhood of each 𝑔𝑥 lying
in 𝑉); we may therefore shrink 𝑉 such that no translate of 𝑥 lies in 𝑉.

Suppose there exists a sequence (𝑔𝑖) ⊆ 𝐺 such that 𝑔𝑖𝑉 ∩𝑈 ≠ ∅ for all 𝑖. Note that 𝑔𝑖𝑉 ∩ 𝑔𝑗𝑉 ≠ ∅
implies that 𝑉 ∩ 𝑔−1𝑖 𝑔𝑗𝑉 ≠ ∅; by weak discontinuity, there are only finitely many pairs 𝑖, 𝑗 such that
𝑔𝑖𝑉 intersects 𝑔𝑗𝑉. Since all of these translates are subspaces of the 2-sphere ℂ̂, wemust have that the
spherical diameter (i.e. the diameter obtained by pulling back the chordal metric as in Eq. (1.2.9))
diam 𝑔𝑖𝑉 → 0 as 𝑖 → ∞. In particular, the sequence of images of 𝑦 must have an accumulation
point on the boundary of 𝑈. But the translates of 𝑦 by the 𝑔𝑖 in 𝑋 cannot have any accumulation
points — if they accumulated near some point 𝑧 ∈ 𝑋, then that point could not have a weakly
nice neighbourhood. We may therefore conclude that there are only finitely many 𝑔 ∈ 𝐺 such that
𝑔𝑉 ∩𝑈 ≠ ∅. mAk

Proposition 3.1.4, combined with Theorem 3.1.1, gives the following pair of corollaries:

3.1.5 Corollary. Let 𝐺 ≤ 𝕄 act on ℂ̂. Then the orbit space ◦Ω(𝐺)∕𝐺 is Hausdorff. mAk

3.1.6 Corollary. If 𝐺 ≤ 𝕄 is discrete and has freely discontinuous action on some 𝑋 ⊆ ℂ̂, then it is
discontinuous on 𝑋. mAk

We call a discrete subgroup 𝐺 ≤ 𝕄 aKleinian group. If ◦Ω(𝐺) = ∅, we say that 𝐺 is of the first
kind; otherwise, we say 𝐺 is of the second kind. If 𝑧 ∈ 𝐻3 is a fixed point of a parabolic element of
𝐺, we say that 𝑧 is a cusp of 𝐺; if 𝑧 is a fixed point of an elliptic, loxodromic, or hyperbolic element
we say that 𝑧 is variously an elliptic point, a loxodromic point, or a hyperbolic point of 𝐺.
Remark. Note that in [34], aKleinian group is ourKleinian group of the second kind; in [6], aKleinian
group is a discrete subgroup 𝐺 ≤ 𝕄 where Ω(𝐺) ≠ ∅. We shall prove later (Corollary 3.3.26) that
Ω(𝐺) ≠ ∅ ⟺ ◦Ω(𝐺) ≠ ∅ for such 𝐺, and so this also corresponds to a Kleinian group of the second
kind. Significant historical notes may be found in [38, §5.6].

3.1.7 Proposition. If 𝐺 ≤ 𝕄 is an arbitrary subgroup with Ω(𝐺) ≠ ∅, then 𝐺 is discrete (hence
Kleinian).

Proof. Suppose 𝐺 is not discrete; then there is a sequence (𝑔𝑖) of elements of 𝐺 such that 𝑔𝑖 → 1.
Then, for all 𝑧 ∈ ℂ̂, 𝑔𝑖(𝑧) → 𝑧; so 𝑧 is an accumulation point of the orbit 𝐺𝑧. Hence either 𝑔𝑧 = 𝑧
for infinitely many 𝑔 ∈ 𝐺, or every neighbourhood of 𝑧 contains infinitely many translates of 𝑧. In
either case, every neighbourhood of 𝑧 has the property that𝑈 ∩ 𝑔𝑈 ≠ ∅ for infinitely many 𝑔, and so
𝑧 ∉ Ω(𝐺). In particular, Ω(𝐺) = ∅. mAk

This proposition, as well as the proof of Proposition 3.1.4 above, suggests that it will be profitable
to study the limit points of orbits of Kleinian groups 𝐺. We do this in the next section, but first we
give some examples.



32 CHAPTER 3. KLEINIAN GROUPS

3.1.8 Example (Dihedral groups). The dihedral groups are precisely the noncyclic finite Kleinian
groups with a cyclic normal subgroup. If 𝑣 ≥ 2 is an integer, let 𝐻 be the cyclic subgroup generated
by the rotation 𝑧 ↦ exp(2𝜋𝑖∕𝑣)𝑧, and let 𝐺 = ⟨𝐻, 𝑏⟩ where 𝑏 is complex inversion. Note that 𝑏
normalises𝐻: (exp(2𝜋𝑖𝑚∕𝑣)𝑧)−1 = exp(−2𝜋𝑖𝑚∕𝑣)𝑧−1, so 𝑏𝐻 = 𝐻𝑏. Conclude that𝐻 is a subgroup
of index 2 in 𝐺, so |𝐺| = 2𝑣. Observe also that 𝐺 ≃ 𝐷2𝑣.

3.1.9Example (Symmetry groups of regular solids). Wesawabove (Corollary 2.2.8) that the orientation-
preserving halves of the symmetry groups of the regular solids are finite Kleinian groups.

Remark. One may show (see [34, Theorem C.10]) that the nontrivial finite Kleinian groups may be
classified as follows: such a group is cyclic, dihedral, or conjugate in𝕄 to the symmetry group of a
regular solid.

3.1.10 Example (Bianchi groups). Suppose 𝑅 is a discrete subring of ℂ. Then PSL(2, 𝑅) is a discrete
subgroup of PSL(2,ℂ): indeed, if 𝐴𝑛 → 𝐼 then each component tends to a value in 𝑅, contradicting
the lack of limit points. Let 𝒪𝑑 for 𝑑 ∈ ℤ>0 squarefree be the ring of integers of the quadratic imagi-
nary number field ℚ(

√
−𝑑) (recall, the ring of an integers of a number field 𝐹 is the integral closure

of ℤ in 𝐹). The groups PSL(2,𝒪𝑑) are the Bianchi groups.
Note that 𝑂𝑑 is generated by the two elements 1 and 𝜁𝑑, where

𝜁𝑑 =
⎧

⎨
⎩

√
−𝑑 𝑑 ≡ ±1 (mod 4),

1+
√
−𝑑
2

𝑑 ≡ 2 (mod 4).

Hence the translations 𝑧 ↦ 𝑧 + 1 and 𝑧 ↦ 𝑧 + 𝜁𝑑 are elements of PSL(2, 𝑂𝑑), and so Bianchi groups
always have a cusp at∞.

3.1.11 Example (Coxeter groups). If 𝑃 ⊆ 𝐻3 is a convex acute-angled polyhedron, with dihedral
angles submultiples of 𝜋, the Coxeter group generated by reflections in the faces of 𝑃 is discrete; the
index-2 subgroup of orientation-preserving elements is therefore a Kleinian group.

3.1.12 Example (Modular groups). The modular groups are SL(2,ℤ) and its subgroups of finite
index; see [36, Chapter 4]. We have that SL(2,ℤ) is generated by two elements,

[1 1
0 1] and [0 −1

1 0 ] ;

further:

• The elliptic points of SL(2,ℤ) in ℂ̂ are the orbits of 𝑖 and exp(𝜋𝑖∕3);

• The cusps of SL(2,ℤ) in ℂ̂ areℚ ∪ {∞}.

3.1.13 Example. Define 𝑋,𝑌4 ∈ SL(2,ℂ) by

𝑋 = [1 1
0 1] , 𝑌4 = [1 0

4 1] ,

and let 𝐺 = ⟨𝑋,𝑌4⟩. The isometric circles of 𝑌4 and 𝑌−1
4 are |4𝑧 + 1| = 1 and |4𝑧 − 1| = 1. Consider

the set
𝐹 ≔ {𝑧 = 𝑥 + 𝑦𝑖 ∈ ℂ ∶ −1∕2 < 𝑥 < 1∕2, |4𝑧 + 1| > 1, |4𝑧 − 1| > 1} ∪ {∞}

depicted in Fig. 3.1. The cusp points of 𝐺 are (the translates of) 0,∞, 1∕2,−1∕2 (corresponding to
the elliptic elements 𝑌4, 𝑋, 𝑋𝑌−1

4 , and (𝑋𝑌−1
4 )−1); notice these correspond to the ‘cusps’ visible on

the diagram of 𝐹.
One may also observe also that 𝐹 has the following properties (where Ω = Ω(𝐺)):
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Figure 3.1: The set 𝐹 of Example 3.1.13.

1. 𝐹 is an open subset of Ω;

2. The members of {𝑔𝐹 ∶ 𝑔 ∈ 𝐺} are mutually disjoint;

3. For every 𝑧 ∈ Ω, there is some 𝑔 ∈ 𝐺 with 𝑔(𝑧) ∈ 𝐹;

4. The intersection 𝜕𝐹 ∩Ω consists of a countable (in fact, finite) number of curves, and for each
such curve 𝑠 there is another such curve 𝑠′ (not necessarily distinct from 𝑠) such that 𝑔(𝑠) = 𝑠′
for some 𝑠 ∈ 𝑆′.

We shall prove most of these statements in the following sections (we will see that 𝐹 is a fundamen-
tal domain for 𝐺).

3.2 Somemore results on isometric circles
Fix some 𝐺 ≤ 𝕄 be Kleinian; in this section we will prove some more results about the isometric
circle of elements 𝑔 ∈ 𝐺, as preparation for our study of limit points. Recall that the isometric circle
of 𝑔 is the unique circle 𝑆 ⊆ ℂ̂ such that 𝑔↾𝑆 ∶ 𝑆 → 𝑔(𝑆) is an isometry.

We now collect some easy results, and some other results which follow directly from earlier re-
sults. Note that the factorisation result is proved as part of the proof of Corollary 1.4.3.

3.2.1 Lemma. If [𝑎 𝑏
𝑐 𝑑] ∈ SL(2,ℂ) is a representative for 𝑔 ∈ 𝐺, then the isometric circle 𝑆 of 𝑔 is the

set
|𝑐𝑧 + 𝑑| = 1,

with centre 𝑔−1(∞) = −𝑑∕𝑐 and radius ||||𝑐
−1||||. Further, 𝑔 factorises as 𝑔 = 𝑠◦𝑟◦𝑞, where 𝑞 is circle

inversion in 𝑆 and both 𝑟 and 𝑠 are Euclidean motions (distance-preserving affine maps). mAk

Let 𝜇(𝑋) denote the spherical area of a set 𝑋 ⊆ ℂ̂ (defined similarly to the chordal metric, via
the pullback of the spherical area on 𝑆2 via stereographic projection: compare Eq. (1.2.9) and the
preceeding discussion).

3.2.2 Lemma. Let𝑈 be a nice neighbourhood of some 𝑧 ∈ ◦Ω. Then
∑

𝑔∈𝐺
𝜇(𝑔𝑈) <∞.

Proof. The 𝑔𝑈 are all disjoint, and 𝜇(𝑆2) <∞. mAk
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Figure 3.2: Figure for Lemma 3.2.3.

Remark. From this lemma, we obtain another proof of Lemma 3.1.3: it is well-known that if (𝑥𝑎)𝑎∈𝐴
is a family of nonnegative real numbers, then

∑
𝑎∈𝐴 𝑥𝑎 <∞ only if 𝑥𝑎 = 0 for all but countablymany

𝑎; in the lemma, all the 𝜇(𝑔𝑈) are positive and so the index set 𝐺 is countable.
For the following lemma and theorem, let diam 𝑆 for 𝑆 ⊆ ℂ̂ denote the Euclidean diameter (i.e.

sup𝑥,𝑦∈𝑆 |𝑥 − 𝑦|).

3.2.3 Lemma. Let 𝑔 ∈ 𝕄 not fix∞, and let 𝑇 be a closed set not containing 𝛼 ≔ 𝑔−1(∞). Let 𝛿 =
𝑑(𝛼, 𝑇), and let 𝜌 be the radius of the isometric circle of 𝑔. Then

diam(𝑔𝑇) ≤ 2𝜌2∕𝛿,

and if∞ ∈ 𝑇 then
𝜌2∕𝛿 ≤ diam(𝑔𝑇).

Proof. See Fig. 3.2. Since 𝑇 is closed, 𝑑(𝛼, 𝑇) > 0. Now note that 𝑇 lies outside the (open) ball
centred at 𝛼 of radius 𝛿; the circle 𝐶 ≔ 𝑆(𝛼, 𝛿) is sent by 𝑔 to a circle 𝑔𝐶 of radius 𝜌2∕𝛿, since the only
component of 𝑔which changes the radius of circles is the reflection across the isometric circle, which
is centred at 𝛼 (Lemma 3.2.1). Note now that 𝑔 sends the exterior of 𝐶 (i.e. the connected component
of ℂ̂ ⧵ 𝐶 containing ∞) to the interior of the circle 𝑔𝐶 (the connected component of ℂ̂ ⧵ 𝑔𝐶 not
containing∞). In particular, 𝑔𝑇 ⊆ 𝑔𝐶, so diam(𝑔𝑇) ≤ diam(𝑔𝐶) = 2𝜌2∕𝛿.

If∞ ∈ 𝑇 then 𝑔(∞) (the centre of 𝑔𝐶) lies in 𝑔𝑇; on the other hand, since 𝑇 is closed there is a
point 𝑡 ∈ 𝑇 such that 𝑑(𝑡, 𝛼) = 𝛿 and so 𝑔𝑡 ∈ 𝑔𝐶; hence diam(𝑔𝑇) ≥ |||𝑔𝑡 − 𝑔(∞)||| = 𝜌2∕𝛿. mAk

3.2.4 Theorem. If∞ ∈ ◦Ω, then ∑

𝑔∈𝐺⧵1
|𝑐|−4 <∞

(where 𝑐 denotes the bottom-left entry of an arbitrary matrix representative of 𝑔).

Proof. See Fig. 3.3. Let 𝑈 be a nice neighbourhood of ∞; without loss of generality, 𝑈 = 𝑆(∞, 𝜌).
Suppose 𝑔 ∈ 𝐺 is nontrivial; since ∞ ∈ ◦Ω, 𝑔(∞) ≠ ∞ and so 𝑔 has an isometric circle 𝐶, say
𝑆(𝛼, |𝑐|−1). Since 𝑈 is a nice neighbourhood, 𝛼 ∉ 𝑈 (otherwise 𝑔(𝛼) = ∞, so ∞ ∈ 𝑔𝑈 ∩ 𝑈). By
increasing 𝜌 to 𝜌′ if necessary, we may assume 𝛿 ≔ 𝑑(𝛼,𝑈) > 0. Note that 𝛿 ≤ 𝜌 ≤ 𝜌′; hence by
applying Lemma 3.2.3 we have

diam(𝑔𝑈) ≥ |𝑐|−2∕𝛿 ≥ |𝑐|−2∕𝜌′ ≥ |𝑐|−2∕𝜌.
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Figure 3.3: Figure for Theorem 3.2.4.

Since 𝑔𝑈 is a circular disc contained in ℂ̂ ⧵𝑈 (in particular, 𝑔𝑈 is bounded) and since stereographic
projection has bounded distortion there exists some 𝐾 ∈ ℝ>0 such that 𝜇(𝑔𝑈) ≥ 𝐾−1 diam(𝑔𝑈)2. In
fact, 𝐾 is dependent only on the bound for 𝑔𝑈, and this bound — 𝜌— is independent of 𝑔. Observe
also that 𝜌 is independent of 𝑔 even though 𝜌′ was not. Thus:

∑

𝑔∈𝐺⧵1
|𝑐|−4 ≤

∑

𝑔∈𝐺⧵1
𝜌2 diam(𝑔𝑈)2 ≤ 𝜌2𝐾

∑

𝑔∈𝐺⧵1
𝜇(𝑔𝑈);

and we may apply Lemma 3.2.2 to complete the proof. mAk

3.2.5 Corollary. Let (𝑔𝑛) be a sequence of distinct elements of 𝐺, with∞ ∈ ◦Ω; for each 𝑛, let 𝑟𝑛 be the
radius of the isometric circle of 𝑔𝑛. Then 𝑟𝑛 → 0.

Proof. If 𝑔𝑛 has matrix representative with bottom-left entry 𝑐𝑛, then note that 𝑟𝑛 = |||𝑐𝑛|||
−1 for all 𝑛;

by Theorem 3.2.4, |||𝑐𝑛|||
−4 → 0 as 𝑛 →∞ and so |||𝑐𝑛|||

−1 → 0 as well. mAk

3.2.6 Proposition. Let (𝑔𝑛) be a sequence of elements of 𝐺, and let 𝑥, 𝑦 ∈ ℂ̂ be such that 𝑔𝑛(∞) → 𝑥
and 𝑔−1𝑛 (∞) → 𝑦. Let 𝐶𝑛 = 𝑆(𝑤𝑛, 𝑟𝑛) be the isometric circle of 𝑔𝑛, and let 𝐶′𝑛 = 𝑆(𝑤′

𝑛, 𝑟′𝑛) be the
isometric circle of 𝑔′𝑛. Then

𝑤𝑛 → 𝑥, 𝑤′
𝑛 → 𝑦, 𝑟𝑛 = 𝑟′𝑛 → 0.

Proof. Let 𝐴𝑛 = [𝑎𝑛 𝑏𝑛
𝑐𝑛 𝑑𝑛

] ∈ SL(2,ℂ) be a representative for 𝑔𝑛, so 𝑔−1𝑛 is represented by 𝐴−1
𝑛 =

[ 𝑑𝑛 −𝑏𝑛
−𝑐𝑛 𝑎𝑛

]; we have that 𝑔𝑛(∞) = 𝑎𝑛∕𝑐𝑛 → 𝑥 and that 𝑔−1𝑛 (∞) = −𝑑𝑛∕𝑐𝑛 → 𝑦. Now note that 𝐶𝑛

is the locus of 𝑧 ∈ ℂ̂ such that |||𝑐𝑛𝑧 + 𝑑𝑛||| = 1, i.e. the centre of 𝐶𝑛 is the point𝑤𝑛 with 𝑐𝑛𝑤𝑛+𝑑𝑛 = 0
and then 𝑤𝑛 = −𝑑𝑛∕𝑐𝑛 → 𝑦; similarly, 𝐶′𝑛 has centre the point 𝑤′

𝑛 with −𝑐𝑛𝑤′
𝑛 + 𝑎𝑛 = 0, i.e.

𝑤′
𝑛 = 𝑎𝑛∕𝑐𝑛 → 𝑥. Finally, the statement about the radii is a direct application of Corollary 3.2.5. mAk

3.3 Limit points

Let 𝐺 ≤ 𝕄 be Kleinian. For fixed 𝑤 ∈ ℂ̂, write Λ(𝑤) for the set of points 𝑧 ∈ ℂ̂ such that there
exists a sequence (𝑔𝑛) of distinct elements of 𝐺 with 𝑔𝑛𝑤 → 𝑧. (Note, we do not require the 𝑔𝑛𝑤 to
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Figure 3.4: The proof of the compact convergence lemma, Lemma 3.3.2.

be distinct.) A limit point of 𝐺 is a point which lies in Λ(𝑤) for some 𝑤 ∈ ◦Ω; we denote by Λ the
set

⋃
𝑤∈◦ΩΛ(𝑤); this is called the limit set of 𝐺.

3.3.1 Definition. Let 𝑋 be a topological space, and (𝑌, 𝑑) a metric space. A sequence of functions
𝑓𝑛 ∶ 𝑋 → 𝑌 (𝑛 ∈ ℕ) is said to converge uniformly on compact subsets to some 𝑓 ∶ 𝑋 → 𝑌 if for
all 𝐾 ⊆ 𝑌 compact,

lim
𝑛→∞

sup
𝑘∈𝐾

𝑑(𝑓𝑛(𝑘), 𝑓(𝑘)) = 0.

The following lemma is fundamental.

3.3.2 Lemma. 1. Let 𝑥 ∈ Λ; then there exists 𝑦 ∈ Λ, and a sequence (𝑔𝑛) of distinct elements of 𝐺,
such that themaps 𝑔𝑛 ∶ ℂ̂→ ℂ̂ converge uniformly to the constant function 𝑥 on compact subsets
of ℂ̂ ⧵ {𝑦}.

2. Further, if (𝑔𝑛) is an arbitrary sequence of distinct elements of 𝐺 then there is a subsequence (𝑔𝑚)
and 𝑥, 𝑦 ∈ Λ such that 𝑔𝑚 → 𝑥 uniformly on compact subsets of ℂ̂ ⧵ {𝑦}.

Proof. Since 𝑥 is a limit point, we may find a sequence (𝑔𝑚) ⊆ 𝐺 of distinct elements and an element
𝑧0 ∈ ◦Ω such that 𝑔𝑚𝑧0 → 𝑥. By conjugation, we may assume 𝑧0 = ∞. Since ℂ̂ is compact, there is a
subsequence (𝑔𝑛) of (𝑔𝑚) such that the sequence 𝑔−1𝑛 (∞) converges to some point 𝑦; by construction,
𝑦 ∈ Λ. By Proposition 3.2.6, we have that the centres of the isometric circles of 𝑔𝑛 tend to 𝑥, the
centres of the isometric circles of 𝑔−1𝑛 tend to 𝑦, and the isometric circle radii tend to 0. Let𝐾 ⊆ ℂ̂⧵{𝑦}
be compact; let𝑁 be sufficiently large that for all 𝑛 > 𝑁, 𝐵(𝑔−1𝑛 (∞), 𝜌𝑛) lies outside𝐾 (Fig. 3.4). Note
that for such 𝑛, the exterior of the isometric circle of 𝑔𝑛 is mapped to the interior of the isometric
circle of 𝑔−1𝑛 ; hence 𝑔𝐾 lies in the interior of the isometric circle of 𝑔−1𝑛 , which is 𝐵(𝑔𝑛(∞), 𝜌𝑛); thus
as 𝑛 →∞, 𝑔𝐾 → lim𝑛→∞ 𝑔𝑛(∞) = 𝑥 uniformly.

For the second part of the lemma, choose (again by compactness) a subsequence (𝑔𝑚) such that
𝑔𝑚(∞) converges to some 𝑥 ∈ ℂ̂ and such that 𝑔−1𝑚 (∞) converges to some 𝑦 ∈ ℂ̂. By suitable
conjugations, we may assume∞ ∈ ◦(𝐺) and so 𝑥, 𝑦 ∈ Λ. By a similar argument to the first part, we
see that for 𝐾 ⊆ ℂ̂ ⧵ {𝑦} compact we have 𝑔𝐾 → lim𝑛→∞ 𝑔𝑛(∞) = 𝑥 uniformly. mAk

3.3.3 Theorem. Let 𝐺 be Kleinian of the second type. The set Λmay alternatively be characterised as:

1. The set Λ(𝑧0) of limit points, for any fixed 𝑧0 ∈ ◦Ω;
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2. The set Λ0, where Λ0 is the set of non-elliptic points of 𝐺;

3. The set ℂ̂ ⧵Ω.

We call this set the limit set of 𝐺.

Proof. 1. Fix 𝑧0 ∈ ◦Ω arbitrary; clearly Λ(𝑧0) ⊆ Λ. Suppose on the other hand that 𝑤 ∈ Λ; then
there is some 𝑧 ∈ ◦Ω and some sequence (𝑔𝑛) of distinct elements of 𝐺 such that 𝑔𝑛(𝑧) → 𝑤;
by the proof of Lemma 3.3.2, there is a subsequence of the 𝑔𝑛 which converges uniformly to the
constant function 𝑤 on compact subsets; in particular, the value of 𝑧0 under this subsequence
tends to 𝑤 and so 𝑤 ∈ Λ(𝑧0).

2. This is harder, we shall prove it later as Corollary 3.3.22.

3. First, note that if 𝑥 ∈ Λ then every neighbourhood of 𝑥 has infinitely many translates of some
point, so 𝑥 ∉ Ω. Thus Λ ∩ Ω = ∅.
Assume now that 𝑥 ∉ Ω; we show that 𝑥 ∈ Λ. For every neighbourhood 𝑈 ∋ 𝑥, there are
infinitely many 𝑔 ∈ 𝐺 with 𝑔𝑈 ∩ 𝑈 ≠ ∅. Hence by taking the neighbourhoods 𝐵(𝑥, 1∕𝑚) for
𝑚 ∈ ℕ we can find a sequence (𝑔𝑚) of distinct elements of 𝐺 and a sequence of points 𝑧𝑚 ∈ ℂ̂
such that 𝑔𝑚𝑧𝑚 → 𝑥 and 𝑧𝑚 → 𝑥. By the proof of Lemma 3.3.2, we can find a subsequence
(𝑔𝑛) and limit points 𝑤, 𝑦 such that 𝑔𝑛 → 𝑤 uniformly on ℂ̂ ⧵ {𝑦}. If 𝑥 = 𝑦, then 𝑥 ∈ Λ. If
𝑥 ≠ 𝑦, then the points 𝑧𝑚 do not accumulate at 𝑦, so we may use the convergence property
away from 𝑦 to see 𝑔𝑛𝑧𝑛 → 𝑤, thus 𝑥 = 𝑤 ∈ Λ.

mAk

Remark. Compare (1) of the above theoremwith [6, Theorem5.3.9]: ifwe assume𝐺 is non-elementary
(see below) we may remove the requirement for 𝑧0 to be a point of free discontinuity.

3.3.4Theorem. If𝐺 is Kleinian of the second type, then the setΛ(𝐺) is closed,𝐺-invariant, andnowhere
dense in ℂ̂. If 𝐺 is Kleinian of the first type then Λ(𝐺) = ℂ̂ so Λ(𝐺) is closed, 𝐺-invariant, and dense in
ℂ̂.

Proof. The statements about Kleinian groups of the first type are trivial, so let 𝐺 be Kleinian of the
second type.

Closedness. Let (𝑥𝑛) be a sequence of points in Λ, with 𝑥𝑛 → 𝑥 ∈ ℂ̂. By Lemma 3.3.2, or
equivalently the equality Λ = Λ(𝑧0) of the above theorem, there exists a single point 𝑧0 ∈ ℂ̂ and
sequences of distinct elements 𝑔𝑚,𝑛 of 𝐺 such that lim𝑚→∞ 𝑔𝑚,𝑛(𝑧0) = 𝑥𝑛 for all 𝑛. Without loss
of generality, the points {𝑥𝑛} and 𝑥 are all distinct (otherwise, 𝑥𝑛 is eventually equal to 𝑥 and so
𝑥 ∈ Λ). For all 𝑛, let 𝛿𝑛 be the minimal distance from 𝑥𝑛 to the other elements of the set {𝑥𝑚}.
For all 𝑛, pick 𝑘(𝑛) such that 𝑑(𝑔𝑘(𝑛),𝑛(𝑧0), 𝑥𝑛) < 𝛿𝑛∕2 (Fig. 3.5); the effect of this constraint is to
make the 𝑔𝑘(𝑛),𝑛 all distinct. Now note that lim𝑛→∞ 𝑔𝑘(𝑛),𝑛(𝑧0) = 𝑥, since for all 𝜀 > 0 there exists
𝑁 ∈ ℕ such that 𝑑(𝑥𝑛, 𝑔𝑘(𝑛),𝑛(𝑧0)) < 𝜀∕2 and 𝑑(𝑥𝑛, 𝑥) < 𝜀∕2 for all 𝑛 > 𝑁.

𝐺-invariantness. Let 𝑥 ∈ Λ, 𝑔 ∈ 𝐺. Pick 𝑧 ∈ ℂ̂ and (𝑔𝑛) distinct in 𝐺 such that 𝑔𝑛𝑧 → 𝑥; then
𝑔◦𝑔𝑛𝑧 → 𝑔𝑥, as left-multiplication by 𝑔 is continuous.

Nowhere dense. Recall, 𝑌 is nowhere dense in a topological space 𝑋 if every non-empty open
subset 𝑉 of 𝑋 contains a non-empty open subset 𝑈 of 𝑋 with 𝑉 ∩ 𝑌 = ∅. Here, if 𝑉 ⊆ ℂ̂ is non-
empty then either 𝑉 ∩ Λ = ∅ (so we may take 𝑈 = 𝑉), or 𝑉 ∩ Λ ≠ ∅, in which case 𝑉 contains
points of ◦Ω (by definition of Λ) and so 𝑈 ≔ ◦Ω ∩ 𝑉 is non-empty and open, with the property
that 𝑈 ∩ Λ = ∅ (since Λ = ℂ̂ ⧵Ω and ◦Ω ⊆ Ω).
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Figure 3.5: The sequential limit of a sequence of limit points.

mAk

Recall that a set 𝑆 is perfect if every point of 𝑆 is a limit point of 𝑆. It is standard that such sets
are uncountable.

3.3.5 Corollary. If Λ contains more two points, then Λ is perfect.

Proof. Suppose |Λ| ≥ 3. Let 𝑥 ∈ Λ, then by Lemma 3.3.2 there exists a sequence (𝑔𝑛) of distinct
elements of 𝐺 and some 𝑦 ∈ Λ with 𝑔𝑛(𝑧) → 𝑥 for all 𝑧 ≠ 𝑦. In particular, we may pick 𝑥1, 𝑥2 ∈ Λ
such that {𝑦, 𝑥1, 𝑥2} are all distinct and such that 𝑔𝑛(𝑥1)→ 𝑥 and 𝑔𝑛(𝑥2)→ 𝑥. If 𝑔𝑚(𝑥1) = 𝑥 = 𝑔𝑚(𝑥2)
for some 𝑚, then 𝑥1 = 𝑥2; thus for all 𝑚, either 𝑔𝑚(𝑥1) or 𝑔𝑚(𝑥2) is distinct from 𝑥. Thus at least
one of the sequences 𝑔𝑚(𝑥𝑖) has an infinite subsequence of distinct limit points of Λ (here we use
𝐺-invariantness) tending to 𝑥. mAk

We say that 𝐺 is elementary if the action of 𝐺 on 𝐻3 has a finite orbit; otherwise, we say 𝐺 is
non-elementary. If 𝐺 is elementary, then we variously say that:

• 𝐺 is of elliptic type if 𝐺 has a finite orbit in𝐻3;

• 𝐺 is of parabolic type if 𝐺 has a fixed point in 𝜕𝐻3 and no other finite orbits in 𝐻3;

• 𝐺 is of loxodromic type if it is neither of elliptic type nor of parabolic type.

Compare with Proposition 2.3.13.

3.3.6 Lemma. If 𝐺 is elementary Kleinian of elliptic type, then 𝐺 fixes a point in𝐻3.

Proof. Let {𝑥1,… , 𝑥𝑛} be a finite orbit of 𝐺 in𝐻3. If 𝑔 ∈ 𝐺, then the powers 𝑔𝑚(𝑥1) for𝑚 ∈ ℕ cannot
be all distinct, so there is some𝑚 with 𝑔𝑚(𝑥1) = 𝑥1. In particular, 𝑔𝑚 has a fixed point in 𝐻3, so 𝑔𝑚
is elliptic. Now observe that if 𝑔𝑚 is elliptic then 𝑔 is elliptic: indeed, 𝑔𝑚 is conjugate to 𝑧 ↦ 𝑘2𝑧
with ||||𝑘

2|||| = 1, so 𝑔 is conjugate to 𝑧 ↦ 𝑘2∕𝑚𝑧 where ||||𝑘
2∕𝑚|||| = 11∕𝑚 = 1. Thus each element of 𝐺 is

elliptic and by Theorem 2.4.7 𝐺 has a fixed point in𝐻3. mAk

3.3.7 Lemma. Discrete subgroups of 𝑂(3) are finite.
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Proof. It suffices to note that 𝑂(3) is compact: if 𝐴 ∈ 𝑂(3) then the columns of 𝐴 are orthonormal
and so ‖𝐴‖2 = 1+ 1+ 1 = 3 (so 𝑂(3) is bounded), and 𝐴𝐴𝑡 = 1, so 𝐴 is cut out by polynomials in its
entries and is closed. mAk

3.3.8 Lemma. A Kleinian group is finite iff every element has finite order.

Proof. Every element of a finite group has finite order. Conversely, let 𝐺 ≤ 𝕄 be Kleinian with
every element of finite order. By Theorem 2.4.7, all the elements of 𝐺 have a common fixed point;
conjugating this fixed point to 0, we see that 𝐺 is conjugate to a discrete subgroup of 𝑂(3) and hence
is finite by Lemma 3.3.7. mAk

3.3.9 Proposition. If 𝑓, 𝑔 ∈ 𝕄 are nontrivial, where 𝑓 is loxodromic and 𝑓, 𝑔 have exactly one shared
fixed point, then ⟨𝑓, 𝑔⟩ is not discrete.

Proof. Assume the common fixed point is∞ and conjugate 𝑓 to the transformation 𝑓(𝑧) = 𝑘2𝑧 for
𝑘2 ∈ ℂ; if∞ is the repelling fixed point of 𝑓, replace 𝑓 with 𝑓−1. Then 𝑔 is of the form 𝑔(𝑧) = 𝑎𝑧+𝑏,
and since 𝑔(0) ≠ 0 we have 𝑏 ≠ 0. Observe that 𝑓−𝑛𝑔𝑓𝑛(𝑧) = 𝑎𝑧 + 𝑘−2𝑛𝑏. As ||||𝑘

2|||| > 1, we see that
|||𝑔−𝑛𝑓𝑔𝑛|||

2 = |𝑎|2+ ||||𝑘
−2𝑛𝑏||||

2
→ 0 as 𝑛 →∞, so the sequence of distinct elements (𝑔−𝑛𝑓𝑔𝑛) has a limit

point. mAk

3.3.10 Lemma. Let 𝐺 contain two parabolic elements with distinct fixed points. Then 𝐺 contains a
loxodromic element.

Proof. Suppose that 𝑓, 𝑔 ∈ 𝐺 are parabolic with distinct fixed points; by conjugating appropriately,
we have normal forms

𝐴 = [1 𝑝
0 1] , 𝐵 = [1 0

𝑞 1]

for 𝑓 and 𝑔 respectively with 𝑝, 𝑞 nonzero; now note that

𝐴𝐵 = [1 + 𝑝𝑞 𝑝
𝑞 1] , 𝐴𝐵−1 = [1 − 𝑝𝑞 𝑝

−𝑞 1] ;

since 𝑓𝑔 is not loxodromic, it is either parabolic or elliptic; note that 𝑓𝑔 cannot fix ∞, otherwise
𝑓, 𝑔 would have a shared fixed point, and so if 𝑓𝑔 were parabolic with fixed point 𝑥 there would be
𝑟 ≠ 0 with 1 − 𝑝𝑞 = 1 − 𝑟𝑥 and 1 = 1 + 𝑟𝑥; this occurs only if 𝑥 = 0 and 𝑝𝑞 = 0 which is not
allowed by assumption on 𝑝 and 𝑞. Hence 𝑓𝑔must be elliptic, with tr2 𝑓𝑔 = (2 + 𝑝𝑞)2 ∈ [0, 4); thus
2+𝑝𝑞 ∈ (−2, 2) and 𝑝𝑞 ∈ (−4,−2), so 2−𝑝𝑞 ∈ (2, 4) so tr2 𝑓𝑔−1 ∈ (4, 16)—and 𝑓𝑔−1 is loxodromic
(contradiction). mAk

3.3.11 Lemma. If 𝐺 is elementary of loxodromic type, then 𝐺 leaves invariant a unique hyperbolic line
in𝐻3.

Proof. Since 𝐺 is not of elliptic type, the finite orbits of 𝐺 are all contained in 𝜕𝐻3. Let {𝑢1,… , 𝑢𝑛}
be the union of a finite number of finite orbits of 𝐺. By the orbit-stabiliser theorem, each stabiliser
Stab𝐺 𝑢𝑖 is of finite index in 𝐺. Thus 𝐻 = Stab𝐺 𝑢1 ∩⋯ ∩ Stab𝐺 𝑢𝑛 is of finite index in 𝐺 and fixes
each 𝑢𝑖 . If 𝑛 ≥ 3, then𝐻 (hence𝐺) is of elliptic type: this is because each element of𝐻must fix three
elements and so must have a fixed point in𝐻3, so every element is elliptic. Hence 𝑛 = 1 or 𝑛 = 2. If
𝑛 = 1, then either 𝐺 is of elliptic type or 𝐺 is of parabolic type. Thus 𝑛 = 2; it is clear that 𝐺 leaves
invariant the line [𝑢1, 𝑢2]. mAk

3.3.12 Theorem. The following are equivalent:
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1. 𝐺 is elementary;

2. |||Λ(𝐺)||| ≤ 2 (and further, |||Λ(𝐺)||| is 0, 1, 2 as 𝐺 is of elliptic, parabolic, or loxodromic type respec-
tively);

3. |||Λ(𝐺)||| <∞.

Proof. The implication |||Λ(𝐺)||| ≤ 2 ⟹ |||Λ(𝐺)||| ≤ ∞ is trivial. Now suppose |||Λ(𝐺)||| ≤ ∞. Since
Λ(𝐺) is 𝐺-invariant, Λ(𝐺) is a union of 𝐺-orbits; it is immediate that each such orbit is finite.

Suppose 𝐺 is elementary. We have three cases.

1. 𝐺 is of elliptic type. By Lemma 3.3.6, 𝐺 has a fixed point 𝑧 in𝐻3, in particular each element of
𝐺 is elliptic, and by discreteness each such element has finite order (otherwise, pick a sequence
of distinct elements of the group, the multipliers of the elements lie on 𝑆1 and so there is a sub-
sequence of elements with multipliers converging to a fixed value, contradicting discreteness
since there is exactly one element with a given multiplier); in particular, by Lemma 3.3.8, 𝐺 is
finite and so cannot have any limit points.

2. 𝐺 is of parabolic type. Let 𝑧 be the fixed point of 𝐺 in ℂ̂; by conjugation, assume 𝑧 = ∞.
Observe that 𝐺 must contain a parabolic or loxodromic element, otherwise every nontrivial
element is elliptic and thus by Theorem 2.4.7 𝐺 fixes a point in 𝐻3.
If 𝑔 contains a parabolic element, then every element of 𝐺 fixes∞ (all other orbits are infinite)
and so existence of a loxodromic element 𝑓 ∈ 𝐺 contradicts discreteness by Proposition 3.3.9.
Hence every element of 𝐺 is parabolic or elliptic, and there is a unique limit point (namely,∞)
— to see this, use discreteness to see that each elliptic element is of finite order (as in the first
case above) so no finite limit point comes from adding in the elliptic elements.
On the other hand suppose 𝐺 consists entirely of loxodromic and elliptic elements; then if
𝑔 ∈ 𝐺 is an arbitrary loxodromic element, with fixed points 0 and∞ (by conjugation), every
other element must leave {0,∞} invariant (again, by Proposition 3.3.9). Since ∞ is a shared
fixed point, this implies that 0 is a shared fixed point, contradicting uniqueness of the fixed
point for 𝐺; thus this case cannot occur and if 𝐺 is of parabolic type it contains only parabolic
and elliptic elements.

3. 𝐺 is of loxodromic type. By the arguments above, we see that 𝐺 cannot be entirely elliptic
(otherwise 𝐺 fixes a point in 𝐻3, so has a finite orbit in 𝐻3, so is elliptic type). Suppose for
contradiction that 𝐺 contains no loxodromic element. Then there is some 𝑔 ∈ 𝐺 parabolic,
say with fixed point∞. If every parabolic element of 𝐺 had fixed point∞, we see easily that
𝐺 would be of parabolic type. Thus there is some parabolic ℎ ∈ 𝐺 which does not fix∞; by
Lemma 3.3.10 this implies existence of a loxodromic element, contradiction. We conclude that
𝐺 contains a loxodromic element 𝑔, with fixed points 𝑤, 𝑧 ∈ ℂ̂, say with 𝑤 attracting and 𝑧
repelling. Note that for fixed 𝑧0 ∈ ◦Ω we have 𝑔𝑛𝑧0 → 𝑤 and 𝑔−𝑛𝑧0 → 𝑧, so 𝑤, 𝑧 ∈ Λ. By
Lemma 3.3.11, 𝐺 leaves the unique line [𝑤, 𝑧] invariant in𝐻3. Suppose 𝑥 is a limit point; then
𝑥 is the limit of a sequence 𝑔𝑛𝑧0 for (𝑔𝑛) distinct elements of 𝐺. Note that the 𝑔𝑛 are eventually
not loxodromic, for the images of loxodromic elements must tend to 𝑤 or 𝑧. But 𝐺 is discrete,
so we must have that 𝑥 is the fixed point of infinitely many parabolic elements; but note, if
ℎ ∈ 𝐺 is parabolic then 𝑔ℎ is loxodromic whenever ℎ is loxodromic, and 𝑔ℎ has different fixed
points to ℎ, contradiction.

This shows that 𝐺 elementary implies that |||Λ(𝐺)||| ≤ 2. mAk

There is in fact a fourth equivalent definition of elementariness:
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3.3.13 Proposition. A Kleinian group 𝐺 is elementary iff it contains an abelian subgroup 𝐺′ of finite
index.

Proof. Suppose 𝐺 is an elementary Kleinian group.

• If 𝐺 is elliptic, then 𝐺 is finite (by case 1 in the proof of Theorem 3.3.12) and hence we may
take 𝐺′ = 𝐺.

• If𝐺 is loxodromic, then by conjugation wemay assume that 0 and∞ are the two limit points of
𝐺 (and that these are the only fixed points of any element of 𝐺 inℍ3); so {0,∞} is left invariant
by 𝐺. Let 𝐺0 be the subgroup of 𝐺 fixing 0. By the Orbit-Stabiliser theorem, [𝐺 ∶ 𝐺0] ≤ 2.
Each element of 𝐺0 is a Poincaré extension of an element of 𝜆𝑂(2) for some 𝜆 ∈ ℝ>0 (by
Corollary 1.3.9). Let 𝜌 ∶ 𝐺0 → ℝ>0 be the map sending 𝜆𝐴 ↦ 𝜆; the kernel of this map
is 𝐺0 ∩ 𝑂(2), which is finite by discreteness (since 𝑂(2) is compact). The orbit 𝐺0𝑗 is discrete
(because it cannot accumulate anywhere!) and so 𝜌(𝐺0) is an infinite discrete subgroup ofℝ>0.
Hence there is some 𝑠 > 1 generating 𝜌(𝐺0): that is, 𝜌(𝐺0) = {𝑠𝑚 ∶ 𝑚 ∈ ℤ}. Thus, 𝜌 exhibits
𝐺0 as the extension of an infinite cyclic (hence abelian) group by a finite group and hence 𝐺 is
a finite extension of an abelian group 𝐺′ as desired.

• If 𝐺 is parabolic, we shall use the following fact:

Claim. Let 𝐺 be a group of isometries of ℝ𝑛. Then 𝐺 has an abelian normal subgroup 𝑁 of
finite index containing all the translations in 𝐺, and the index of𝑁 in 𝐺 is bounded by a number
depending only on 𝑛.

One can choose 𝑁 to be the subgroup generated by all of the elements 𝜙 = 𝑎 + 𝐴 in 𝐺 (where
𝑎 ∈ ℝ𝑛 and 𝐴 ∈ 𝐺) such that ‖𝐴 − 1‖ < 1∕2; the proof is given in detail as [38, lemma 7 of
section 5.4].
But, of course, if 𝐺 is parabolic then we may assume the global fixed point is∞, and so 𝐺 acts
as a discrete group of isometries on ℝ3. Then the claim immediately gives the result.

This proves one direction.
Suppose now that 𝐺 is a Kleinian group, and that 𝐺′ ≤ 𝐺 is a finite index abelian subgroup.

Observe that𝐺′ is elementary, by Theorem 2.4.3. Let 𝑥 ∈ 𝐻3 such that𝐺′𝑥 is finite. Since [𝐺 ∶ 𝐺′] <
∞, there exist coset representatives 𝛾1, ..., 𝛾𝑚 ∈ 𝐺 such that 𝐺 =

⋃𝑚
𝑖=1 𝛾𝑖𝐺

′ and so 𝐺𝑥 =
⋃𝑚

𝑖=1 𝛾𝑖𝐺
′𝑥,

which is finite. This proves that 𝐺 is elementary. mAk

We now perform a study of non-elementary groups.

3.3.14 Lemma. If 𝑔 ∈ 𝕄 is elliptic or parabolic, and if 𝑔 does not fix∞, then the isometric spheres of 𝑔
and 𝑔−1 intersect.

Proof. Suppose 𝑔 is elliptic; conjugate such that 𝑔 fixes 0 and 1; then we have matrix representatives

[ 𝑘 0
𝑘 − 𝑘 𝑘

] [
𝑘 0

𝑘 − 𝑘 𝑘
]

for 𝑔 and 𝑔−1 respectively; now note, the isometric circle of 𝑔 has equation
|||||(𝑘 − 𝑘)𝑧 + 𝑘

||||| = 1, and

that for 𝑔−1 has equation
|||||(𝑘 − 𝑘)𝑧 + 𝑘

||||| = 1. Hence both have radius 𝑟 =
‖‖‖‖‖𝑘 − 𝑘

‖‖‖‖‖
−1
, and the centres

are respectively −𝑘∕(𝑘 − 𝑘) and −𝑘∕(𝑘 − 𝑘), with distance
|||||−𝑘∕(𝑘 − 𝑘) −

(
−𝑘∕(𝑘 − 𝑘)

)||||| =
|||||−𝑘∕(𝑘 − 𝑘) − 𝑘∕(𝑘 − 𝑘)

||||| = 𝑟
|||||−𝑘 − 𝑘

||||| = 𝑟
|||||𝑘 + 𝑘

|||||;
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note, 𝑘 + 𝑘 = 2Re 𝑘 < 2. The isometric circles, of radius 𝑟, therefore have centres a distance apart
less than 2𝑟 and so must intersect.

A similar but easier computation shows the parabolic case. mAk

3.3.15 Lemma. If 𝐺 has no loxodromic elements, contains a parabolic element, and all the parabolic
elements have a common fixed point, then 𝐺 is conjugate to a group of Euclidean motions, and 𝐺 has a
unique limit point. In particular, 𝐺 is elementary.

Proof. Conjugate the common fixed point of the parabolic elements to ∞. It suffices to show that
all the elliptic elements of 𝐺 then have a fixed point at∞; suppose for the sake of contradiction that
there is some 𝑓 ∈ 𝐺 elliptic with finite fixed points, and without loss of generality conjugate the fixed
points of 𝑓 to 0 and 1. Let 𝑔 be an arbitrary parabolic element. We may (by the normal form results)
choose matrices 𝐴 and 𝐵 for 𝑓 and 𝑔 respectively of the form

𝐴 = [ 𝑘 0
𝑘 − 𝑘 𝑘

] , 𝐵 = [1 𝑝
0 1] , so 𝐵𝑛𝐴 = [𝑘 + 𝑝𝑛(𝑘 − 𝑘) 𝑝𝑛𝑘

𝑘 − 𝑘 𝑘
]

and hence the isometric circle of 𝑔𝑛𝑓 is exactly that of 𝑓 for all 𝑛 ∈ ℕ. Similarly, we have

𝐴−1𝐵−𝑛 = [
𝑘 −𝑝𝑛𝑘

𝑘 − 𝑘 𝑘 + 𝑝𝑛(𝑘 − 𝑘)
] ,

so the isometric circle of 𝑓−1𝑔−𝑛 has the same radius as that of 𝑓 but centre−(𝑘+𝑝𝑛(𝑘−𝑘))∕(𝑘−𝑘) =
𝑝𝑛 − 𝑘∕(𝑘 − 𝑘), i.e. the isometric circle of 𝑓𝑔𝑛 is the image of the isometric circle of 𝑓−1 under a
translation by 𝑝𝑛.

Let 𝑆 be the isometric circle of 𝑓, and 𝑆′ the isometric circle of 𝑓−1. Observe now that the cyclic
group generated by 𝑓 acts discontinuously on ℂ̂ and so there is some 𝑚 > 0 such that 𝑆 and 𝑓𝑚𝑆′
are disjoint; but by the observations above, this shows that the isometric circles of 𝑔𝑚𝑓 and 𝑓−1𝑔−𝑚
are disjoint; note that these elements are not loxodromic by assumption, and so by Lemma 3.3.14 we
obtain a contradiction.

It is now easy to see that the only limit point of a discrete group of Euclidean motions 𝐺 with a
parabolic element is the point∞. mAk

3.3.16 Proposition. If 𝐺 is a non-elementary group, then 𝐺 has a loxodromic point.

Proof. By Lemma 3.3.8, if every nontrivial element of 𝐺 was elliptic then 𝐺 would be finite, in par-
ticular 𝐺 would have no limit points, so would be elementary by Theorem 3.3.12. Hence 𝐺 contains
a nontrivial element which is parabolic or loxodromic.

If 𝐺 contains no loxodromic elements and all the parabolic elements have a common fixed point,
then by Lemma 3.3.15 𝐺 is conjugate to a group of Euclidean motions and is elementary. Hence if 𝐺
contains no loxodromic elements, there must be two parabolic elements 𝑓, 𝑔 ∈ 𝐺 with distinct fixed
points; but this contradicts Lemma 3.3.10. mAk

3.3.17 Corollary. If 𝐺 is finite, then 𝐺 is elementary.

Proof. By Corollary 2.4.8, a finite Kleinian group consists entirely of elliptic elements. mAk

We now obtain the following lemma, which is fundamental in the non-elementary case as it
strengthens Lemma 3.3.2. We see that the ‘generic case’ of a non-elementary group is loxodromic.

3.3.18 Proposition. If 𝐺 is non-elementary and 𝑥 ∈ Λ, then the 𝐺-translates of 𝑥 are dense in Λ.
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Proof. By Proposition 3.3.16, 𝐺 contains a loxodromic element 𝑓. If 𝑥 is not fixed by 𝑓, then there
is some element of 𝐺 which does not fix 𝑥. Otherwise, if 𝑥 is fixed by 𝑓, then take a limit point 𝑦
not fixed by 𝑓; by Lemma 3.3.2 there exists a fixed point 𝑧 of 𝑓 and a sequence of elements (𝑔𝑛) of 𝐺
with 𝑔𝑛𝑧 → 𝑦. For every 𝑔 ∈ 𝐺, the fixed point sets of 𝑓 and 𝑔𝑓𝑔−1 are either identical or disjoint
by Proposition 3.3.9. This means that eventually 𝑔𝑛𝑓𝑔−1𝑛 cannot have a fixed point at 𝑧, since 𝑧 ≠ 𝑦.
In particular, there exists an element 𝑔 ∈ 𝐺 with the fixed point sets of 𝑓 and 𝑔𝑓𝑔−1 disjoint! In
particular, 𝑥 is not a fixed point of 𝑔𝑓𝑔−1, and so there is some element of 𝐺 which does not fix 𝑥.

Overall, we have some 𝑔 ∈ 𝐺 such that 𝑔𝑥 ≠ 𝑥. Let 𝑧 ∈ Λ be arbitrary; by Lemma 3.3.2, some
subsequence of the sequence (𝑔𝑛) has the property 𝑔𝑛(𝑥)→ 𝑧 which completes the proof. mAk

Remark. Observe that what goeswrong in the elementary case is that theremight be some limit point
notmoved by any element of𝐺. (For instance, take the group generated by the translation 𝑧 ↦ 𝑧+1.)

3.3.19 Corollary. If 𝐺 is non-elementary, then 𝐺 is of the second kind iff there exists some 𝑧 ∈ ℂ̂ such
that 𝐺𝑧 is not dense in ℂ̂.

Proof. Note that if Ω = ∅ then Λ = ℂ̂. In this case, for all 𝑧 ∈ ℂ̂ = Λ the orbit 𝐺𝑧 is dense in ℂ̂ = Λ.
Conversely, if there is some 𝑧 ∈ ℂ̂ such that 𝐺𝑧 is not dense in Λ then by the proposition we must
have 𝑧 ∉ Λ, so Λ ≠ ℂ̂ and Ω ≠ ∅. mAk

3.3.20 Example. Let 𝜁 = exp(2𝜋𝑖∕𝑝) and 𝜉 = exp(2𝜋𝑖∕𝑞), where 𝑝, 𝑞 ∈ ℤ; for convenience, we
take 𝑝, 𝑞 > 2 (so sin(2𝜋∕𝑝) and sin(2𝜋∕𝑞) are both positive). Define

𝑋 = [𝜁 1
0 𝜁−1] , 𝑌 = [𝜉 0

𝜌 𝜉−1]

where 𝜌 ∈ ℂ is non-zero. Let 𝐺 ≔ ⟨𝑋,𝑌⟩.
The first claim is that 𝐺 is non-elementary. Observe that

tr[𝑋,𝑌] = tr𝑋𝑌𝑋−1𝑌−1 = 2 − 4 sin 2𝜋𝑝 sin 2𝜋𝑞 𝜌 − 𝜌2;

[𝑋,𝑌] is loxodromic whenever tr[𝑋,𝑌] ∉ [−2, 2]. Consider the inequality

|||||||
2 − 4 sin 2𝜋𝑝 sin 2𝜋𝑞 𝜌 − 𝜌2

|||||||
> 2.

Let 𝛼 and 𝛽 be the two roots of tr[𝑋,𝑌] (as a polynomial in 𝜌). Then the inequality becomes

|||𝜌 − 𝛼||||||𝜌 − 𝛽||| > 2

and so [𝑋,𝑌] is loxodromicwhenever 𝜌 lies on the exterior (that is, the component of the complement
containing∞) of the so-called Cassini oval 𝐴 with locii 𝛼 and 𝛽 and radius

√
2 (Fig. 3.6).

Observe also that tr𝑋𝑌 = 2 cos ( 2𝜋
𝑝
+ 2𝜋

𝑞
) + 𝜌, so 𝑋𝑌 is loxodromic whenever 𝜌 lies outside the

circle 𝐶 of radius 2 centred at −2 cos ( 2𝜋
𝑝
+ 2𝜋

𝑞
).

It is easy to check that [𝑋,𝑌] and 𝑋𝑌 have distinct fixed points. In particular, whenever 𝜌 lies in
the common exterior of the circle 𝐶 and the Cassini oval 𝐴, the loxodromic elements [𝑋,𝑌] and 𝑋𝑌
have between them four distinct fixed points, so |||Λ(𝐺)||| ≥ 4, and in particular 𝐺 is non-elementary.

We consider the case 𝑝 = 3, 𝑞 = 4; the region of interest is the common exterior of the curves in
Fig. 3.7.
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Figure 3.6: The Cassini ovals of Example 3.3.20 for 𝑝 = 3 and 𝑞 = 4, 16, 32, 128.
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Figure 3.7: A region for which the group 𝐺 is non-elementary (Example 3.3.20).

3.3.21 Theorem. Let 𝐺 be non-elementary. The set Λmay alternatively be characterised as:

1. The set Λ1, where Λ1 is the set of loxodromic points of 𝐺;

2. The smallest nontrivial closed 𝐺-invariant subspace of ℂ̂.

Proof. 1. Let 𝑥 be a loxodromic point of𝐺, say a fixed point of 𝑓 ∈ 𝐺 loxodromic. Then for almost
every 𝑧 ∈ ℂ̂, we have 𝑓𝑛𝑧 → 𝑥 so 𝑥 is a limit point of 𝐺, i.e. 𝐺𝑥 ⊆ Λ. By Proposition 3.3.18,
𝐺𝑥 is dense in Λ; and since the latter is closed, 𝐺𝑥 = Λ. (Hence we have shown something
stronger, namely Λ is the closure of the orbit of a single loxodromic point.)

2. By Theorem 3.3.4, Λ is a closed 𝐺-invariant subspace; by Proposition 3.3.16, Λ ≠ ∅. Let 𝐸 be
an arbitrary such subspace. Since 𝐺 is non-elementary, every orbit is infinite, and thus 𝐸 is
infinite. Let 𝑥 ∈ ℂ̂ be a loxodromic point, say fixed by 𝑔 ∈ 𝐺 loxodromic. There is some 𝑒 ∈ 𝐸
not fixed by 𝑔, and the set {𝑔𝑛(𝑒) ∶ 𝑛 ∈ ℤ} accumulates at 𝑥. As 𝐸 is closed, 𝑥 ∈ 𝐸. Thus
Λ1 ⊆ 𝐸 and again since 𝐸 is closed we have Λ1 ⊆ 𝐸. mAk

3.3.22 Corollary. For general 𝐺, Λ is the closure of the set Λ0 of fixed points of non-elliptic elements.

Proof. It is easy to see that Λ0 ⊆ Λ and hence Λ0 ⊆ Λ since the latter is closed. Let 𝑥 ∈ Λ0, fixed
by ℎ ∈ 𝐺 nonelliptic. Then 𝑔ℎ𝑔−1 is nonelliptic and fixes 𝑔𝑎 for all 𝑔 ∈ 𝐺. In particular, Λ0 is
𝐺-invariant. If 𝐺 is non-elementary, we have Λ ⊆ Λ0 by the above theorem. On the other hand,
suppose 𝐺 is elementary. By Theorem 3.3.12, we have two cases:

1. |Λ| has one element; in this case, 𝐺 is of parabolic type, and by the proof of Theorem 3.3.12 this
limit point is exactly the unique shared fixed point of every non-elliptic element of 𝐺; hence
|||Λ0||| = 1 and by counting we see Λ = Λ0 (the closure of a finite set is itself).

2. |Λ| has two elements; in this case, 𝐺 is of loxodromic type, and the limit points are exactly the
two shared fixed points of the elements of 𝐺; again we see that |||Λ0||| = 2, so Λ = Λ0. mAk
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Remark. Note that Beardon defines the limit set to be Λ1; so our limit set only agrees with his when
the group of interest is non-elementary.

3.3.23 Corollary. Every element of the setΩ ⧵ ◦Ω is an elliptic point.

Proof. Let 𝑥 ∈ ℂ̂. Suppose 𝑥 is not a fixed point of any element of 𝐺; we wish to show that either
𝑥 ∈ ◦Ω or 𝑥 ∈ Λ. Suppose 𝑥 ∉ ◦Ω; then for every neighbourhood𝑈 of 𝑥, there exists some nontrivial
𝑔 such that 𝑔𝑈 ∩ 𝑈 ≠ ∅; taking the neighbourhoods 𝐵(𝑥, 1∕𝑚) for 𝑚 ∈ ℕ we find a sequence (𝑔𝑚)
of elements of 𝐺 and some sequence 𝑧𝑚 ∈ 𝑈 such that 𝑔𝑚𝑧𝑚 → 𝑥 and 𝑧𝑚 → 𝑥. Suppose that the
𝑔𝑚 have an eventually constant subsequence, say equal to some element 𝑔. Then 𝑔𝑈 ∩ 𝑈 ≠ ∅ for
arbitrarily small neighbourhoods 𝑈; this implies that 𝑔𝑈 ∩ 𝑈 = {𝑥}, so 𝑥 is a fixed point of 𝑔 —
this is a contradiction. Hence we may assume that almost all the 𝑔𝑚 are distinct. By the proof of
Lemma 3.3.2 we can find a subsequence (𝑔𝑛) and limit points 𝑤, 𝑦 such that 𝑔𝑛 → 𝑤 uniformly on
compact subsets of ℂ̂ ⧵ {𝑦}. If 𝑥 = 𝑦, then 𝑥 ∈ Λ. If 𝑥 ≠ 𝑦, then the points 𝑧𝑛 do not accumulate at 𝑦
and so the sequence 𝑔𝑛𝑧𝑛 is away from 𝑦, thus 𝑔𝑛𝑧𝑛 → 𝑤 and so 𝑥 = 𝑤 ∈ Λ.

In particular, we see that if 𝑥 lies inΩ⧵ ◦Ω = ℂ̂⧵ (◦Ω∪Λ) then 𝑥 is a fixed point of some element.
By Corollary 3.3.22, points outsideΛwhich are fixed points must be fixed points of elliptic elements;
this completes the proof. mAk

The converse to Corollary 3.3.23 is not true:

3.3.24 Example. Let 𝐺 be the group generated by two elements, represented by

𝑋 = [1 1
0 1] , 𝑌 = [exp(𝑖𝜋∕3) 0

0 exp(−𝑖𝜋∕3)] .

Observe that 𝐺 is discrete. Note also that∞ is a fixed point of the parabolic element𝑋, so∞ ∈ Λ(𝐺).
On the other hand, 0 ∈ Ω(𝐺) since there are only finitely many elements of 𝐺 not moving the unit
disc off itself.

In particular, 𝑌 is an elliptic element with one fixed point in Λ(𝐺) and one fixed point in Ω(𝐺).

3.3.25 Proposition. Ω− ◦Ω is a discrete subset ofΩ.

Proof. Let (𝑧𝑛) be a sequence of points of Ω − ◦Ω. Then for each 𝑛 there is a nontrivial element
𝑔𝑛 ∈ Stab𝐺 𝑧𝑛 (by Corollary 3.3.23). Each 𝑔𝑛 lies in atmost two of the Stab𝐺 𝑧𝑛 (since transformations
have at most two fixed points), so we may choose a subsequence (𝑔𝑚) of distinct elements; further,
by Lemma 3.3.2 choose a subsequence such that 𝑧𝑚 converges, say to 𝑤, and such that 𝑔𝑚 → 𝑥
uniformly on compact subsets of ℂ̂ ⧵ {𝑦}. If 𝑤 = 𝑦, then 𝑤 ∈ Λ. If 𝑤 ≠ 𝑦, then the points 𝑧𝑚 do not
accumulate at 𝑦 and so the sequence 𝑔𝑚𝑧𝑚 is away from 𝑦, thus 𝑔𝑚𝑧𝑚 → 𝑥 and so 𝑤 = 𝑥 ∈ Λ. mAk

3.3.26 Corollary. Ω is non-empty iff ◦Ω is non-empty.

Proof. Since ◦Ω ⊆ Ω it suffices to show that if Ω is non-empty then ◦Ω ≠ ∅; this is easy: since Ω is
open in ℂ̂, it is not discrete, so removing discrete points will not empty it. mAk

There is an alternative characterisation of limit points which comes from the action of 𝐺 on𝐻3.

3.3.27 Theorem. The set Λ is the set of all 𝑧 ∈ 𝜕𝐻3 such that 𝑧 is an accumulation point of 𝐺𝑞 for
some 𝑞 ∈ 𝐻3. (In particular, the accumulation points of 𝐺𝑞 must lie on the boundary 𝜕𝐻3.)

Proof. This follows from the following observations: firstly, that the Poincaré extension of some 𝑓 ∈
𝕄 (which is an element of GM(3)) has isometric circle the orthogonal extension of the isometric
circle of 𝑓 into 𝐻3; secondly, that closures of balls in 𝐻3 centred at a point of 𝜕𝐻3 are compact in
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𝐻3 (so the proof of Lemma 3.3.2 goes through in the relevant case, giving us 𝑔𝑛 ∈ GM(3) which are
Poincaré extensions); and hence the proof of part (1) of Theorem 3.3.3 goes through for all 𝑞 ∈ 𝐻3,
not just 𝑧 ∈ 𝜕𝐻3. mAk

3.3.28 Corollary. If 𝑞 ∈ 𝐻3 and 𝐺𝑞 denotes the closure of the orbit 𝐺𝑞 in𝐻3, then Λ = 𝐺𝑞 ∩ 𝜕𝐻3.

Proof. Observe that 𝐺𝑞 ∩ 𝜕𝐻3 is precisely the set of limit points of 𝐺𝑞 in 𝐻3, when 𝑞 ∈ 𝐻3 (not on
the boundary!). mAk

The reader may now use this corollary to obtain shorter/more conceptual proofs of the analysis
of the limit sets of the elementary groups, following [38].

3.4 Jorgensen’s inequality
3.4.1 Proposition (Shimizu-Leutbecher lemma). Let 𝐺 ≤ 𝕄 be Kleinian, containing the transforma-

tion 𝑓 given by 𝑧 ↦ 𝑧+1. If 𝐵 = [𝑎 𝑏
𝑐 𝑑] represents an element 𝑔 ∈ 𝐺 distinct from 𝑓, then either 𝑐 = 0

or |𝑐| > 1.

Proof. Assume that |𝑐| < 1. Inductively define a sequence (𝐵𝑚) by

𝐵0 = 𝐵
𝐵𝑚+1 = 𝐵𝑚𝐴𝐵−1𝑚 ,

and let 𝐴 = [1 1
0 1] represent 𝑓.

By direct computation,

𝐵𝑚 = [𝑎𝑚 𝑏𝑚
𝑐𝑚 𝑑𝑚

] ⟹ 𝐵𝑚+1 = [1 − 𝑎𝑚𝑐𝑚 𝑎2𝑚
−𝑐2𝑚 1 + 𝑎𝑚𝑐𝑚

] ;

observe that |||𝑐𝑚||| = |𝑐|2
𝑚
, so |||𝑐𝑚|||→ 0. Since |||𝑐𝑚||| < 1 for all𝑚, we have
|||𝑎𝑚+1||| = |||1 − 𝑎𝑛𝑐𝑛||| ≤ 1 + |||𝑎𝑛||||||𝑐𝑚||| < 1 + |||𝑎𝑚|||

and so by induction 𝑎𝑚 < 𝑚 + |𝑎|. Thus 𝑎𝑚𝑐𝑚 → 0, so 𝑎𝑚+1 = 1 − 𝑎𝑚𝑐𝑚 → 1. In particular,

𝐵𝑚+1 = [1 − 𝑎𝑚𝑐𝑚 𝑎2𝑚
−𝑐2𝑚 1 + 𝑎𝑚𝑐𝑚

]→ [1 − 0 1
0 1 + 0] = 𝐴.

This contradicts discreteness unless 𝐵𝑚 = 𝐴 for all sufficiently large 𝑚. In this case, 𝑐𝑚 = 0, so
since |||𝑐𝑚||| = |𝑐|2

𝑚
we have |𝑐| = 0. mAk

3.4.2 Lemma. An element 𝑓 ∈ 𝕄 is of order 2 iff tr2 𝑓 = 0.

Proof. Suppose tr2 𝑓 = 0. Pick a matrix representative 𝐴 = [𝑎 𝑏
𝑐 𝑑] ∈ SL(2,ℂ) for 𝑓, then 𝑎 = −𝑑

and 1 = 𝑎𝑑 − 𝑏𝑐 = −𝑎2 − 𝑏𝑐; then

[𝑎 𝑏
𝑐 𝑑]

2

= [𝑎
2 + 𝑏𝑐 𝑏(𝑎 + 𝑑)

𝑐(𝑎 + 𝑑) 𝑏𝑐 + 𝑑2 ] = [−1 0
0 −1]
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so𝐴2 represents the identitymap, and𝐴 is not the identity or its negation since 𝑎 = ±1 ⟹ 𝑑 = ∓1.
Conversely, suppose 𝑓 ∈ 𝕄 is of order 2. Then 𝑓 is elliptic, so we may pick a matrix for 𝐴 of the

form
⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1
𝑥−𝑦

[
𝑥𝑘−1 − 𝑦𝑘 𝑥𝑦(𝑘 − 𝑘−1)
𝑘−1 − 𝑘 𝑥𝑘 − 𝑦𝑘−1

] 𝑥, 𝑦 ≠∞

[
𝑘−1 𝑦(𝑘 − 𝑘−1)
0 𝑘

] 𝑥 = ∞

[
𝑘 𝑥(𝑘−1 − 𝑘)
0 𝑘−1

] 𝑦 = ∞

where 𝑘 ≠ ±1, and 𝑘4 = 1; i.e. 𝑘 = ±𝑖. In any case, tr𝐴 = 0. mAk

3.4.3 Example. Define the group 𝐺𝜌, for 𝜌 ∈ ℂ, to be the group generated by the two parabolic
elements

𝑋 = [1 1
0 1] , 𝑌𝜌 = [1 0

𝜌 1] .

By Proposition 3.4.1, 𝐺𝜌 cannot be discrete unless |||𝜌||| > 1. (This gives a bound on theRiley slice,
see [29, §2.2].)

3.4.4 Theorem (Jørgensen’s inequality). Let 𝑓, 𝑔 generate a non-elementary Kleinian group. Then
||||tr

2 𝑓 − 4|||| +
|||tr[𝑓, 𝑔] − 2||| ≥ 1.

Remark. The theorem stated as [34, theorem C.7] is a special case of the above: if 𝑓 is loxodromic
and 𝑔 does not keep invariant the fixed point set of 𝑓 then Λ(⟨𝑓, 𝑔⟩) > 2 and so the group ⟨𝑓, 𝑔⟩ is
non-elementary.

Proof. If 𝑓 is of order 2, then by Lemma 3.4.2
||||tr

2 𝑓 − 4|||| +
|||tr[𝑓, 𝑔] − 2||| = 4 + |||tr[𝑓, 𝑔] − 2||| ≥ 4 ≥ 1.

Hence we may assume 𝑓 is not of order 2.
Suppose 𝑓 is parabolic. By conjugation, we may assume 𝑓 is the transformation 𝑧 ↦ 𝑧 + 1; pick

representatives

𝐴 = [1 1
0 1] , 𝐵 = [𝑎 𝑏

𝑐 𝑑]

for 𝑓 and 𝑔 respectively. Observe that

(3.4.5) ||||tr
2 𝑓 − 4|||| +

|||tr[𝑓, 𝑔] − 2||| = |||tr[𝑓, 𝑔] − 2||| =
||||𝑐
2 + 2 − 2|||| =

||||𝑐
2||||

If 𝑐 = 0 then 𝑔 fixes∞, and so 𝐺 is elementary (e.g. by Lemma 3.3.15). In particular, we see 𝑓 ≠ 𝑔.
Apply now Proposition 3.4.1; we see that |𝑐| > 1, and comparison with Eq. (3.4.5) gives the result in
this case.

Suppose now that 𝑓 is loxodromic or elliptic. Conjugate such that the fixed points are 0 and∞,
so by the normal forms (in this case Lemma 2.3.10) we have representatives

𝐴 = [𝑘 0
0 𝑘−1] , 𝐵 = [𝑎 𝑏

𝑐 𝑑]

where 𝑘 ∈ ℂ∗.
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If 𝑏𝑐 = 0, then 𝑔 fixes either 0 or∞, so ⟨𝑓, 𝑔⟩has a fixed point and is therefore elementary. Assume
then that 𝑏𝑐 ≠ 0. Observe that

(3.4.6)

||||tr
2 𝑓 − 4|||| +

|||tr[𝑓, 𝑔] − 2||| =
||||𝑘
2 + 𝑘−2 − 2|||| +

||||2𝑎𝑑 − 𝑏𝑐(𝑘2 + 𝑘−2) − 2||||
= ||||𝑘 − 𝑘−1||||

2
+ ||||2(1 + 𝑏𝑐) − 𝑏𝑐(𝑘2 + 𝑘−2) − 2||||

= ||||𝑘 − 𝑘−1||||
2
+ |𝑏𝑐|||||2 − (𝑘2 + 𝑘−2)||||

= (1 + |𝑏𝑐|)||||𝑘 − 𝑘−1||||
2
.

Let 𝜇 denote this quantity. Suppose first of all that 𝜇 < 1.
As in the proof of Proposition 3.4.1, inductively define a sequence (𝐵𝑚) by

𝐵0 = 𝐵
𝐵𝑚+1 = 𝐵𝑚𝐴𝐵−1𝑚 ,

and now observe the relations

(3.4.7) 𝐵𝑚 = [𝑎𝑚 𝑏𝑚
𝑐𝑚 𝑑𝑚

] ⟹ 𝐵𝑚+1 = [𝑎𝑚𝑑𝑚𝑘 − 𝑏𝑚𝑐𝑚𝑘−1 𝑎𝑚𝑏𝑚(𝑘−1 − 𝑘)
𝑐𝑚𝑑𝑚(𝑘 − 𝑘−1) 𝑎𝑚𝑑𝑚𝑘−1 − 𝑏𝑚𝑐𝑚𝑘

] ;

one now notices (somehow) that

𝑏𝑚+1𝑐𝑚+1 = (𝑎𝑚𝑏𝑚(𝑘−1 − 𝑘))(𝑐𝑚𝑑𝑚(𝑘 − 𝑘−1))
= 𝑎𝑚𝑏𝑚𝑐𝑚𝑑𝑚(𝑘−1 − 𝑘)2

= (1 + 𝑏𝑚𝑐𝑚)𝑏𝑚𝑐𝑚(𝑘−1 − 𝑘)2;

we now prove by induction that |||𝑏𝑚𝑐𝑚||| ≤ 𝜇𝑚|𝑏𝑐|. Indeed the base case comes from the assumption
𝜇 < 1, and the inductive step is

|||𝑏𝑚+1𝑐𝑚+1||| = |||1 + 𝑏𝑚𝑐𝑚||||||𝑏𝑚𝑐𝑚|||
||||𝑘
−1 − 𝑘||||

2

≤ |||𝑏𝑚𝑐𝑚|||
||||𝑘
−1 − 𝑘||||

2
+ |||𝑏𝑚𝑐𝑚|||

2||||𝑘
−1 − 𝑘||||

2

≤ 𝜇𝑚|𝑏𝑐|||||𝑘
−1 − 𝑘||||

2
+ 𝜇2𝑚|𝑏𝑐|2||||𝑘

−1 − 𝑘||||
2

≤ 𝜇𝑚|𝑏𝑐|||||𝑘
−1 − 𝑘||||

2
+ 𝜇𝑚|𝑏𝑐|2||||𝑘

−1 − 𝑘||||
2

≤ (1 + |𝑏𝑐|)𝜇𝑚|𝑏𝑐|||||𝑘
−1 − 𝑘||||

2

≤ 𝜇𝑚+1|𝑏𝑐|.

In particular, |||𝑏𝑚𝑐𝑚|||→ 0 and so 𝑎𝑚𝑑𝑚 = 1 + 𝑏𝑚𝑐𝑚 → 1: hence

𝐵𝑚+1 = [𝑎𝑚𝑑𝑚𝑘 − 𝑏𝑚𝑐𝑚𝑘−1 𝑎𝑚𝑏𝑚(𝑘−1 − 𝑘)
𝑐𝑚𝑑𝑚(𝑘 − 𝑘−1) 𝑎𝑚𝑑𝑚𝑘−1 − 𝑏𝑚𝑐𝑚𝑘

]→ [ 𝑘 𝑎𝑚𝑏𝑚(𝑘−1 − 𝑘)
𝑐𝑚𝑑𝑚(𝑘 − 𝑘−1) 𝑘−1 ]

so 𝑎𝑚 → 𝑘, 𝑑𝑚 → 𝑘−1.
Thus,

|||||||
𝑏𝑚+1
𝑏𝑚

|||||||

2

= ||||𝑎𝑚(𝑘
−1 − 𝑘)||||

2
→ 𝜉 ≔ |𝑘|2||||𝑘

−1 − 𝑘||||
2
≤ |𝑘|2(1 + |𝑏𝑐|)||||𝑘 − 𝑘−1||||

2
= 𝜇|𝑘|2;
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since 𝜇 < 1, this implies that

|||||||
𝑏𝑚+1
𝑏𝑚

|||||||
→ 𝜉 ≤ 𝜇1∕2|𝑘| <

1 + 𝜇1∕2

2 |𝑘|

so for large enough𝑚,

|||||||
𝑏𝑚+1
𝑏𝑚

|||||||
<
1 + 𝜇1∕2

2 |𝑘| ⟺
|||||||
𝑏𝑚+1
𝑘𝑚+1

|||||||
<
1 + 𝜇1∕2

2
|||||||
𝑏𝑚
𝑘𝑚

|||||||
<
|||||||
𝑏𝑚
𝑘𝑚

|||||||
;

and so |𝑏𝑚𝑘−𝑚|→ 0.
Using similar reasoning, |𝑐𝑚𝑘𝑚|→ 0 and so

𝐴−𝑚𝐵2𝑚𝐴𝑚 = [ 𝑎2𝑚 𝑏2𝑚𝑘−2𝑚
𝑐2𝑛𝑘2𝑚 𝑑2𝑚

]→ 𝐴.

Since ⟨𝑓, 𝑔⟩ is discrete, we must have 𝐴−𝑚𝐵2𝑚𝐴𝑚 = 𝐴 for large enough𝑚. This implies, by compar-
ison between 𝐴 and the expression for 𝐵𝑚 in Eq. (3.4.7), that 𝑎𝑚𝑏𝑚(𝑘−1 − 𝑘) = 𝑐𝑚𝑑𝑚(𝑘 − 𝑘−1) = 0;
i.e. one of 𝑎𝑚 or 𝑏𝑚 is zero, and one of 𝑐𝑚 or 𝑑𝑚 is zero. But note that 𝑏𝑚𝑐𝑚 ≠ 0 for all 𝑚 by the
inductive formula above; hence 𝑎𝑚 = 0 and 𝑑𝑚 = 0. Thus 𝑓 fixes 0 and∞, and 𝑔 swaps 0 and∞, so
the set {0,∞} is a finite orbit of ⟨𝑓, 𝑔⟩, contradicting that this group is non-elementary. Thus 𝜇 ≥ 1,
and the proof is completed by recalling Eq. (3.4.6). mAk

3.4.8 Example. We show that the bound in Jørgensen’s inequality is attained. Recall that the mod-
ular group SL(2,ℤ) is a Kleinian group generated by 𝑓 and 𝑔 defined by 𝑧 ↦ 𝑧 + 1 and 𝑧 ↦ −1∕𝑧
respectively; then ||||tr

2 𝑓 − 4|||| +
|||tr[𝑓, 𝑔] − 2||| = |4 − 4| + |3 − 2| = 1.

3.5 Some examples

3.5.1 A Fuchsian group
Let 𝜁 = exp(2𝜋𝑖∕𝑝) and 𝜉 = exp(2𝜋𝑖∕𝑞), where 𝑝, 𝑞 ∈ ℤ. Define

𝑋 = [𝜁 1
0 𝜁−1] , 𝑌 = [𝜉 0

𝜌 𝜉−1] .

Let 𝐺 ≔ ⟨𝑋,𝑌⟩.
We begin by computing the quantities which appear in Jørgensen’s inequality (Theorem 3.4.4).

tr2 𝑋 = 4 cos2 2𝜋𝑝

tr[𝑋,𝑌] = tr𝑋𝑌𝑋−1𝑌−1 = 2 − 4 sin 2𝜋𝑝 sin 2𝜋𝑞 𝜌 − 𝜌2

In particular,

||||tr
2 𝑋 − 4|||| + |tr[𝑋,𝑌] − 2| = 4 sin2 2𝜋𝑝 + |||𝜌|||

|||||||
𝜌 + 4 sin 2𝜋𝑝 sin 2𝜋𝑞

|||||||



Chapter 4

Riemann surfaces

The aim of this chapter is the study of the quotient spaceΩ∕𝐺. A brief outline of the chapter follows:

1. In Section 4.1 we define the basic terminology and check that Ω∕𝐺 is a Riemann surface;

2. In Section 4.2 we define the notion of a fundamental domain to simplify the visualisation of
the Riemann surface of interest;

3. In Section 4.3 we apply this theory to find some bounds on the parabolic and elliptic Riley
slices;

4. In Section 4.4 we give a method of constructing fundamental domains for certain classes of
Kleinian groups;

5. In Section 7.2 we study punctures of Ω∕𝐺.

Throughout, 𝐺 is a Kleinian group of the second type. If we want to talk about an abstract group,
we shall use the symbol Γ.

4.1 Definitions
We recall for convenience the following definition (see [20] or [16]).

4.1.1Definition. ARiemann surface is aHausdorff space𝑋 equippedwith an open cover (𝑈𝛼)𝛼∈𝐴
and, for each 𝛼 ∈ 𝐴, an injective open map 𝜙𝛼 ∶ 𝑈𝛼 → ℂ (called a coordinate chart), such that for
all 𝛼, 𝛽 ∈ 𝐴 the transition map

𝜙𝛼𝜙−1𝛽 ∶ 𝜙𝛽(𝑈𝛼 ∩𝑈𝛽)→ 𝜙𝛼(𝑈𝛼 ∩𝑈𝛽)

is holomorphic.
A map 𝑓 ∶ 𝑋 → 𝑌 (𝑋 and 𝑌 Riemann surfaces) is holomorphic if for each pair of charts 𝜙 for 𝑋

and 𝜓 for 𝑌, the composition 𝜓𝑓𝜙−1 is holomorphic. We say that such an 𝑓 is a biholomorphism,
a conformal equivalence, or simply an equivalence if 𝑓 is invertible and 𝑓−1 is holomorphic; we
write 𝑋 ≃ 𝑌 in this case.

A Riemann surface is, in particular, a 2-manifold; the second-countability of a Riemann surface is
nontrivial and is known asRado’s theorem; see the remark on page 140 of [16]. A Riemann surface
which is a 2-manifold that is compact and without boundary is called closed.

51
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Let 𝑋 and 𝑌 be Riemann surfaces, with 𝑝 ∶ 𝑋 → 𝑌 a non-constant holomorphic map. Then 𝑝
is open (being open is a local property, and holomorphic maps between subsets of ℂ are open), and
𝑝−1(𝑦) is discrete for any 𝑦 ∈ 𝑌 (again, this follows from the fact that locally a holomorphic map is
constant if the inverse image of any point 𝑦 ∈ 𝑌 has a limit point).

A point 𝑥 ∈ 𝑋 is a branch point or ramification point of 𝑝 if there is no neighbourhood of 𝑥
on which 𝑝 is injective.

We will be interested in Riemann surfaces which have a ‘hyperbolic structure’. We say that a 2-
manifold 𝑀 is hyperbolic if there is an atlas (𝜙𝛼 ∶ 𝑈𝛼 → 𝐵2)𝛼∈𝐴 on 𝑀 (where 𝐵2 is viewed as a
subset of ℝ2) with the following properties:

1. Each 𝑈𝛼 is connected;

2. If 𝑈𝛼 ∩𝑈𝛽 ≠ ∅, then for every 𝑥 ∈ 𝑈𝛼 ∩𝑈𝛽 , there is a neighbourhood 𝑈 ∋ 𝑥 and an element
𝑔 ∈ 𝕄 such that (𝜙𝛽𝜙−1𝛼 )↾𝑈 = 𝑔.

If 𝑋 is a Riemann surface such that the Riemann surface structure is also a hyperbolic structure
under the identification of 𝐵2 with the ball model of hyperbolic space in ℂ̂, then we say that 𝑋 is a
hyperbolic Riemann surface.

Let a group Γ act on a set 𝑋, and let 𝐻 ≤ Γ. We say that 𝑋 is precisely invariant under 𝐻 if the
following conditions hold:

1. 𝐻 = Γ𝑋 , and

2. 𝑔𝑋 ∩ 𝑋 = ∅ for all 𝑔 ∈ Γ ⧵𝐻.

If 𝑋 is precisely invariant under the identity, then we say 𝑋 is a 𝐺-packing.

4.1.2 Lemma. A point 𝑥 lies inΩ(𝐺) iff the following conditions hold:

1. Stab𝐺 𝑥 is finite; and

2. there is a neighbourhood𝑈 ∋ 𝑥 which is precisely invariant under Stab𝐺 𝑥.

Proof. If 𝐺 acts discontinuously about 𝑥 ∈ ℂ̂, it is clear that Stab𝐺 𝑥 is finite. Pick a neighbourhood
𝑈 of 𝑥 such that 𝑔𝑈 ∩ 𝑈 is nonempty for only finitely many 𝑔 ∈ 𝐺, say 𝑔1,… , 𝑔𝑘. For each 𝑔𝑖 not a
stabiliser of 𝑥, there exists a sufficiently small disc 𝐵𝑖 = 𝐵(𝑥, 𝜖𝑖) such that 𝑑(𝑔𝑖𝐵𝑖 , 𝑥) > 0, and for all
𝑔𝑖 ∈ Stab𝐺 𝑥 set 𝐵𝑖 = 𝑈; now replace𝑈 with𝑈 ∩

⋂
𝑖 𝐵𝑖; then 𝑔𝑈 ∩𝑈 is nonempty iff 𝑔 ∈ Stab𝐺 𝑥. It

follows that 𝑈∗ =
⋂

𝑔∈Stab𝐺 𝑥
𝑔(𝑈) is a neighbourhood of 𝑥 precisely invariant under Stab𝐺 𝑥.

The converse is trivial. mAk

4.1.3 Theorem. The quotient spaceℛ𝐺 ≔ Ω∕𝐺 is a hyperbolic Riemann surface.

Proof. Note that ℛ𝐺 is Hausdorff by the theory of Section 3.1, and that the projection 𝜋 is open by
standard considerations [33, chapters 11 and 12].

Wenowdefine the complex structure onℛ𝐺 . In fact, wewill show that there is an atlaswith charts
formed by the projections of nice discs about each 𝑥 ∈ Ω onto ℛ𝐺 with the 𝐺-transition property.

Let 𝐷 be the unit disc in ℂ.
Suppose first that 𝑧 ∈ ◦Ω; we may pick a neighbourhood𝑈𝑧 of 𝑧 such that 𝑔𝑈𝑧 ∩𝑈𝑧 ≠ ∅ only for

𝑔 = 1. Then the restriction 𝜋𝑧 ≔ 𝜋↾𝑈𝑧 ∶ 𝑈𝑧 → Ω∕𝐺 is injective and so there exists 𝜋−1𝑧 ∶ 𝜋(𝑈𝑧) →
𝑈𝑧 a left inverse for 𝜋𝑧 on some neighbourhood of 𝜋(𝑧). Let 𝜎 ∶ 𝑈𝑧 → 𝐷 be a surjective Möbius
transformation sending 𝑧 ↦ 0; then 𝜑𝑧 ≔ 𝑞𝜎𝜋−1𝑧 ∶ 𝜋(𝑈𝑧)→ 𝐷 is a homeomorphism (where 𝑞 is the
identity map).

On the other hand, suppose 𝑧 ∈ Ω⧵◦Ω. Let𝑈𝑧 be a neighbourhood of 𝑧 precisely invariant under
𝐺𝑧 (which exists by Lemma 4.1.2); and let 𝐽 = 𝐺𝑧. Note that there is a natural homeomorphism
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𝑈𝑧∕𝐽 ≃ 𝑈𝑧∕𝐺 by the properties of precise invariance. Observe that 𝐽 is finite and so each nontrivial
element of 𝐽 is elliptic. We note that, by Corollary 3.3.23, such a nontrivial element exists. Suppose
𝑓, 𝑔 ∈ 𝐽; then [𝑓, 𝑔] ∈ 𝐽 is elliptic and so by Lemma 2.4.2 we have that Fix 𝑓 = Fix 𝑔. Let 𝜎 be a
Möbius transformation sending 𝑧 → 0 and 𝑈𝑧 onto the unit disc 𝐷. Since 𝐽 is finite and consists
of elliptic elements, it is cyclic and so is generated by some elliptic 𝑔 ∈ 𝐽 satisfying 𝜎𝑔𝜎−1(𝑤) =
exp(2𝜋𝑖∕𝑛)𝑤 for all 𝑤 ∈ 𝐷. Let 𝑞 ∶ 𝐷 → 𝐷 be the map 𝑧 ↦ 𝑧𝑛. For all 𝑤 ∈ 𝑈𝑧 and all 𝑘 ∈ ℤ we
have

𝑞𝜎𝑔𝑘𝑤 =
(
𝜎𝑔𝑘𝜎−1𝜎𝑤

)𝑛
= (exp(𝑘2𝜋𝑖∕𝑛)𝜎𝑤)𝑛 = (𝜎𝑤)𝑛.

Observe that this shows that the function 𝑞𝜎𝜋𝑧 (where 𝜋𝑧 ≔ 𝜋↾𝑈𝑧 ) is well-defined, regardless of the
branch of the inverse that is chosen: indeed, 𝜋(𝑤) is mapped by a branch of 𝜋−1𝑧 to some point 𝑔𝑘(𝑤)
and the image of each of these under 𝑞𝜎 is (𝜎𝑤)𝑛. In particular, 𝜑𝑧 ≔ 𝑞𝜎𝜋𝑧 ∶ Ω∕𝐺 ⊇ 𝜋(𝑈𝑧) → 𝐷 is
a homeomorphism.

Let Σ = {(𝜑𝑧, 𝜋(𝑈𝑧)) ∶ 𝑧 ∈ Ω}; the claim is that this is a chart for ℛ𝐺 .
We begin by studying the maps 𝜋−1𝑧 𝜋𝑤 for 𝑤 ≠ 𝑧. Let 𝜁𝑤 ∈ 𝑈𝑤, 𝜁𝑧 ∈ 𝑈𝑧. If 𝜋(𝜁𝑤) = 𝜋(𝜁𝑧)

then for some 𝑔 ∈ 𝐺, we have 𝑔𝜁𝑤 = 𝜁𝑧. If 𝜁𝑤 and 𝜁𝑧 are not elliptic fixed points, then 𝜋−1𝑧 exists (is
univaluate) in some neighbourhood of 𝜁𝑧 and takes values in𝜋𝑧(𝑈𝑧). The twomaps𝜋𝑧𝑔 and𝜋𝑤 with
𝜋 on some neighbourhood of 𝜁𝑤; thus on that neighbourhood, 𝑔 = 𝜋−1𝑧 𝜋𝑤. Thus the maps 𝜋−1𝑧 𝜋𝑤
are elements of 𝐺 away from elliptic fixed points of 𝐺.

We may write 𝜑𝑧 = 𝑞𝑧𝜎𝑧𝜋−1𝑧 and 𝜑𝑤 = 𝑞𝑤𝜎𝑤𝜋−1𝑤 ; suppose 𝜁 ∈ 𝜋(𝑈𝑧) ∩ 𝜋(𝑈𝑤). If 𝜁 is not
an elliptic fixed point, then we may pick an arbitrary branch of 𝑞−1𝑤 about 𝜁 (if necessary) and then
compute

𝜑𝑧𝜑−1𝑤 = 𝑞𝑧𝜎𝑧𝜋−1𝑧 𝜋𝑤𝜎−1𝑤 𝑞−1𝑤 ;

If 𝜁 is not an elliptic fixed point, by the previous paragraph we have

𝜑𝑧𝜑−1𝑤 = 𝑞𝑧𝜎𝑧𝜋−1𝑧 𝜋𝑤𝜎−1𝑤 𝑞−1𝑤 = 𝑞𝑧𝜎𝑧𝑔𝜎−1𝑤 𝑞−1𝑤

which is clearly a biholomorphism; on the other hand, if 𝜁 is an elliptic fixed point then wemay pick
a punctured neighbourhood of 𝜁 on which 𝜑𝑧𝜑−1𝑤 is biholomorphic by the previous remark (this is
because elliptic fixed points are discrete) and then by standard considerations (Hartog’s theorem) it
may be extended to a biholomorphic function defined at 𝜁.

Thus we have shown that ℛ𝐺 is a Riemann surface with charts being homeomorphisms onto 𝐷.
It is a consequence of Schwartz’ lemma ([2, section 3.4, exercise 5]) that suchmaps are in factMöbius
transformations which fix 𝐷, and thus act as hyperbolic isometries in 𝐷. mAk

4.1.4 Lemma. Let 𝑋 be a compact 2-manifold. Every connected component𝑊 of the boundary has
a neighbourhood 𝑈 with interior 𝑈 ⧵𝑊 homeomorphic to an annulus such that the homeomorphism
extends continuously to 𝑈 ∩𝑊 and maps 𝑈̄ continuously onto a closed annulus; in particular, each
boundary component of a Riemann surface has a neighbourhood conformally equivalent to a punctured
disc or an annulus.

If𝑊 is a boundary component of a Riemann surface with a neighbourhood conformally equiva-
lent to a punctured disc, we say that𝑊 bounds a puncture or that the surface is punctured at𝑊;
otherwise, it bounds a disc or corresponds to a removed disc.

The Riemann surface ℛ𝐺 admits a marking structure as follows (this is a definition, not a theo-
rem):

• projections of elliptic elements 𝑥 ∈ Ω are marked with the order of the generator of Stab𝐺 𝑥;

• punctures are marked with∞.
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A Riemann surface 𝑋 is said to be of finite type if 𝑋 is biholomorphic to a compact Riemann
surface with at most finitely many points removed.

4.1.5 Theorem (Ahlfors’ finiteness theorem). If 𝐺 is a finitely generated non-elementary Kleinian
group, thenℛ𝐺 has finitely many components, each hyperbolic of finite type. In particular, if area(ℛ𝐺)
denotes the hyperbolic area ofℛ𝐺 , then area(ℛ𝐺) is finite.

Historical remark. The theoremwas first published in [4], an error in the proof was indicated by Bers
[3], and the gap was filled in [23].

When we study the structure of hyperbolic 3-manifolds, we shall provide a proof of Ahlfors’ the-
orem following [31].

There are some useful quantitative extensions to Ahlfors’ finiteness theorem. For instance:

4.1.6 Theorem (Bers, 1967). If 𝐺 is a finitely generated non-elementary Kleinian group, then

1
2𝜋 area(ℛ𝐺) ≤ 2(𝑁 − 1)

where𝑁 is the size of a minimal generating set for 𝐺.

Finally we remark that there is a converse to the construction of the Riemann surfaceℛ𝐺 from a
Kleinian group 𝐺.

4.1.7 Theorem (Klein-Poincaré Uniformisation Theorem). Let 𝑅 be a Riemann surface, and let 𝑅̂ be
its universal cover. Then 𝑅̂ is conformally equivalent to ℂ̂, ℂ̂, or 𝐵2 = {𝑧 ∈ ℂ ∶ |𝑧| < 1}; and 𝑅 = 𝑅̂∕𝐺,
where 𝐺 is a Kleinian group acting discontinuously on 𝑅̂ (where the action is induced by restriction);
further, 𝐺 is unique up to conjugation in Aut 𝑅̂.

Motivated by this, we define aFuchsiangroup to be aKleinian groupwhich acts discontinuously
on some disc 𝐷 (i.e. a conformal image of 𝐵2).

In fact, we have a stronger result:

4.1.8 Theorem (Bers’ simultaneous uniformisation theorem, 1960). Let 𝑆 and 𝑆′ be quasiconfor-
mally equivalent hyperbolic Riemann surfaces with degenerate boundary components; then there exists
a quasi-Fuchsian group of the first kind such thatΩ(𝐺)∕𝐺 = 𝑆 ∪ 𝑆′.

An excellent discussion of these results and many others together with a plethora of historical
references is found in [30].

4.2 Fundamental domains
Our next goal is the study of the quotient ℛ𝐺 . In order to do this, we will find a region 𝐷 ⊆ Ω such
that the action of 𝐺 on𝐷 tiles the entirety ofΩ, and such that𝐷 is the ‘smallest possible’ such region.

More precisely, we make the following definition.

4.2.1Definition. A fundamental domain for𝐺 is an open set𝐷 ⊆ Ωwith the following properties:

1. 𝐷 is a 𝐺-packing;

2. For every 𝑧 ∈ Ω, there exists 𝑔 ∈ 𝐺 such that 𝑔𝑧 ∈ 𝐷;

3. The boundary of 𝐷 consists of limit points of 𝐺 and a countable collection of curves (𝛾𝑖 ∶
[0, 1]→ ℂ̂)𝑖∈𝐼 such that 𝜕𝐷 = ∪𝑖∈𝐼𝛾𝑖[0, 1] and such that 𝛾𝑖(0, 1) ⊆ Ω for all 𝑖; the intersections
𝑠𝑖 ≔ 𝛾𝑖[0, 1] ∩ Ω are called the sides of 𝐷;
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4. If 𝑠 is a side of 𝐷, then there exists a side 𝑠′ and a nontrivial element 𝑔 ∈ 𝐺 (called a side-
pairing transformation) such that 𝑠′ = 𝑔𝑠, and these choices are made such that 𝑔 = (𝑔′)′;

5. If (𝑠𝑛) is a sequence of sides of𝐷, then diam 𝑠𝑚 → 0 and the sides of𝐷 accumulate only at limit
points;

6. Only finitely many translates of 𝐷 meet any compact subset of Ω.

Some unfortunate terminology: a fundamental domain is not a domain (it is not necessarily sim-
ply connected).

Observe that condition (1) in the above is equivalent to the statement that “∀𝑥,𝑦∈𝐷(𝑔𝑥 = 𝑦) ⟹
𝑔 = 1” (that is, if 𝑥 ∈ 𝐷 then 𝑥 has no nontrivial 𝐺-translates in 𝐷). Indeed, suppose 𝐷 is precisely
invariant under 1; if 𝑔𝑥 = 𝑦 for 𝑔 ∈ 𝐺 then 𝑦 ∈ 𝑔𝐷 ∩ 𝐷 and so 𝑔 = 1. On the other hand, suppose
𝑔𝐷 ∩ 𝐷 is nonempty; then an element in the intersection is a nontrivial translate in 𝐷.

Endpoints of sides of 𝐷 which lie in Ω are called vertices for 𝐷.

4.2.2 Lemma. Let𝐷 be a fundamental domain, and let 𝑔 be a side-pairing transformation for𝐺, pair-
ing 𝑠 ↦ 𝑠′. Then 𝑔𝐷 ∩ 𝐷 ∩ Ω is a union of sides of 𝐷 containing 𝑠′.

Proof. Clearly 𝑠′ ⊆ 𝑔𝐷 ∩ 𝐷 ∩ Ω, by definition. Suppose 𝑥 ∈ 𝑔𝐷 ∩ 𝐷 ∩ Ω. Observe that if 𝑥 lies in
the interior of 𝐷, then 𝑥 lies in the interior of 𝑔𝐷. Hence 𝐷 ∩ 𝑔𝐷 is nontrivial, contradicting that 𝐷
is a 𝐺-packing. Thus 𝑥 is a boundary point of 𝐷 inΩ, and hence is an element of a side. Finally note
that if an element of a side 𝑠 lies in 𝑔𝐷 ∩ 𝐷 ∩ Ω then the entire side lies in the set, and thus the set is
a union of sides. mAk

We say that𝐷 tesselatesΩ. We write 𝐷̃ for𝐷∩Ω; the action of𝐺 on the sides of 𝐷̃ induces a gluing
of the sides of 𝐷̃. In fact:-

4.2.3 Theorem. Let 𝑝 ∶ 𝐷̃ → Ω∕𝐺 be the restriction of the projection map Ω → Ω∕𝐺. It is clear by
definition of the action of 𝐺 on 𝐷̃ that the projection induces a map 𝑝̃ ∶ 𝐷̃∕𝐺 → Ω∕𝐺. Then 𝑝̃ is an
homeomorphism.

Proof. By condition (2), the map 𝑝̃ is surjective. By condition (1), it is injective on 𝐷. Observe that
𝑝̃↾𝐷 is a local homeomorphism: let 𝑥 ∈ 𝐷 and let𝑈 be a neighbourhood of 𝑥 in𝐷; then 𝑝̃(𝑈) = 𝑝(𝑈)
is open since 𝑝 is open on 𝐷. It remails to show that 𝑝̃ is a local homeomorphism on 𝐷̃∕𝐺 and is
injective.

Case 1. Suppose first that 𝑥 is an interior point of a side 𝑠 of 𝐷. Pick a 𝑔 ∈ 𝐺 with the property
𝑔𝑠 = 𝑠′ for some side 𝑠′. Let 𝑥′ = 𝑔(𝑥).

Case I: 𝑥 ≠ 𝑥′. Let 𝛿 (resp. 𝛿′) be the minimal distance from 𝑥 (resp. 𝑥′) to 𝑥′ (resp. 𝑥), any
vertex of 𝐷, any limit point of 𝐺, or any fixed point of 𝑔. By condition (5), both 𝛿 and 𝛿′ are
nonzero. Choose 𝜀 < min{𝛿, 𝛿′}∕2 small enough such that 𝐵 = 𝐵(𝑥, 𝜌) is precisely invariant
under Stab𝐺 𝑥. Choose 𝑦1, 𝑦2 ∈ 𝐵 ∩ 𝑠 such that 𝑦1 and 𝑦2 lie on opposite sides of 𝑥 in 𝑠. Let 𝛾 be a
path connecting 𝑦1 and 𝑦2 that, except for its endpoints, lies in 𝐵 ∩ 𝐷. This path defines a closed
neighbourhood 𝑈 of 𝑥 in 𝐷̃. Similarly, we may define a neighbourhood 𝑈′ of 𝑥′ (Fig. 4.1a).
Note that each point of 𝐷 ∩𝑈 (resp. 𝐷 ∩𝑈′) is equivalent in 𝐷̃ only to itself. Further, every point
of 𝑠 ∩ 𝑈 is equivalent only to the corresponding point of 𝑠′ ∩ 𝑈. Let 𝑉 = 𝑈 ∩ 𝑔−1(𝑈′). This is
a set containing 𝑥; further, it is precisely invariant under Stab𝐺 𝑥 since 𝐵 is. Since no points of
𝑉 − 𝑠(⊆ 𝐷) are 𝐺-equivalent, no points of 𝑉 are 𝐺-equivalent. Hence 𝑝̃ restricted to 𝑈 ∪ 𝑈′ is a
homeomorphism, i.e. 𝑝̃ is a local homeomorphism about 𝑥.



56 CHAPTER 4. RIEMANN SURFACES

(a) Case I.

(b) Case II.

Figure 4.1: Definition of 𝑈 and 𝑈′ in case 1 of Theorem 4.2.3.

Case II: 𝑥 = 𝑥′. If 𝑔𝑥 = 𝑥, then 𝑔 = 𝑔−1 (by (4)). Let 𝛿 be the minimal distance from 𝑥 to any
vertex of𝐷, to any other fixed point of 𝑔, or to any limit point of𝐺. As above choose 𝜀 < 𝛿∕2 small
enough such that 𝐵 = 𝐵(𝑥, 𝜌) is precisely invariant under Stab𝐺 𝑥. Let 𝑦1 ∈ 𝐵 ∩ 𝑠 distinct from 𝑥
and set 𝑦2 = 𝑔𝑦1. Again we obtain a closed neighbourhood 𝑈 of 𝑥 (Fig. 4.1b).

Observe that: the points of 𝑈 ∩ 𝐷 are 𝐺-equivalent only to themselves; a point 𝑧 ∈ 𝑠 ∩ 𝑈 is
equivalent only to 𝑔𝑧, which also lies in 𝑈; and 𝑥 is equivalent only to itself. Let 𝑉 = 𝑈 ∪ 𝑔𝑈.
Then 𝑉 is precisely invariant under the identity and 𝑝̃↾𝑉 is a homeomorphism.

Case 2. The second case is that 𝑥 = 𝑥1 is a vertex of 𝐷. Let 𝑠1 be a side of 𝐷 with 𝑥1 as an endpoint.
Let 𝑠′1 be the side paired with 𝑠1, let 𝑔1 be the side-pairing transformation relating 𝑠1 to 𝑠

′
1, and let

𝑥2 = 𝑔1𝑥1; let 𝑠2 be the side distinct from 𝑠′1 with 𝑥2 as an endpoint. Inductively construct sequences
(𝑥𝑖), (𝑠𝑖), (𝑔𝑖), and (𝑠′𝑖 ). Note that by property (6), this process ends after only finitely many steps. Let
𝑛 be the smallest integer greater than 1 with 𝑠𝑛 = 𝑠1. Choose points 𝑦𝑖 on each 𝑠𝑖 as in case 1, and
for all 𝑖 set 𝑦′𝑖 = 𝑔𝑖𝑦𝑖 ∈ 𝑠′𝑖 . For each 𝑖, choose a path 𝛾𝑚 from 𝑦′𝑚−1 to 𝑦𝑚, so that the open region 𝑈𝑚
bounded by 𝛾𝑚, 𝑠′𝑚−1, and 𝑠𝑚 lies in𝐷. The closure of each𝑈𝑚 is precisely invariant under Stab𝐺 𝑥𝑚,
and the 𝑈𝑚 are all disjoint. Let 𝑈 be the projection in 𝐷̃∕𝐺 of the union of the 𝐺𝑚; then 𝑈 is a
neighbourhood of the projection of 𝑥.

Observe, 𝑔−11 (𝐷) abuts 𝐷 along 𝑠1; 𝑔−11 𝑔−12 (𝐷) abuts 𝑔−11 (𝐷) along 𝑔−11 (𝑠2); etc. The union of the
sets 𝑈1, 𝑔−11 (𝑈2), 𝑔−11 𝑔−12 (𝑈3) need not be a neighbourhood of 𝑥: the element ℎ ≔ 𝑔−1𝑛−1⋯ 𝑔−11 may
be a nontrivial element of Stab𝐺 𝑥mapping 𝑠1 onto some other arc ℎ(𝑠1) eminating from 𝑥. Since no
two points of 𝐷 are 𝐺-equivalent, either ℎ𝑚(𝑉) is disjoint from 𝑉, or is mAk

Thus the gluing of 𝐷 induced by 𝐺 does give ℛ𝐺 .

4.2.4 Corollary. If 𝐷 is a fundamental domain for 𝐺, and if 𝑧 ∈ 𝐷̄ is the preimage of a marked point
ofℛ𝐺 , then either 𝑧 is a vertex of𝐷, or 𝑧 is the fixed point on some side 𝑠 of a side pairing transformation
𝑔 with 𝑔(𝑠) = 𝑠.
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Figure 4.2: Definition of 𝑈 in case 2 of Theorem 4.2.3.

The construction of fundamental domains is, in general, difficult; the difficulty is usually property
(1). One useful result is the following

4.2.5 Theorem (Klein combination theorem). Let 𝐺1, 𝐺2,… be Kleinian groups, with 𝐺 = ⟨𝐺1,…⟩.
For each 𝑗 let𝐷𝑗 be a𝐺𝑗-packing, and suppose that𝐷𝑖 ∪𝐷𝑗 = ℂ̂ for all 𝑖, 𝑗 ∈ ℕ, 𝑖 ≠ 𝑗; suppose also that
𝐷∗ ≔

⋂
𝑗∈ℕ 𝐷𝑗 ≠ ∅. Then𝐺 is the free product of the𝐺𝑗 ,𝐷∗ is a𝐺-packing, and𝐺 acts discontinuously

on ∪𝑔∈𝐺𝑔(𝐷∗).

Proof. Beardon, thm 5.3.15. mAk

We have a more general theorem for Fuchsian groups which we shall prove later on (Theo-
rem 9.3.2).

4.3 Bounds on Riley slices
Wenow place in context the brief discussions above, of Example 3.1.13 and Example 3.4.3. We follow
essentially [29, section 2.2].

Let ⟨𝑓, 𝑔⟩ be a Kleinian group, free on the two parabolic generators 𝑓 and 𝑔. In order to study the
group, we conjugate 𝑓 to have a fixed point at ∞ and a translation length of 1, and conjugate 𝑔 to
have a fixed point at 0. Thus we may pick representatives for 𝑓 and 𝑔 of respective forms

𝑋 = [1 1
0 1] , 𝑌𝜌 = [1 0

𝜌 1] ;

we write 𝐺𝜌 for ⟨𝑋,𝑌𝜌⟩. We shall see later (c.f. [29, top of p.75]) that if [𝑋] and [𝑌𝜌] are the maximal
parabolic conjugacy classes of 𝐺𝜌, then ℛ𝐺𝜌 is a 4-times punctured sphere (with certain additional
structure).



58 CHAPTER 4. RIEMANN SURFACES

0

30

60
90

120

150

180

210

240
270

300

330

0 1 2 3 4

Figure 4.3: The cardioids of Lemma 4.3.1.

We define the (parabolic) Riley slice to be the moduli space of such groups:

ℛpar. ≔ {𝜌 ∈ ℂ ∶ ℛ𝐺𝜌 is a 4-times punctured sphere}.

In Example 3.4.3, we obtained a rough bound on ℛpar.; namely, the space lies in the exterior of
the unit circle.

4.3.1 Lemma. If 𝜌 lies in the common exterior of the cardioids

{𝑟 exp(𝑖𝜃) ∈ ℂ ∶ 𝑟 = ±2(1 + cos 𝜃)},

(see Fig. 4.3) then the isometric circles of 𝑌𝜌 and 𝑌−1
𝜌 lie in the strip

𝑆 = {𝑧 ∈ ℂ ∶ −12 < Re 𝑧 < 1
2}.

The region 𝐷 inside the strip and outside the circles is a fundamental domain for 𝐺𝜌.

Remark. This lemma shows that each such 𝐺𝜌 is a classical Schottky group of rank 2.

Proof. Suppose 𝜌 = 𝑟 exp(𝑖𝜃) lies outside both cardioids; then

(4.3.2) 𝑟 > |||2(1 + cos 𝜃)|||.

Let 𝐼(𝑌𝜌) denote the isometric circle of 𝑌𝜌, so 𝐼(𝑌𝜌) = 𝑆(−𝜌−1, 𝑟−1); we have that Re(−𝜌−1) =
−𝑟−1 cos 𝜃. In particular, 𝐼(𝑌𝜌) lies in the strip 𝑆 iff the following inequalities hold:

−12 < −𝑟−1 cos 𝜃 − 𝑟−1 = −𝑟−1(1 + cos 𝜃) ⟺ 𝑟 > 2(1 + cos 𝜃)

1
2 > −𝑟−1 cos 𝜃 + 𝑟−1 ⟺ 𝑟 > 2(1 − cos 𝜃)
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The first inequality follows immediately from Eq. (4.3.2); the second inequality holds since after
observing that the cardioid described by 𝑟 = −2(1 + cos 𝜃) is identitical to that described by 𝑟 =
2(1 − cos 𝜃). Similar inequalities hold for 𝐼(𝑌−1

𝜌 ).
We now check that the region𝐷 is a fundamental domain. It is clearly open, in ℂ̂ by construction.

That it is a subset ofΩ (and hence open inΩ) will follow fromproperty (1) of Definition 4.2.1. Indeed,
for 𝑥 ∈ 𝐷 let 𝑈 be a ball about 𝑥; if 𝑔𝑈 ∩ 𝑈 ≠ ∅ then 𝑔𝐷 ∩ 𝐷 ≠ ∅, and hence by the cited property
we have 𝑔 = 1. We now check properties (1) to (6) of Definition 4.2.1.

1. This follows from Theorem 4.2.5 with 𝐺1 = ⟨𝑋⟩ and 𝐷1 = 𝑆, and 𝐺2 = ⟨𝑌𝜌⟩ and 𝐷2 = 𝐼(𝑌𝜌) ∪
𝐼(𝑌−1

𝜌 ).

2. For any 𝑧 ∈ Ω, there is some 𝑛 ∈ ℕ such that 𝑋𝑛𝑧 ∈ 𝑆; if 𝑋𝑛𝑧 lies in

mAk

Remark. In fact, 𝐷 = 𝜕𝐻3 ∩ 𝐸̄, where 𝐸 is the Dirichlet region for 𝐺𝜌, as defined in the chapter on
3-manifolds.

4.4 The Ford region
Suppose now that 𝐺 is a Kleinian group with∞ ∈ ◦◦Ω; in particular,∞ is not a fixed point of any
element. For each nontrivial 𝑔 ∈ 𝐺, let 𝐷𝑔 be the exterior of the isometric circle of 𝑔 (that is, the
component of the complement of the isometric circle which contains∞). Then the Ford region of
𝐺 is the set 𝐷 ≔ int

⋂
𝑔∈𝐺⧵{1} 𝐷𝑔.

4.4.1 Theorem. The Ford region is a fundamental domain for 𝐺.

Proof. The set 𝐷 is open by construction; condition (1) of Definition 4.2.1 then shows that 𝐷 ⊆ Ω (in
fact 𝐷 ⊆ ◦Ω). We verify now the conditions of Definition 4.2.1.

1. Each nontrivial 𝑔 ∈ 𝐺 sends the exterior of 𝐼(𝑔) into the interior of 𝐼(𝑔−1); hence 𝑔𝐷 lies in the
interior of 𝐼(𝑔−1) and 𝑔𝐷 ∩ 𝐷 = ∅.

2. Let 𝑧 ∈ Ω. It follows from Corollary 3.2.5 that 𝑧 lies in 𝐷𝑔 for all but finitely many 𝑔 ∈ 𝐺
(otherwise 𝑧 is a limit point, namely the limit of∞ under some sequence of elements (𝑔𝑛) of 𝐺
with 𝑧 ∈ 𝐷𝑔𝑛 ).

mAk
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Chapter 5

Palate cleanser: convexity theory in
hyperbolic space

In this chapter, we gather various results about convex subsets of hyperbolic space. We essentially
follow a mixture of [43, chapter 8], and the various papers collected in [17, 12].

5.1 The convex hull in general
We give some standard definitions and results which may be found in [18].

5.1.1 Definition. A subset 𝑋 ⊆ 𝐻𝑛 is hyperbolically convex or simply convex if, for any pair of
points 𝑥, 𝑦 ∈ 𝑋, the geodesic arc [𝑥, 𝑦] lies in 𝑋. If 𝑋 is, in addition, closed, a supporting hyper-
plane for 𝑋 is a hyperbolic hyperplane 𝑃 such that 𝑃 ∩ 𝑋 ≠ ∅ and such that 𝑋 lies entirely in one of
the closed half-spaces determined by 𝑃. The half-space containing𝑋 is then labelled 𝑃+ and is called
a supporting half-space for 𝑋; the other half-space determined by 𝑃 is labelled 𝑃−. A face of 𝑋 is
an intersection 𝑋 ∩ 𝑃, where 𝑃 is a supporting hyperplane for 𝑋.

Let Λ ⊆ 𝐻𝑛 be closed; the convex hull of Λ, denoted h−conv Λ, is the intersection of the convex
sets containing Λ.

See Fig. 5.1 for some examples.
Observe that this definition is essentially the same as that for affine space (compare for instance

[19, chapter 1]). The analogy is very strong, in particular we have a retraction map with similar
properties to the affine retraction onto a convex set. This analogy may be carried further, giving a
general axiomatic theory of convexity; see for instance [27].

5.1.2 Theorem. Let 𝑋 ⊆ 𝐻𝑛 be a closed convex set. Define the retraction 𝑟 ∶ 𝐻3 → 𝑋 by

𝑟𝑦 ≔

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑦 𝑦 ∈ 𝑋;
the point of intersection of the largest hyperbolic
sphere centred at 𝑦 with interior disjoint from 𝑋 𝑦 ∈ 𝐻3 ⧵ 𝑋;

the point of intersection of the largest horosphere
based at 𝑦 with interior disjoint from 𝑋 𝑦 ∈ 𝜕𝐻3.

Then 𝑟 is a continuous function such that for all 𝑥, 𝑦 ∈ 𝐻𝑛, 𝑑(𝑟𝑥, 𝑟𝑦) ≤ 𝑑(𝑥, 𝑦) (we say that 𝑟 is
distance-decreasing).

61
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Figure 5.1: Some hyperbolic convex sets, illustrating the variety allowed.

Proof. It is obvious by considering, for instance, the ball model of𝐻𝑛 on which the Euclidean topol-
ogy and the hyperbolic topology agree, that 𝑟 is continuous. If 𝑟𝑥 ≠ 𝑟𝑦, then let 𝜆 be the oriented line
segment from 𝑟𝑦 to 𝑟𝑥 and let 𝐿 be the oriented line determined by 𝜆. Let 𝜋 ∶ 𝐻𝑛 → 𝐿 be the orthog-
onal projection map; then 𝜋𝑥 ≤ 𝑟𝑥 < 𝑟𝑦 ≤ 𝜋𝑦 (indeed, it cannot be that 𝜋𝑥 > 𝑟𝑥: if 𝑟𝑥 < 𝜋𝑥 ≤ 𝑟𝑦
then 𝜋𝑥 ∈ 𝑋 and so 𝜋𝑥 is a point of 𝑋 closer to 𝑥 than 𝑟𝑥, and if 𝑟𝑦 < 𝜋𝑥 then 𝑟𝑦 is a point of 𝑋
closer to 𝑥 than 𝑟𝑥; similarly we cannot have 𝜋𝑦 < 𝑟𝑦) and so since 𝜋 is distance-decreasing we have
𝑑(𝑟𝑥, 𝑟𝑦) ≤ 𝑑(𝜋𝑥, 𝜋𝑦) ≤ 𝑑(𝑥, 𝑦). mAk

5.1.3 Proposition. Given any 𝑦 ∈ 𝐻𝑛 ⧵ 𝑋, where 𝑋 is a closed convex set, there exists a support plane
𝑃 for 𝑋 such that 𝑦 ∈ 𝑃−.

Proof. Let 𝑆(𝑦) be the sphere (either a hyperbolic sphere or a horosphere) which defines the value
of the retraction 𝑥 ≔ 𝑟𝑦 as in the displayed equation of Theorem 5.1.2. Let 𝑃 be the tangent plane
to 𝑆(𝑦) at 𝑥. We now show that 𝑃 is a supporting hyperplane; it trivially has nontrivial intersection
with 𝑋 and so it remains to show that 𝑋 lies entirely in one of the closed half-spaces determined by
𝑃. Suppose not; then there exists some 𝑥′ ∈ 𝑋 which lies on the same side of 𝑃 as 𝑦. Let 𝑄 be the
plane spanned by 𝑥, 𝑥′, 𝑦, and let 𝐸 be the hyperbolic circle 𝑄 ∩ 𝑆(𝑦) (Fig. 5.2). Observe that, since
𝑃 is tangent to 𝑆(𝑦), the segment [𝑥, 𝑥′] (which is contained in 𝑋 by convexity) passes through the
interior of 𝐸, and so there is some 𝑧 ∈ 𝑋 with 𝑑(𝑦, 𝑧) < 𝑑(𝑦, 𝑥), a contradiction. mAk

5.1.4 Corollary. A closed 𝑋 ⊆ 𝐻𝑛 is the intersection of its supporting half-spaces.

Proof. Suppose 𝑦 ∉ 𝑋; then 𝑦 ∈ 𝑃− for some supporting plane by Proposition 5.1.3 and thus 𝑦 does
not lie in the intersection of the supporting half-spaces. mAk

5.1.5 Corollary. A closed 𝑋 ⊆ 𝐻𝑛 is the intersection of countably many of its supporting half-spaces
(hence has only countably many facets).

Proof. Let {𝑦𝑖} be a countable dense subset of𝐻𝑛 ⧵𝑋; then it suffices to take seperating planes for the
𝑦𝑖 only in the proof of the previous Corollary 5.1.4. (Indeed, any element 𝑥 not in 𝑋 may be approxi-
mated by a sequence of the {𝑦𝑖}, and the sequence of seperating planes generated by the subsequence
will in the limit be a seperating plane for 𝑥.) mAk
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Figure 5.2: Illustration for the proof of Proposition 5.1.3.

The above Corollary 5.1.5 shows that a convex hull of a closed set will consist of countably many
‘flat’ pieces seperated by possibly uncountably many ‘pleats’ or ‘bending lines’; refer back to Fig. 5.1
for an illustration of these.

Ahyperbolic subspace of𝐻𝑛 of dimension𝑚 (0 ≤ 𝑚 ≤ 𝑛) is the intersection (in the ball model)
of a Euclidean sphere 𝑆𝑚 or𝑚-dimensional hyperplane orthogonal to 𝑆𝑛−1 with𝐻𝑛. If𝑋 ⊆ 𝐻𝑛, then
the smallest hyperbolic subspace containing 𝑋 is known as the span of 𝑋. The (topological) interior
of 𝑋 as a subset of its span is the relative interior relint𝑋. We define the dimension of a convex
set is the dimension of the hyperbolic subspace it spans. We say that a closed convex 𝑋 ⊆ 𝐻𝑛 is full
if dim𝑋 = 𝑛. If a face of 𝑋 is 1-dimensional, we call it an edge. If a face has dimension dim𝑋 − 1,
we call it a facet.

We say that𝑚 points in𝐻𝑛 are in general position if they span a hyperbolic subspace of dimen-
sion𝑚. A𝑚-simplex is the hyperbolic convex hull of𝑚 points in general position.

5.1.6Lemma. Let∆ = h−conv{𝑥1,… , 𝑥𝑚} be ahyperbolic𝑚-simplex spannedby the𝑥𝑖 . Then relint ∆ ≠
∅.

Proof. Proceed by induction on 𝑚; the smallest nontrivial case is the case 𝑚 = 2, in which case the
points𝑥1 and𝑥2 are distinct points and so [𝑥1, 𝑥2]has non-empty relative interior. In the general case,
there is a point 𝑦 ∈ relint h−conv{𝑥1,… , 𝑥𝑚−1}; then [𝑥𝑚, 𝑦] lies in relint h−conv{𝑥1,… , 𝑥𝑚}. mAk

5.1.7 Theorem. Let 𝑋 be a full closed convex subset of 𝐻𝑛. Then 𝑋 has non-empty interior, and 𝑋 ∩
𝐻𝑛 is a manifold with boundary homeomorphic to 𝜕𝐻𝑛 ⧵ 𝑋 and interior homeomorphic to an open
(Euclidean) ball.

Proof. Since 𝑋 is full, there are 𝑛 points in the interior of 𝑋 which are in general position. These
points form the vertices of an 𝑛-simplex and such a simplex has non-empty interior by Lemma 5.1.6.

Pick an arbitrary 𝑥0 ∈ int𝑋, and let 𝑈 be an open ball about 𝑥0. For 𝑣 ∈ 𝜕𝐻𝑛, let 𝑅𝑣 be the
hyperbolic ray from 𝑥0 to 𝑣. This raymeets 𝜕𝑋 in exactly one point, and the function sending 𝑣 to this
point is a homeomorphism from 𝜕𝐻𝑛 ⧵𝑋 to 𝜕𝑋 ∩𝐻𝑛; in a similar way we define a homeomorphism
from𝐻𝑛 to int𝑋 ∩𝐻𝑛. mAk
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Recall, a path 𝛼 ∶ [0, 1]→ 𝑋 in a metric space (𝑋, 𝜌) is rectifiable if the limit

inf
𝑛∑

𝑖=1
𝑑(𝛼(𝜉𝑖−1, 𝜉𝑖))

(where the infimum is taken over, for all 𝑛 ∈ ℕ, the set of finite sequences (𝜉0,… , 𝜉𝑛) where 𝜉0 = 0
and 𝜉𝑛 = 1) exists and is finite.

We see that 𝜕𝑋∩𝐻𝑛 is amanifold-with-boundary, and so the connected components of the bound-
ary are path-connected. Further, each pair of points may be joined by a rectifiable path.

5.1.8 Lemma. Let 𝑋 be a closed convex subset of 𝐻𝑛; let 𝑥 and 𝑦 be points in the same component of
𝜕𝑋 ∩𝐻𝑛. Then there is a rectifiable path joining 𝑥 and 𝑦.

Proof. Pick a point 𝑧 in the interior of 𝑋. Let 𝑅𝑥 ∶ ℝ≥0 → 𝐻𝑛 be the ray from 𝑧 through 𝑥 such
that 𝑅𝑥(1) = 𝑥 and lim𝑡→∞ 𝑅𝑥(𝑡) is on 𝜕𝐻𝑛; similarly define a ray 𝑅𝑦 from 𝑧 through 𝑦 such that
𝑅𝑦(1) = 𝑦. Observe now that 𝑅𝑥(37) and 𝑅𝑦(37) lie in𝐻𝑛 ⧵𝑋 and retract to 𝑥 and 𝑦 respectively. Both
of these lie in the same connected open subset of𝐻𝑛 so there is a rectifiable path joining them; since
𝑟 is distance-reducing this path retracts to a rectifiable path in 𝜕𝑋 ∩𝐻𝑛. mAk

Remark. The point of the proof is that it is a standard fact that we may find rectifiable paths in open
path-connected subsets of𝐻𝑛, but in arbitrary non-open path-connected subsets it might be the case
that the paths between two points are wild. (Example?)

Wemay therefore define a metric 𝑑𝑆 on each component 𝑆 of 𝜕𝑋 ∩𝐻𝑛: namely, send (𝑥, 𝑦) to the
infimum of the lengths of rectifiable paths from 𝑥 to 𝑦.

Next we define the notion of ‘open neighbourhood’ which will be useful in the sequel.

5.1.9 Definition. Let 𝑥, 𝑣 be distinct points in 𝐻𝑛 and let 𝜀, 𝛿 > 0. The open shell Sh(𝑥, 𝑣, 𝜀, 𝛿) is
the intersection of

{𝑦 ∈ 𝐻𝑛 ∶ |||𝑑(𝑣, 𝑦) − 𝑑(𝑣, 𝑥)||| < 𝜀}

— that is, the two-sided 𝜀-neighbourhood of the sphere centred at 𝑣 through 𝑥—and the hyperbolic
cone with vertex 𝑣, axis the ray from 𝑣 to 𝑥, and vertex angle 𝛿. We call 𝑥 the centre of the shell, and
𝑣 the vertex of the shell.

5.2 Foliations and laminations
Let Λ be a closed subset of 𝑆𝑛−1, and consider the convex hull h−conv Λ ∩ 𝐻𝑛 (see Fig. 5.3). The
edges of this convex hull are geodesics in 𝐻𝑛 which are eventually parallel and tend to (missing)
points on 𝑆𝑛−1. The ‘flat pieces’ between the edges are curved inwards, and so we obtain a structure
not unlike that of folded—more precisely, pleated—papers. In addition, the patterns look like they
are obtained by gluing layers of wood back to back (the edges being the glue layers and the flat pieces
being the wood panels end-on), and so we call them lamination patterns. In this section, we make
these notions precise.

A pseudogroup on a topological space 𝑋 is a system 𝒢 of homeomorphisms between open sets
of 𝑋 such that

1. {dom𝑓 ∶ 𝑓 ∈ 𝒢} is an open cover of 𝑋;

2. 𝒢 is closed under restriction to open subsets of domains;

3. 𝒢 is closed under compositions whenever they are defined;
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Figure 5.3: The convex hull boundary of a closed subset of 𝑆𝑛−1.

4. if 𝑓 ∶ 𝑈 → 𝑉 is a homeomorphism between 𝑈,𝑉 ⊆ 𝑋 open, and 𝑈 is covered by open sets
{𝑈𝛼} such that for each 𝛼 the restriction 𝑓𝑈𝛼 lies in 𝒢, then 𝑓 itself lies in 𝒢.

(Observe that this is not unlike the definition of a sheaf on 𝑋.)

5.2.1 Definition. If 𝒢 is a pseudogroup onℝ𝑛, then a topological space 𝑋 is a 𝒢-manifold if 𝑋 is a
manifold which admits an atlas whose transition maps lie in 𝒢.

5.2.2 Example. 1. If𝒯𝓇𝒾𝓋𝒾𝒶𝓁 is the set {1𝑈 ∶ 𝑈 open in 𝑋} then an𝒯𝓇𝒾𝓋𝒾𝒶𝓁-manifold is a set of
discrete points.

2. If 𝒯ℴ𝓅 is the set of all homeomorphisms between open sets of ℝ𝑛 then the notion of a 𝒯ℴ𝓅-
manifold is equivalent to the usual definition of topological manifold.

3. If𝒞𝑟 is the set of all homeomorphisms between open sets ofℝ𝑛 which are of class 𝐶𝑟, then we
obtain 𝒞𝑟-manifolds (differentiable manifolds of class 𝐶𝑟); if 𝑟 = ∞ we obtain smooth mani-
folds; and if 𝑟 = 𝜔 (i.e. we allow only analytic maps) then we obtain real analytic manifolds.

4. Let 𝒞ℴ𝓃𝒻 be the set of all homeomorphisms between open sets of ℝ2 which are also biholo-
morphic maps with the induced complex structure obtained by identifying ℝ2 with ℂ in the
usual way; then 𝒞ℴ𝓃𝒻-manifolds are Riemann surfaces.

Writeℝ𝑛 = ℝ𝑛−𝑘 ×ℝ𝑘, and let𝒢 be a pseudogroup generated by diffeomorphisms between open
subsets of ℝ𝑛 with the property that the second 𝑘 components do not depend on the first 𝑘: that is,
elements of 𝒢 are homeomorphisms 𝜙 ∶ ℝ𝑛−𝑘 × ℝ𝑘 ⊇ 𝑈 → 𝑉 ⊆ ℝ𝑛−𝑘 × ℝ𝑘 such that there exist
𝜙1 ∶ 𝑈 → 𝑉 ∩ℝ𝑛−𝑘 and 𝜙2 ∶ 𝑈 ∩ℝ𝑘 → 𝑉 ∩ℝ𝑘 such that

(5.2.3) 𝜙(𝑥, 𝑦) = (𝜙1(𝑥, 𝑦), 𝜙2(𝑦))

for all 𝑥 ∈ ℝ𝑛−𝑘, 𝑦 ∈ ℝ𝑘 (so 𝜙 ‘takes horizontal factors to horizontal factors’). Equivalently, the
Jacobian of 𝜙 always takes block form with the zero matrix in the lower-left quadrant.

A 𝒢-structure on a manifold𝑀 is called a foliation on𝑀. A leaf is the inverse image, for some
𝑦 ∈ ℝ𝑘, of ℝ𝑛−𝑘 × {𝑦} under a 𝒢-chart on𝑀.
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Figure 5.4: The Hopf fibration of 𝑆3. Figure from [21, p. 175].

5.2.4 Example. The trivial dimension-𝑘 foliation of ℝ𝑛 is the 𝒢-structure on ℝ𝑛 such that 𝒢 is the
largest pseudogroup satisfying the foliation conditions. The leaves are the additive cosets of ℝ𝑘 in
ℝ𝑛.

5.2.5 Example. A codimension-1 foliation of the figure 8 knot complement is depicted as Fig. 6.2
above.

5.2.6 Example. The famousHopf fibration is a codimension-1 foliation of the 3-sphere; see Fig. 5.4
and a codimension-2 version at https://www.youtube.com/watch?v=AKotMPGFJYk.

5.2.7 Example. The Reeb foliation is a codimension-1 foliation of the 3-sphere; see Fig. 5.5.

To round off the discussion of foliations, we list some major results in the field.

• Amanifold𝑀 has a codimension-1 foliation iff 𝜒(𝑀) = 0 (Thurston, 1976);

• No foliation of 𝑆3 by surfaces is real analytic (Haefliger, 1958);

• Every codimension-1 foliation of 𝑆3 has a leaf which is a torus (Novikov, 1965).

5.2.8 Definition. A lamination 𝐿 on a manifold 𝑀 is a closed subset 𝐴 ⊆ 𝑀 (the support of 𝐿)
together with a local product structure on 𝐴: that is, there is a family of open sets {𝑈𝑖} of𝑀 which
cover 𝐴, together with charts 𝜙𝑖 ∶ 𝑈𝑖 → ℝ𝑛−𝑘 × ℝ𝑘 for each 𝑖, such that 𝜙𝑖(𝐴 ∩ 𝑈𝑖) = ℝ𝑛−𝑘 × 𝐵
(𝐵 ⊆ ℝ𝑘) for each 𝑖, and such that the transition maps are of the form

(5.2.9) 𝜙𝑖𝜙−1𝑗 (𝑥, 𝑦) = (𝑓𝑖,𝑗(𝑥, 𝑦), 𝑔𝑖,𝑗(𝑦))

for all 𝑖, 𝑗 and for all 𝑥 ∈ ℝ𝑛−𝑘, 𝑦 ∈ 𝐵.

Comparing Eq. (5.2.9) to Eq. (5.2.3), we see that a lamination is, in some sense, a foliation of a
closed subset of𝑀. We define leaves analogously, as ‘horizontal slices’ of 𝐴.

https://www.youtube.com/watch?v=AKotMPGFJYk
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Figure 5.5: The Reeb fibration of 𝑆3. Figure from https://www.ms.u-tokyo.ac.jp/~tsuboi/
showroom/public_html/animations/gif/stereograph40/stereograph4034i.html.

https://www.ms.u-tokyo.ac.jp/~tsuboi/showroom/public_html/animations/gif/stereograph40/stereograph4034i.html
https://www.ms.u-tokyo.ac.jp/~tsuboi/showroom/public_html/animations/gif/stereograph40/stereograph4034i.html
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5.2.10 Example. Let 𝐾 ⊆ 𝑀 be a closed subset of a manifold𝑀 with foliation; then the closure of
the set of leaves of the foliation which intersect with 𝐾 is a lamination on𝑀,

5.2.11 Example. The closure of any submanifold is a lamination with a single leaf.

A geodesic lamination is a lamination on a hyperbolic surface in which each leaf is a geodesic
arc.

5.2.12 Lemma. A geodesic lamination on a surface is precisely a disjoint union of geodesics on the
surface. mAk

5.3 Pleated surfaces
Let 𝑀 be a hyperbolic 3-manifold. A pleated surface in 𝑀 is a complete hyperbolic surface 𝑆 to-
gether with an isometric map 𝑓 ∶ 𝑆 → 𝑀 (to be more precise, the map 𝑓 is isometric onto the
intrinsic metric of the image 𝑓(𝑆), not isometric with respect to the ambient metric of 𝑀 — this is
clearly the property we want, if we think of 𝑓 as a map which ‘folds up’ 𝑆: we wish distances to be
preserved if we walk along 𝑆, but in general the distances if we allow ourselves to move off 𝑓(𝑆) and
through𝑀 will be smaller than the distances we walk if we restrict ourselves to 𝑓(𝑆)) such that every
point 𝑠 ∈ 𝑆 lies in the interior of a geodesic in 𝑆 which is mapped by 𝑓 to a geodesic arc in𝑀, and
such that 𝑓 is homotopically incompressible (that is, 𝑓∗ ∶ 𝜋1(𝑆) → 𝜋1(𝑀) has trivial kernel — the
embedding does not trivialise loops even if we allow deformation through𝑀).

Given such a pleated surface (𝑆, 𝑓), thepleating locus is defined to be the set of points 𝑠 ∈ 𝑆 such
that only a single geodesic through 𝑠 which is mapped to a geodesic arc with respect to the metric of
𝑀. The connected components of the complement of the pleating locus are called the flat pieces of
the pleating.

Recall that a map 𝑓 ∶ 𝑋 → 𝑌 of Riemann manifolds is totally geodesic if, for all geodesics
𝛼 ⊆ 𝑋, the image 𝑓(𝛼) is a geodesic in 𝑌.

The following lemma is geometrically evident.

5.3.1 Lemma. If (𝑆, 𝑓) is a pleated surface in 𝑀, then the pleating locus of the system is a geodesic
lamination in𝑀.

Proof. We shall write 𝑑𝑆 for the intrinsic metric on 𝑆 and 𝑓(𝑆), and 𝑑𝑀 for the metric on𝑀. Hence
𝑑𝑆(𝑥, 𝑦) = 𝑑𝑆(𝑓(𝑥), 𝑓(𝑦)) ≥ 𝑑𝑀(𝑓(𝑥), 𝑓(𝑦)) for all 𝑥, 𝑦 ∈ 𝑆.

Let 𝛾 be the pleating locus of the system. If 𝑥 ∉ 𝛾 then there exist two transverse geodesics
through 𝑥; pick 𝑎 and 𝑏 points on one and 𝑐 and 𝑑 points on the other, such that 𝑎 < 𝑥 < 𝑏 and
𝑐 < 𝑥 < 𝑑 with respect to an orientation of each geodesic and such that the geodesic arcs [𝑎, 𝑏] and
[𝑐, 𝑑] lie in the same flat piece Π as 𝑥. Let 𝜃 be the angle at 𝑥 of the triangle 𝑎𝑥𝑐; then the angle
at 𝑥 of 𝑏𝑥𝑐 is 𝜋 − 𝜃. Thus, in 𝑆, we have the triangle indicated in Fig. 5.6. Since 𝑑𝑀(𝑓(𝑎), 𝑓(𝑥)) =
𝑑𝑆(𝑎, 𝑥), 𝑑𝑀(𝑓(𝑐), 𝑓(𝑥)) = 𝑑𝑆(𝑐, 𝑥), and 𝑑𝑀(𝑓(𝑎), 𝑓(𝑥)) ≤ 𝑑𝑆(𝑎, 𝑥), the angle at 𝑓(𝑥) of the triangle
𝑓(𝑎)𝑓(𝑥)𝑓(𝑐) is at most 𝜃. By a similar argument, the angle at 𝑓(𝑥) of 𝑓(𝑐)𝑓(𝑥)𝑓(𝑏) is at most 𝜋 −
𝜃. But these angles must add to 𝜋, and so both inequalities must in fact be equalities; that is, 𝑓
preserves angles at 𝑥, thus 𝑑𝑀(𝑓(𝑎), 𝑓(𝑥)) in fact equals 𝑑𝑆(𝑎, 𝑥), and so 𝑓 maps the geodesic [𝑎, 𝑐]
to the geodesic [𝑓(𝑎), 𝑓(𝑐)]𝑀 (the subscript denoting that this is a geodesic with respect to the metric
of𝑀): so 𝑓 is totally geodesic in a neighbourhood of 𝑥 in 𝑆; and this neighbourhood must therefore
lie entirely in Π, so Π is open and 𝛾 is closed.

It remains only to show that if 𝑥 ∈ 𝛾 then the (unique, by definition) geodesic arc containing 𝑥
which ismapped to a geodesic in𝑀 by 𝑓 is in fact a complete geodesic. Let 𝛼 be themaximal geodesic
arc containing 𝑥 with the property that 𝑓𝛼 is a geodesic in𝑀; we show that 𝛼 is complete. If not, 𝛼
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Figure 5.6: Action of 𝑓 on flat pieces in the proof of Lemma 5.3.1.

has an endpoint 𝑎; let 𝑏 be a point on 𝛼 on the opposite side of 𝑥 to 𝑎. Observe that 𝑎 ∈ 𝛾 (otherwise,
𝑆⧵𝛾 could not be open) and so there is some geodesic arc containing 𝑎 in its interior which ismapped
by 𝑓 to a geodesic arc in𝑀; say this arc is [𝑐, 𝑑]. Observe that [𝑐, 𝑑] ∩ 𝛼 = {𝑎}, otherwise a portion
of [𝑐, 𝑑] could be glued onto 𝛼 to form a geodesic strictly containing 𝛼. This situation is depicted
in Fig. 5.7. By a very similar argument to the paragraph on flat pieces, applied to the triangles 𝑎𝑐𝑏
and 𝑎𝑑𝑏 in that figure, we see that 𝑓 maps [𝑏, 𝑐] to the geodesic [𝑓(𝑏), 𝑓(𝑐)]𝑀 and maps [𝑏, 𝑑] to
[𝑓(𝑏), 𝑓(𝑑)]𝑀 . Hence 𝑓 acts to preserve geodesics on each side of 𝑎𝑐𝑏 and 𝑎𝑑𝑏; thus in particular 𝑓
preserves the geodesic [𝑐, 𝑑] which contradicts uniqueness of a preserved geodesic through 𝑎. mAk

5.3.2 Example. The geodesics on the 2-torus depicted in Fig. 5.8 form a lamination. If they cover
the whole 2-torus, then the lamination is in fact a foliation.

Figure 5.7: Action of 𝑓 on geodesics in the proof of Lemma 5.3.1.
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Figure 5.8: A geodesic lamination on the 2-torus.

5.4 Roofs, and their lowering

In this section, we prove various results on finite approximations to convex hulls: we follow [18,
sections 1.8 to 1.10].

5.4.1 Lemma. Suppose 𝑃1, 𝑃2, and 𝑃3 are hyperbolic planes without a common point of intersection
that pairwise intersect transversely. Let 𝐶1, 𝐶2, and 𝐶3 be the respective intersections of the planes with
the sphere at infinity. Then, either

1. the 𝐶𝑖 have no common intersection point: in this case, there is a unique circle 𝐶∗ orthogonal to
each of the 𝐶𝑖 which determines a plane 𝑃∗ orthogonal to all the 𝑃𝑖 , and the three lines 𝑃∗ ∩ 𝑃𝑖
determine a triangle in𝑃∗ such that the vertex angles of the triangle are the dihedral angles between
the various 𝑃𝑖; or

2. the 𝐶𝑖 have a common intersection point 𝜁: in this case, if 𝜎 is any horosphere based at 𝜁, then
the three curves 𝜎 ∩ 𝑃𝑖 determine a Euclidean triangle in 𝜎 with vertex angles the dihedral angles
between the various 𝑃𝑖 .

Proof. [18, lemma 1.10.1] mAk

5.5 Pleating properties of the convex hull

Let Λ be a closed subset of 𝑆𝑛−1; for convenience we write 𝑆 for 𝜕 h−conv Λ ∩𝐻𝑛.
Our main result (which is theorem 1.12.1 of [11]) is the following.

5.5.1 Theorem. The boundary 𝑆 is a pleated surface, with pleating locus the set of edges of h−conv Λ∩
𝐻𝑛 (until we have proved that these indeed form a pleating locus, we will call these edges the bending
lines of the surface).

Proof. We show that 𝑆 is a complete hyperbolic surface. We begin by showing that for each 𝑥 ∈ 𝑆
there is an open neighbourhood of 𝑥 isometric to an open set in 𝐻2. If 𝑥 lies in a flat piece of 𝑆, this
is trivial. Assume therefore that 𝑥 lies on a bending line 𝑙 of 𝑆. Let 𝑈 be a shell in 𝐻𝑛 centred at 𝑥;
we show that 𝑈′ ≔ 𝑈 ∩ 𝑆 may be mapped isometrically into𝐻2.

Fix orientations of 𝑙, 𝐻2, and 𝐻3. As noted above we may orient 𝑆 such that the ‘positive’ side
contains the interior of h−conv Λ. Fix also an isometric embedding 𝑔 ∶ 𝑙 → 𝐻2, and let 𝑙′ be the
image of 𝑙 under this embedding with the induced orientation. We will define a map 𝑔 ∶ 𝑈′ → 𝐻2

which will extend this embedding and ‘unfold’ the bending line 𝑙 while preserving orientation.
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Figure 5.9: A bad choice of points for a polygonal approximation.

Definition of 𝑔. Let 𝑦1, 𝑦2 ∈ 𝑙 ∩ 𝑈 be distinct points. Given 𝑧 ∈ 𝑈′, define 𝑔𝑧 to be the unique
point in 𝐻2 which lies on the correct side of 𝑙′ and such that

𝑑(𝑔𝑧, 𝑔𝑦1) = 𝑑𝑆(𝑧, 𝑦1), and𝑑(𝑔𝑧, 𝑔𝑦2) = 𝑑𝑆(𝑧, 𝑦2).

Checking that 𝑔 is an isometry. The proof that 𝑔 is an isometry is technical: the idea is to con-
struct a sequence 𝑆𝑛 of approximations to 𝑆 about 𝑙 which have finitely many facets; letting 𝑔𝑛 be the
embedding constructed similarly to 𝑔 but for 𝑆𝑛 rather than 𝑆, we see that each 𝑔𝑛 is an isometry and
so since 𝑔𝑛 → 𝑔 we have that 𝑔 is an isometry. (One additional technical point is that the intrinsic
metric is equivalent to the restriction of the 𝐻3 metric, so this argument works.)

Checking that 𝑆 is complete. If (𝑥𝑛) is Cauchy with respect to the metric 𝑑𝑆 , then (𝑥𝑛) is also
Cauchy with respect to the hyperbolic metric in𝐻3 and hence converges; since 𝑆 is closed in𝐻3, the
limit of (𝑥𝑛)with respect to the hyperbolic metric lies in 𝑆; since the hyperbolic and intrinsic metrics
are equivalent, we are done. mAk

We place a transverse measure on the pleating locus of 𝑆: in this context, a transversemeasure
on the pleating locus is a regular measure (see Appendix B) defined on the set of embedded intervals
in 𝑆 which are transverse to every bending line that they meet.

For 𝑥 ∈ 𝑆, let 𝜋(𝑥) be the set of oriented supporting hyperplanes at 𝑥, and let

𝑍(𝑆) = {(𝑥, 𝑃(𝑥)) ∶ 𝑥 ∈ 𝑆, 𝑃(𝑥) ∈ 𝜋(𝑥)};

there is a natural topology on 𝑍(𝑆), namely that induced as a subspace of𝐻3 × 𝔾2(𝐻3).
Any path in 𝑍(𝑆) projcts to a path in 𝑆; conversely, if 𝜔 is a path on 𝑆 then we may extend it to

a path in 𝑍(𝑆) (namely, lift 𝑥 ∈ 𝜔 to a path joining (𝑥, 𝑃) to (𝑥, 𝑄) where 𝑃 and 𝑄 are the extreme
supporting hyperplanes at 𝑥).

Suppose that 𝜔 ∶ [0, 1] → 𝑍 is such a path; a polygonal approximation to 𝜔 is a choice of
a partition 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 1 such that, if 𝑃𝑖 denotes the second component of 𝜔(𝑡𝑖),
𝑃𝑖 ∩ 𝑃𝑖+1 ≠ ∅ for each 𝑖 (this to avoid badly-behaved approximations like that of Fig. 5.9). We denote
such an approximation by the sequence (𝜔(𝑡𝑖) = (𝑥𝑖 , 𝑃𝑖))𝑛𝑖=0 of pairs, so a polygonal approximation
to a curve in 𝑆 is precisely a choice of finitely many points on the curve and a finite non-empty set of
supporting hyperplanes at 𝑥𝑖 for each 𝑖 such that each point of the curve has a roof over it.

For each 𝑖, let 𝜃𝑖 be the absolute value of the angle between the outward normals of 𝑃𝑖−1 and 𝑃𝑖 .
Then the bending measure 𝛽(𝜔) is defined to be

𝛽(𝜔) ≔ inf
𝑛∑

𝑖=1
𝜃𝑖

where the infimum is taken over all polygonal approximations to 𝜔.
That 𝛽 is indeed a measure is proved in [18, theorem 1.11.3]:
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5.5.2 Lemma. The bending measure is indeed a transverse measure. mAk



Chapter 6

3-manifolds

In this chapter, a Kleinian group is a discrete subgroup of Isom+(𝐻𝑛).

6.1 Homotopy
We recall some standard facts from algebraic topology, see for instance [33, chapter 12].

Let 𝑋 be a topological space; a continuous map 𝑞 ∶ 𝑋̂ → 𝑋 is called a covering map if 𝑋̂ is
connected and locally path connected, and if for all 𝑥 ∈ 𝑋 there exists a neighbourhood𝑈 of 𝑥 such
that 𝑞−1(𝑈) is a disjoint union of connected open subsets of 𝑋̂ called the sheets of the covering over
𝑈, with the property that each sheet is homeomorphically mapped onto 𝑈 by 𝑞.

Given such a covering map, an automorphism or deck transformation of 𝑞 is a homeomor-
phism 𝑓 ∶ 𝑋̂ → 𝑋̂ such that 𝑞𝑓 = 𝑞. The set of all automorphisms under composition forms a group,
Aut𝑞 𝑋̂.

A covering map 𝑞 ∶ 𝑋̂ → 𝑋 is normal or regular if the induced subgroup 𝑞∗𝜋1(𝑋̂, 𝑥0) is normal
in 𝜋1(𝑋, 𝑞(𝑥0)) for some 𝑥0. This is equivalent to the subgroup being normal for all choices of 𝑥0
([33, proposition 11.35]). The map 𝑞 is said to have the homotopy lifting property if for all maps
𝑓 ∶ 𝑌 → 𝑋̂ and for all homotopies 𝑓𝑡 of 𝑓 = 𝜋𝑓 in 𝑋 there exists a homotopy 𝑓𝑡 of 𝑓 in 𝑋̂ lifting the
homotopy 𝑓𝑡.

An action of a group Γ on a space 𝑋 by homeomorphisms is called effective if the homeomor-
phism 𝑓𝛾 ∶ 𝑋 → 𝑋 for 𝛾 ∈ Γ defined by 𝑓𝛾(𝑥) = 𝑔𝑥 is the identity iff 𝛾 = 1; i.e. if 𝛾 = 1 ⟺
∀𝑥∈𝑋𝛾𝑥 = 𝑥.

6.1.1 Theorem. Let𝑋 be a locally path-connected space and letΓ act on𝑋 effectively. Then the quotient
𝜋 ∶ 𝑋 → 𝑋∕Γ is a coveringmap iff the action is freely discontinuous. In this case,𝜋 is a normal covering
map and Aut𝜋(𝑋) = Γ. mAk

Remark. Observe that in the surface case we studied previously, this theorem applies only to the
quotient ◦Ω∕Γ and not to the more general case ℛΓ = Ω∕Γ; the problem is that in the latter case we
obtain branch points and so we get a branched cover and an orbifold.

We now apply this theory to some examples, following [43, section 8.1].

6.1.2 Lemma. If Γ is a non-elementary Kleinian group and Γ′ ≤ Γ is a nontrivial normal subgroup,
then Λ(Γ′) = Λ(Γ).

Proof. Observe thatΓ′ is infinite (suppose not; by normality, Γ leaves invariantFix𝐻𝑛 (Γ), in particular
since Γ′ is finite it is of elliptic type and so Fix𝐻𝑛 (Γ) is non-empty and finite, thus Γ has a finite orbit
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Figure 6.1: A figure 8 knot diagram.

in𝐻𝑛 and so is elementary which contradicts the hypotheses). Hence by compactness of𝐻𝑛 the limit
set Λ(Γ′) is nontrivial. By normality, 𝛾Λ(Γ′) ⊆ Λ(Γ′), and hence by part 2 of Theorem 3.3.21 we have
Λ(Γ) ⊆ Λ(Γ′). The opposite inclusion is trivial. mAk

6.1.3 Example. Let𝑀 be a hyperbolic surface. Then 𝜋1(𝑀) is a group of isometries of a plane in𝐻3:
indeed, by the Klein-Poincaré theorem (Theorem 4.1.7) we have that𝑀 ≃ 𝑀̂∕Γ for some Fuchsian
group Γ and by Theorem 6.1.1 we have Γ ≃ 𝜋1(𝑀). In this case, 𝜋1(𝑀) has a limit set contained in a
circle (it is Fuchsian).

6.1.4 Example. If𝑀 is a closed hyperbolic 3-manifold, then 𝜋1(𝑀) is a Kleinian group with limit set
ℂ̂. This will follow from the fact whichwe shall prove later (Corollary 6.2.7) that, for every hyperbolic
3-manifold𝑀,𝑀 ≃ 𝐻3∕Γ for someKleinian group Γ, and 𝜕𝑀 ≃ Ω(Γ)∕Γ; for the latter set to be empty
we must have Ω(Γ) = ∅ and thus Λ(Γ) = ℂ̂.

Suppose that𝑀 is closed and fibred over the circle (i.e. there exists 𝑞 ∶ 𝑀 → 𝑆1 a covering map
with the homotopy lifting property). Intuitively, this means that 𝑀 may be spanned by a union of
2-dimensional surfaces parameterised continuously by a point on the circle. In this case, the funda-
mental group of the fibres is a normal subgroup of 𝜋1(𝑀) (why? does this follow from the algebraic
topology?) and so by Lemma 6.1.2 has limit set equal to that of 𝜋1(𝑀); by the previous paragraph,
this is ℂ̂ = 𝑆2.

6.1.5 Example. Let 𝑘 be the figure 8 knot — that is, the knot with diagram depicted in Fig. 6.1 —
and let𝑀 = ℝ̂3 ⧵ 𝑘. We find, using standard techniques, that

𝜋1(𝑀) = ⟨𝐴, 𝐵 ∶ 𝐴𝐵𝐴−1𝐵𝐴 = 𝐵𝐴𝐵−1𝐴𝐵⟩

(see, e.g., [9, example 3.8]). This manifold fibres over 𝑆1: the fibres are the Seifert surfaces of the
knot (see Fig. 6.2), which may be shown to have genus 1 (though this is not intuitively clear, see [1])
and thus by standard surface theory each fibre is a punctured torus, 𝐹. A computation shows that
𝜋1(𝐹) = ⟨𝐴𝐵−1, 𝐴−1𝐵⟩ (see, e.g. [9, theorem 4.6]). By the previous example, the limit set is 𝑆2.

6.2 Developing maps and holonomy
We follow [44, section 3.4] and [38, section 8.4].

Let 𝑋 be a connected real analytic manifold (that is, 𝑋 is an 𝒞𝜔-manifold as described in Exam-
ple 5.2.2), let 𝐺 be a group of real analytic diffeomorphisms on 𝑋, and let𝑀 be a (𝐺,𝑋)-manifold.

Fix a point 𝑥0 ∈ 𝑀, and let 𝛾 ∶ [0, 1]→ 𝑀 be a curve in𝑀 with 𝛾(0) = 𝑥0. The image of an initial
segment of 𝛾may be lifted to𝑋 via any chart around 𝑥0; our goal is the ‘extension’ of this lifting along
the length of 𝑋. To do this, we will pick a chain of charts (𝑈0, 𝜙0),… , (𝑈𝑛−1, 𝜙𝑛−1) along 𝛾 and then
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Figure 6.2: A fibration of the knot complement of the figure 8 knot. Figure from [21, p. 159].

‘adjust’ each so that their images in𝑋match up (Fig. 6.3a). We will need to do a bit of work to ensure
this is well-defined.

Since the image of 𝛾 is compact, there exists a partition 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 1 of [0, 1] such
that, for each 0 ≤ 𝑖 < 𝑛, the image 𝛾[𝑡𝑖 , 𝑡𝑖+1] lies within a single chart, (𝑈𝑖 , 𝜙𝑖). For each such 𝑖 there
is an element 𝑔𝑖 ∈ 𝐺 which locally agrees with the transition map

𝜙𝑖𝜙−1𝑖+1 ∶ 𝜙𝑖+1(𝑈𝑖+1 ∩𝑈𝑖)→ 𝜙𝑖(𝑈𝑖+1 ∩𝑈𝑖);

as usual, in what follows we will identify the transition maps and the group elements whenever we
are working locally in a chart.

Observe that 𝜙𝑖𝛾↾[𝑡𝑖 ,𝑡𝑖+1] and 𝑔𝑖𝜙𝑖+1𝛾↾[𝑡𝑖+1,𝑡𝑖+2] are curves in 𝑋, and that they agree at 𝑡𝑖+1:

𝑔𝑖𝜙𝑖+1𝛾↾[𝑡𝑖+1,𝑡𝑖+2](𝑡𝑖+1) = 𝜙𝑖𝜙−1𝑖+1𝜙𝑖+1𝛾↾[𝑡𝑖+1,𝑡𝑖+2](𝑡𝑖+1) = 𝜙𝑖𝛾↾[𝑡𝑖+1,𝑡𝑖+2](𝑡𝑖+1).

In particular, we may glue these curves together in 𝑋 to form a continuous curve 𝛾̂ ∶ [0, 1] → 𝑋 by
the rule

𝛾̂(𝑡) ≔

⎧
⎪

⎨
⎪
⎩

𝜙0𝛾↾[𝑡0,𝑡1] 𝑡 ∈ [𝑡0, 𝑡1]
𝑔0𝜙1𝛾↾[𝑡1,𝑡2] 𝑡 ∈ [𝑡1, 𝑡2]
⋮
𝑔0⋯ 𝑔𝑛−2𝜙𝑛−1𝛾↾[𝑡𝑛−1,𝑡𝑛] 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛].

The curve 𝛾̂ is called the analytic continuation of 𝜙0𝛾 along 𝛾, and the chart 𝑔0⋯ 𝑔𝑛−2𝜙𝑛−1 is
called the analytic continuation of 𝜙0 along 𝛾; a priori the result depends on the choice of charts 𝜙𝑖
about each segment of the partition of [0, 1], and on the choice of the partition (𝑡𝑖). The following
lemmata show that there is no such dependence.

6.2.1 Lemma. If 𝛾 ∶ [0, 1]→ 𝑀 is a curve in𝑀 with 𝛾(0) = 𝑥0, a partition 0 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝑛 = 1
of [0, 1] is chosen as above, and for each 𝑖 there exists a pair of charts (𝑈𝑖 , 𝜙𝑖) and (𝑉𝑖 , 𝜓𝑖)with𝑈0 = 𝑉0
and 𝜙0 = 𝜓0 such that 𝛾[𝑡𝑖 , 𝑡𝑖+1] is contained in both 𝜙𝑖(𝑈𝑖) and 𝜓𝑖(𝑉𝑖), and 𝛾̂𝜙 and 𝛾̂𝜓 are the analytic
continuations obtained with respect to the respective charts, then 𝛾̂𝜙 = 𝛾̂𝜓 .
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Proof. For all 𝑖, let 𝑔𝑖 ≔ 𝜙𝑖𝜙−1𝑖+1 and let ℎ𝑖 ≔ 𝜓𝑖𝜓−1𝑖+1. Given 𝑖, both 𝑈𝑖 and 𝑉𝑖 contain 𝛾[𝑡𝑖 , 𝑡𝑖+1] and
hence it suffices to show that, on 𝑈𝑖 ∩ 𝑉𝑖 ,

𝑔0⋯ 𝑔𝑖−1𝜙𝑖 = ℎ0⋯ℎ𝑖−1𝜓𝑖 .

We proceed by induction on 𝑖. The case 𝑖 = 0 is by hypothesis; suppose that 𝑔0⋯ 𝑔𝑖−2𝜙𝑖−1 =
ℎ0⋯ℎ𝑖−2𝜓𝑖−1.. The inductive step will follow from rigidity of real analytic functions, which we state
as a lemma:

Lemma. If 𝑓, 𝑔 ∶ 𝑈 → ℝ𝑚 (𝑈 open in ℝ𝑛) are analytic and agree on an open subset of 𝑈, then they
agree everywhere. mAk

Indeed, let 𝑓𝑖 ∈ 𝐺 be the group element locally agreeing on 𝜙𝑖(𝑈𝑖 ∩ 𝑉𝑖) with the ‘automorphic
transition’ 𝜓𝑖𝜙−1𝑖 . By inductive assumption, this transition map equals

𝜓𝑖(ℎ0⋯ℎ𝑖−2𝜓𝑖−1)−1(𝑔0⋯ 𝑔𝑖−2𝜙𝑖−1)𝜙−1𝑖 = 𝜓𝑖𝜓−1𝑖−1ℎ
−1
𝑖−2⋯ℎ−10 𝑔0⋯ 𝑔𝑖−2𝜙𝑖−1𝜙𝑖

on 𝜙𝑖(𝑈𝑖−1 ∩𝑈𝑖 ∩ 𝑉𝑖−1 ∩ 𝑉𝑖). On the same set we have the equality

(𝜓𝑖𝜓−1𝑖−1)(ℎ
−1
𝑖−1⋯ℎ−10 )(𝑔0⋯ 𝑔𝑖−1)(𝜙𝑖−1𝜙−1𝑖 ) = ℎ−1𝑖−1⋯ℎ−10 𝑔0⋯ 𝑔𝑖−1

by definition of 𝑔𝑖−1 and ℎ𝑖−1. In particular, 𝑓𝑖 locally agrees with

𝜓𝑖𝜓−1𝑖−1ℎ
−1
𝑖−2⋯ℎ−10 𝑔0⋯ 𝑔𝑖−2𝜙𝑖−1𝜙𝑖 = ℎ−1𝑖−1⋯ℎ−10 𝑔0⋯ 𝑔𝑖−1.

Hence by the internal lemma above, 𝑓𝑖 = ℎ−1𝑖 ⋯ℎ−10 𝑔0⋯ 𝑔𝑖 on 𝑈𝑖 ∩ 𝑉𝑖 . In particular, in 𝑈𝑖 ∩ 𝑉𝑖 we
have

𝑔0⋯ 𝑔𝑖−1𝜙𝑖 = (ℎ0⋯ℎ𝑖−1)(ℎ0⋯ℎ𝑖−1)−1𝑔0⋯ 𝑔𝑖−1𝜙𝑖 = (ℎ0⋯ℎ𝑖−1)𝑓𝑖𝜙𝑖 = (ℎ0⋯ℎ𝑖−1)𝜓𝑖

as was to be shown. mAk

6.2.2 Lemma. If 𝛾 ∶ [0, 1] → 𝑀 is a curve in𝑀 with 𝛾(0) = 𝑥0, and partitions 0 = 𝑡0 < 𝑡1 < ⋯ <
𝑡𝑛 = 1 and 0 = 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑛 = 1 of [0, 1] are chosen as above, and 𝛾̂𝑡 and 𝛾̂𝑠 are the analytic
continuations obtained with respect to the respective partitions, then 𝛾̂𝑠 = 𝛾̂𝑡 .

Proof. Pass to the partition {𝑡𝑖} ∪ {𝑠𝑖}; this partition must give an analytic continuation equal to both
𝛾̂𝑡 and 𝛾̂𝑠. mAk

Finally, we show that analytic continuation is independent of homotopy.

6.2.3 Theorem. Let 𝛾, 𝜂 ∶ [0, 1] → 𝑀 be curves in𝑀 such that 𝛾(0) = 𝜂(0) and 𝛾(1) = 𝜂(1). If 𝛾 and
𝜂 are homotopic with fixed endpoints in𝑀, then 𝛾̂ and 𝜂 are homotopic with fixed endpoints in 𝑋.

Proof. mAk

Recall that we may view the universal cover 𝑀̃ of the manifold 𝑀 as the quotient of the space
of all curves 𝛾 ∶ [0, 1] → 𝑀 with 𝛾(0) = 𝑥0 (where 𝑥0 is a fixed basepoint on 𝑀) by homotopy
equivalence with fixed endpoints; the projection of a homotopy class [𝛾] is 𝜋([𝛾]) ≔ 𝛾(1).

For fixed basepoint 𝑥0 and fixed chart 𝜙0 about 𝑥0, the developing map is the map 𝐷 ∶ 𝑀̃ → 𝑋
which, around each [𝛾] ∈ 𝑀̃, agrees locally with the germ of the analytic continuation of 𝜙0 along 𝛾.
This is locally a (𝐺,𝑋)-diffeomorphism.
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(a) Charts along a curve. (b) A curve on a torus and its analytic continuation in ℝ2.

Figure 6.3: Analytic continuation along a curve.

Figure 6.4: Euclidean torus development (Example 6.2.4).

Figure 6.5: The torus as an affine quotient of ℝ2 ⧵ {0}.
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Figure 6.6: Affine torus development (Example 6.2.5). Figure from [44, figure 3.17].

6.2.4 Example. Consider the quotientℝ2∕ΓwhereΓ is the group of affine transformations generated
by (𝑥, 𝑦)↦ (𝑥+1, 𝑦) and (𝑥, 𝑦)↦ (𝑥, 𝑦 +1).This quotient is homeomorphic to the torus 𝑇 (Fig. 6.4)
and so 𝑇 may be given the structure of an (Isom(ℝ2),ℝ2)-manifold. Picking a point 𝑥0 ∈ ℝ2 (which
is the universal cover for 𝑇) we see that the developing map sends the coordinate rectangles inℝ2 to
themselves: the development is the standard rectangular tiling of ℝ2.

6.2.5 Example. Consider the quotient (ℝ2 ⧵ {0})∕Γ where Γ is the group of affine transformations
generated by 𝑥 ↦ 2𝑥. This quotient is homeomorphic to the torus 𝑇 (Fig. 6.5) and so 𝑇may be given
the structure of an (Af f (ℝ2),ℝ2)-manifold. Picking a point 𝑥0 ∈ ℝ2 (which is the universal cover for
𝑇) and noting that the universal covering map 𝜋 ∶ ℝ2 → ℝ2 ⧵ {0} is given by 𝑥 + 𝑦𝑖 ↦ exp(𝑥 + 𝑦𝑖),
we see that the developing map sends the coordinate rectangles in ℝ2 to the ‘logarithmic spiral’ of
Fig. 6.6.

Let 𝛼 now be a loop on 𝑀, with basepoint 𝑥0. Pick 𝜙0 a chart around 𝑥0; we may use analytic
continuation to find a second chart 𝜙𝛼0 about 𝑥0. Since 𝜙

𝛼
0 and 𝜙0 are compatible charts, there is an

element 𝑔𝛼 ∈ 𝐺 with the transition property 𝜙𝛼0 = 𝑔𝛼𝜙0. If 𝑇𝛼 ∶ 𝜋1(𝑀,𝑥0) → 𝜋1(𝑀,𝑥0) is the map
𝛽 ↦ 𝛼𝛽 then we have a commutative square 𝐷𝑇𝛼 = 𝑔𝛼𝐷.

We now have a homomorphism 𝐻 ∶ 𝜋1(𝑀) → 𝐺 sending 𝛼 ↦ 𝑔𝛼; this is the holonomy map
of𝑀 (which depends on 𝑥0, but only up to conjugacy in 𝐺). The image 𝐻(𝜋1(𝑀)) is the holonomy
group.

We say that 𝑀 is a complete (𝐺,𝑋)-manifold if the developing map is a covering map. If 𝑀 is
complete and 𝑋 is simply connected, then the map 𝐷 sets up an identification 𝑀̃ = 𝑋; in fact:

6.2.6 Theorem. If𝐺 is a group of analytic diffeomorphisms on a simply connected space𝑋, and if𝑀 is
a complete (𝐺,𝑋)-manifold, then there is a canonical (up to𝐺-translation) identification𝑀 ≃(𝐺,𝑋)-diffeo.
𝑋∕Γ, where Γ is the holonomy group of𝑀.

Proof. Ratcliffe 8.5.9 mAk

6.2.7 Corollary. Let𝑀 be a complete hyperbolic manifold; then𝑀 ≃hyp. diffeo. 𝑋∕Γ for some Kleinian
group Γ. mAk
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Remark. The above theory can be extended to orbifolds: the analogen of Theorem 6.2.6 is [38, theo-
rem 13.3.10].

6.3 Hyperbolic convexity
We follow [43, section 8.3]

6.3.1 Definition. A complete hyperbolic manifold with boundary𝑀 is convex if each path in𝑀 is
homotopic to a geodesic arc.

6.3.2 Example. For submanifolds of 𝐻𝑛, this is equivalent to the usual definition of convexity.

6.3.3 Proposition. The manifold𝑀 is convex iff the developing map 𝐷 ∶ 𝑀̃ → 𝐻𝑛 is a homeomor-
phism onto a convex subset of𝐻𝑛.

Proof. Suppose that 𝐷(𝑀̃) is convex. If 𝛼 is a path in𝑀, then 𝛼 lifts to a path 𝛼̃ in 𝑀̃; by convexity of
𝐷(𝑀̃) ≃ 𝑀̃, 𝛼̃ is homotopic to a geodesic arc in 𝑀̃; then the projection of this arc is a geodesic arc in
𝑀 homotopic to 𝛼.

Conversely, suppose that𝑀 is convex. Recall that 𝐷 is a local homeomorphism, so it remains to
show that 𝐷 is injective and that 𝐷(𝑀̃) is convex. Let 𝑥, 𝑦 ∈ 𝑀̃. There exists a path joining 𝜋𝑥 and
𝜋𝑦 in𝑀 which (by convexity) is homotopic to a geodesic arc; by the lifting property; this path lifts to
a geodesic in 𝑀̃ joining 𝑥 and 𝑦; and𝐷 sends distinct endpoints of a geodesic to distinct points in𝐻𝑛.
Finally suppose 𝛼 is a path in 𝐷(𝑀̃); then there is a lift of 𝛼 in 𝑀̃ which is homotopic to a geodesic;
and the image of this geodesic under 𝐷 remains a geodesic. mAk

We say that𝑀 is locally convex if each 𝑥 ∈ 𝑀 has a neighbourhood isometric to a convex subset
of𝐻𝑛. Clearly convexity implies local convexity. The converse is also true, but is less trivial:

6.3.4 Theorem. If𝑀 is locally convex, then𝑀 is convex.

Proof. Omitted, see [43, pages 8-10 and 8-11], or [10, corollary I.1.3.7]. mAk

Hence, if Γ is Kleinian, the quotient 𝐻𝑛∕Γ is a

• complete

• convex

• hyperbolic

• 3-manifold

• with non-empty boundary.

Given𝑀 a convex manifold, define the convex core𝐻(𝑀) to be the intersection of the subman-
ifolds 𝑁 ⊆ 𝑀 such that the canonical map 𝜋1(𝑁) → 𝜋1(𝑀) is an isomorphism. This is canonically
identified with (𝐻Λ(𝜋1(𝑀)))∕𝜋1(𝑀) (see also [38, p. 634]).

6.3.5 Proposition. If𝑀 is a compact convex hyperbolic manifold, then there exists 𝜖 > 0 such that any
continuous deformation of𝑀 within an 𝜖-neighbourhood of𝑀 can be enlarged in a small neighbour-
hood to give a convex hyperbolic manifold homeomorphic to𝑀.

Proof. Omitted, see [43, proposition 8.3.3], or [10, section I.2.5]. mAk

Amanifold is strictly convex if every geodesic arc in𝑀 has interior a subset of int𝑀.
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6.3.6 Proposition. Let𝑀1 and𝑀2 be strictly convex manifolds, and let 𝜙 ∶ 𝑀1 → 𝑀2 be a homotopy
equivaence which is a diffeomorphism on 𝜕𝑀1. Then there exists a quasi-conformal homeomorphism
𝑓 ∶ 𝐵𝑛 → 𝐵𝑛 conjugating 𝜋1𝑀1 to 𝜋1𝑀2.

Proof. Omitted, see [43, proposition 8.3.4]. mAk

6.3.7 Definition. Now let Γ be an arbitrary Kleinian group, acting naturally on𝐻𝑛. We define

1. 𝑀Γ ≔ (h−conv Λ(Γ))∕Γ (the convex hull quotient manifold);

2. 𝑁Γ ≔ 𝐻𝑛∕Γ (the complete hyperbolic manifold with boundary);

3. 𝑂Γ ≔ (𝐻𝑛 ∪ Ω(Γ))∕Γ (theKleinian manifold);

Let𝑊Γ ⊆ ℙ𝑛 be the set of points dual to planes in 𝐻𝑛 which have intersection with 𝑆𝑚−1∞ con-
tained in Ω(Γ).

4 𝑃Γ ≔ (𝐻𝑛 ∪ Ω(Γ) ∪𝑊Γ)∕Γ (the completed Kleinian manifold).

Observe that 𝐻(𝑁Γ) = 𝑀Γ ⊆ 𝑁Γ ⊆ 𝑂Γ ⊆ 𝑃Γ; that𝑀Γ, 𝑁Γ, 𝑂Γ are homotopically equivalent; that
𝑀Γ ≃homeo. 𝑂Γ except in degenerate cases; and that 𝑁Γ = int𝑂Γ.

6.4 The geometry of h−conv Λ(Γ)
We follow [43, section 8.5].

If𝐾 ⊆ 𝑆𝑛−1∞ is closed, then h−conv 𝐾 is convex but each point on 𝜕 h−conv 𝐾 lies on a hyperbolic
geodesic segment in 𝜕 h−conv 𝐾. Thus, 𝜕 h−conv 𝐾 develops to a hyperbolic plane. If Γ is torsion
free then the hyperbolic structure projects well:

6.4.1 Proposition. If Γ is a torsion free Kleinian group, then 𝜕𝑀Γ is a hyperbolic surface. mAk

Observe that 𝜕𝑀Γ is not flat (=is not a hyperbolic plane). Let 𝛾 ⊆ 𝜕𝑀Γ be the set of points not in
the interior of a flat region of𝑀Γ; we call 𝛾 the bending locus. Some properties:

• For all 𝑥 ∈ 𝛾, there exists some 𝑔𝑥 a geodesic on 𝜕𝑀Γ through 𝑥 (Fig. 6.7).

• 𝛾 is closed.

• If the area of 𝜕𝑀Γ is finite, then 𝛾 is compact.

This places a lamination structure on 𝜕𝑀Γ: the bending locus 𝛾 is the support of a geodesic lam-
ination.

6.4.2 Theorem. The set 𝛾 is not the entirety of 𝑆 ≔ 𝜕𝑀Γ (in fact, it is measure 0).

Proof. Observe that 𝑆⧵𝛾 is a union of surfaces {𝑆𝑖} bounded by closed and/or infinite geodesics; each
of these can be doubled along the boundary to a complete hyperbolic surface. The area of each 𝑆𝑖 is
bounded below by 𝜋— this follows from the Gauss-Bonnet theorem ([38, theorems 9.3.1 and 9.3.2]).
Indeed, a complete manifold 𝑀 (like the doubled surfaces) satisfies 𝜅 area(𝑀) = 2𝜋𝜒(𝑀). In this
case, 𝜅 = −1 and 𝜒(𝑀) < 0, so area(𝑀) ≥ 2𝜋. Since we doubled the 𝑆𝑖 to obtain each𝑀, we have
area(𝑆𝑖) ≥ 𝜋 for all 𝑖.

Thus the number of components of 𝑆 ⧵ 𝛾 is bounded above by 2|||𝜒(𝑆 ⧵ 𝛾)|||:

2𝜋|||𝜒(𝑆 ⧵ 𝛾)||| = area(𝑆 ⧵ 𝛾) =
∑

𝑖
area(𝑆𝑖) ≥ 𝜋(number of components of 𝑆 ⧵ 𝛾);

We use the following lemma for a surface 𝑆 with geodesic lamination supported on a set 𝛾:
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Figure 6.7: The pleated boundary of a convex hull quotient.

Lemma. 𝜒(𝑆) = 1
2
𝜒(𝑆 − 𝛾 doubled).

But again from Gauss-Bonnet, 𝜒(𝑆) = − area(𝑆)∕2𝜋 and 𝜒(𝑆 ⧵ 𝛾) = − area(𝑆 ⧵ 𝛾 doubled)∕2𝜋 =
−area(𝑆 ⧵ 𝛾)∕𝜋; thus substituting into the lemma we have −area(𝑆)∕2𝜋 = −area(𝑆 ⧵ 𝛾)∕2𝜋, so the
measure of 𝛾 is 0. mAk
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Chapter 7

Geometrically finite groups

For this chapter, see [34, chapter VI], [38, chapter 12].
Recall that we defined 3-manifolds related to a Kleinian group in the previous chapter. We wish

to restrict further to groups with ‘finite tiling’ actions; that is, each tile meets only finitely many
others. More precisely, we wish the fundamental domains to be the interior of a shape made up of
only finitely many hyperbolic line segments.

7.1 Fundamental polyhedra

7.1.1 Definition. Let 𝐺 be Kleinian. An open polyhedron𝐷 ⊆ 𝐻3 (i.e. the intersection of countably
many hyperbolic open half-spaces {𝑈𝑖}𝑖∈ℕ) is a fundamental polyhedron for 𝐷 if the following
criteria hold:

1. For every 𝐾 ⊆ 𝐻3 compact, only finitely many of the 𝜕𝑈𝑖 meet 𝐾;

2. For every 𝑔 ∈ 𝐺 nontrivial, 𝑔(𝐷) ∩ 𝐷 = ∅ ;

3. For every 𝑥 ∈ 𝐻3, there is a 𝑔 ∈ 𝐺 with 𝑔(𝑥) ∈ 𝐷;

4. For every side 𝑠 of 𝐷 there is a side 𝑠′ of 𝐷 and an element 𝑔𝑠 ∈ 𝐺 with 𝑔𝑠(𝑠) = 𝑠′; further,
(𝑠′)′ = 𝑠 and 𝑔𝑠′ = 𝑔−1𝑠 .

5. Any compact 𝐾 ⊆ 𝐻3 meets only finitely many 𝐺-translates of 𝐷.

In analogy with the dimension 2 case we shall use the words facet and side interchangeably for
fundamental polyhedra.

Remark. The definition easily generalises for 𝑛 > 3 to fundamental polytopes, and the following
proposition also holds with minimal change in that case.

7.1.2 Proposition. Let 𝐷 be a fundamental polyhedron for a Kleinian group 𝐺. Then the interior 𝐵 of
𝐷 ∩ 𝜕𝐻3 (where 𝐷 denotes the closure in𝐻3) is a fundamental domain for 𝐺.

Proof. We verify the conditions of Definition 4.2.1. In the following, diam𝐴 is the Euclidean diame-
ter of some set𝐴 in the ball model. Observe that the proof of part 3 of the definition depends on part
5, so we prove them in that order below.
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1. Suppose there are two elements of 𝐵 equivalent under 𝑔 ∈ 𝐺; then by continuity of the group
action, 𝑔𝐷 ∩ 𝐷 ≠ ∅, which is a contradiction unless 𝑔 = 1. This shows that 𝐵 is a 𝐺-packing.

2. If 𝑧 ∈ Ω(𝐺), then choose a sequence of points (𝑥𝑛) in 𝐻3 such that 𝑥𝑛 → 𝑧. For each 𝑛, there
is some 𝑔𝑛 ∈ 𝐺 such that 𝑔𝑛𝑥𝑛 ∈ 𝐷; i.e. 𝑥𝑛 ∈ 𝑔−1𝑛 𝐷. The sequence (𝑔𝑚) must contain only
finitely many distinct elements, otherwise diam 𝑔−1𝑛 𝐷 → 0 by Lemma 3.2.2 and so 𝑧 is a limit
point of the orbit of any point in 𝐷, contradicting that 𝑧 ∈ Ω via Theorem 3.3.27. Hence 𝑥𝑛 is
eventually 𝑧 and 𝑧 ∈ 𝑔−1𝑛 (𝐷) for some 𝑔𝑛 ∈ 𝐺.

5. Let (𝑠𝑛) be a sequence of sides of 𝐷; for each 𝑛, let 𝑃𝑛 be the supporting hyperplane for 𝑠𝑛.
Observe that diam𝑃𝑛 → 0 since otherwise infinitelymany of the 𝑃𝑛 wouldmeet some compact
subset of𝐻3. Hence the diameter of the sides 𝑠𝑛 goes to zero.

3 and 4. The sides of 𝐵 are the boundaries of the facets of 𝐷, and the side-pairing transformations are
the obvious ones. It remains to show that if 𝑥 ∈ 𝐵 does not lie on a side then 𝑥 is a limit point:
suppose 𝑥 ∈ 𝐵 does not lie on a side, then there is a sequence of facets (𝑓𝑛) of 𝐷 accumulating
at 𝑥 (it lies in the closure of a set of points lying on sides) and hence there is a sequence of
side-pairing transformations (𝑔𝑛) such that for all 𝑧 ∈ 𝐵, 𝑔𝑛(𝑧) → 𝑥 (indeed, let 𝑔𝑛 be the side
pairing transformation to 𝑠𝑛 for each 𝑛, where 𝑠𝑛 is the side of 𝐵 corresponding to 𝑔𝑛; since
diam 𝑠𝑛 → 0, diam 𝑔𝑛𝐵 → 0 and so |||𝑔𝑛𝑧 − 𝑥|||→ 0).

6. Follows directly from (5) in the definition of a fundamental polyhedron.

mAk

Suppose 𝑥0 ∈ 𝐻3 is fixed by no nontrivial element of 𝐺. For every 𝑔 ∈ 𝐺 nontrivial, the perpen-
dicular bisector of the line joining 𝑥0 to 𝑔(𝑥0) is a hyperplane 𝐻𝑔 in 𝐻3. Let 𝐷𝑔 be the half-space of
points strictly closer to 𝑥0 than to 𝑔(𝑥0); then the Dirichlet region is the intersection of the 𝐷𝑔.

7.1.3 Theorem. The Dirichlet region 𝐷 =
⋂

𝑔∈𝐺⧵{1} 𝐷𝑔 is a fundamental polyhedron for 𝐺.

Proof. That 𝐷 is a countable intersection of halfspaces and is hence a polyhedron by our definition
follows from Lemma 3.1.3. It remains to show the conditions of Definition 7.1.1.

1. Let 𝐾 ⊆ 𝐻3 be compact. There are only finitely many 𝑔 ∈ 𝐺 such that 𝑔(𝑥0) ∈ 𝐾 (otherwise,
let (𝑔𝑛) be a sequence such that 𝑔𝑛𝑥0 ∈ 𝐾 for all 𝑛; then the sequence 𝑔𝑛𝑥0 accumulates at
some 𝑘 ∈ 𝐾 so 𝑘 is a limit point of 𝐺, contradicting Theorem 3.3.27). Now note that if in-
finitely many of the𝐻𝑔 meet some compact subset 𝐿 then a rotation and a dilation of 𝐿 (both of
which preserve compactness) will provide a compact set 𝐾 containing all of the corresponding
elements 𝑔(𝑥0).

2. Let 𝑔 ∈ 𝐺 be nontrivial. If 𝑥 ∈ 𝐷, then 𝑑(𝑔(𝑥), 𝑔(𝑥0)) = 𝑑(𝑥, 𝑥0) < 𝑑(𝑥, 𝑔−1(𝑥0)) = 𝑑(𝑔(𝑥), 𝑥0)
(the inequality coming from the definition of 𝐷, namely that 𝑥 is closer to 𝑥0 than to 𝑔−1(𝑥0))
and so 𝑔(𝑥) ∉ 𝐷. Hence 𝑔𝐷 ∩ 𝐷 = ∅ and 𝐷 is a 𝐺-packing.

3. Let 𝑥 ∈ 𝐻3; there is some 𝑔 ∈ 𝐺 such that 𝑑(𝑥, 𝑔(𝑥0)) ≤ 𝑑(𝑥, ℎ(𝑥0)) for all ℎ ∈ 𝐺 (that is,
there is some translation of 𝑥0 whose distance from 𝑥 is minimal: otherwise, 𝑥 would be a
limit point). Given an arbitrary ℎ ∈ 𝐺,

𝑑(𝑔−1(𝑥), 𝑥0) = 𝑑(𝑥, 𝑔(𝑥0)) ≤ 𝑑(𝑥, 𝑔ℎ(𝑥0)) = 𝑑(𝑔−1(𝑥), ℎ(𝑥0));

in particular, 𝑔−1(𝑥) ∈ 𝐷ℎ for every ℎ ∈ 𝐺 and so 𝑔−1(𝑥) ∈ 𝐷.
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4. Let 𝑥 ∈ relint 𝑠 for 𝑠 a side of 𝐷. Then there is a unique 𝑔 ∈ 𝐺 with 𝑥 ∈ 𝐷𝑔. This means that
𝑑(𝑥, 𝑥0) < 𝑑(𝑥, ℎ(𝑥0)) for all ℎ ≠ 𝑔, and 𝑑(𝑥, 𝑥0) = 𝑑(𝑥, 𝑔(𝑥0)). Thus

𝑑(𝑔−1(𝑥), 𝑥0) = 𝑑(𝑥, 𝑔(𝑥0)) = 𝑑(𝑥, 𝑥0) = 𝑑(𝑔−1(𝑥), 𝑔−1(𝑥0))

and for any ℎ ≠ 𝑔−1,
𝑑(𝑥, 𝑔ℎ(𝑥0)) > 𝑑(𝑥, 𝑥0) = 𝑑(𝑔−1(𝑥), 𝑥0)

Hence 𝑔−1(𝑥) lies on a side of 𝐷 (say 𝑠′), and so 𝑔−1(𝑠) = 𝑠′. This sets up the side pairing
transformations.

5. Finally, suppose 𝐾 ⊆ 𝐻3 is compact; if necessary expand 𝐾 so that it is a closed ball around 𝑥0,
say of radius 𝜌. There are only finitely many translates of 𝑥0 within 𝐾: if there were infinitely
many that form a sequence (𝑔𝑛𝑥0), using compactness we can assume that the sequence con-
verges to some 𝑥 ∈ 𝐾 and so 𝐾 contains a limit point, contradicting that it is a subset of𝐻3. If
𝑑(𝑔−1(𝑥0), 𝑥0) > 2𝜌, then 𝑔(𝐷)∩𝐾 = ∅. Thus the finitelymany group elements which translate
𝑥0 into 𝐾 are the only group elements which map 𝐷 to meet 𝐾. mAk

If 𝐺 has a fundamental polyhedron in 𝐻3 with only finitely many facets, then we say that 𝐺 is
geometrically finite.

7.2 Parabolic elements and punctures
Ahorosphere in𝐵𝑛 is a Euclidean spherewhich is tangent to 𝜕𝐵𝑛 andwhich, apart from the point of
tangency, lies within 𝐵𝑛. The horosphere is said to be based at the point of tangency. Such a sphere
corresponds in 𝐻𝑛 to either a Euclidean sphere in 𝐻𝑛 tangent to 𝜕𝐻𝑛, or (if it is based at ∞) to a
Euclidean plane in 𝐻𝑛 parallel to 𝜕𝐻𝑛. The interior of a horosphere is called a horoball.

7.2.1 Lemma. Let 𝐺 be a Kleinian group containing the translation 𝑧 ↦ 𝑧 + 1. Then the horoball

𝑇 = {𝑧 + 𝑡𝑗 ∈ 𝐻3 ∶ 𝑡 > 1}

is precisely invariant under Stab𝐺(∞).

Proof. Let 𝐽 = Stab𝐺(∞). By Proposition 3.3.9, no element of 𝐽 is loxodromic. In particular, every
element of 𝐽 is anEuclidean isometry, and the Poincaré extension of such a transformation of ℂ̂ leaves
horizontal planes invariant (in particular, the horoball of interest is a union of such planes and so is
left invariant). Suppose that 𝑔 ∈ 𝐺 is represented by the matrix

[𝑎 𝑏
𝑐 𝑑] ;

then by Proposition 3.4.1 either 𝑐 = 0 so 𝑔 ∈ 𝐽 or |𝑐| ≥ 1 and 𝑔 ∉ 𝐽; we prove that the latter elements
move 𝑇 off itself. Observe that the radius of the isometric circle 𝐼(𝑔) of 𝑔 is |𝑐|−1 ≤ 1, andwrite 𝑔 = 𝑞𝑟
for 𝑞 a Euclidean motion and 𝑟 a reflection in 𝐼(𝑔). Taking the Poincaré extension, 𝑟 is the reflection
in a sphere of radius at most 1 about some point on ℂ; in particular, it moves 𝑇 inside this sphere
(and hence off itself); the following Euclidean motion does not change heights above ℂ and so does
not move 𝑇 back onto itself. mAk

Recall that aFuchsian group is a Kleinian group𝐺 such that𝐺 leaves some disc𝐷 ⊆ Ω invariant.
Up to conjugation, we may assume that 𝐷 is the upper half-plane𝐻2; in particular, 𝐺 acts as a group
of hyperbolic isometries on 𝐻2.
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7.2.2 Lemma. If 𝐺 is a Fuchsian group normalised to leave 𝐻2 invariant and 𝐺 does not fix∞ then
the isometric circle of 𝐺 is centred at a point ofℝ.

Proof. If 𝐺 leaves 𝐻2 invariant, then 𝐺 leaves 𝜕𝐻2 invariant; in particular, preimages and images of
∞ lie in 𝜕𝐻2 and if they are not∞ then they must be real. mAk

7.2.3 Lemma. Let 𝐺 be a Fuchsian group containing the translation 𝑧 ↦ 𝑧 + 1. Then the horoball

𝑇 = {𝑧 ∈ 𝐻2 ∶ Im 𝑧 > 1}

is precisely invariant under Stab𝐺(∞).

Proof. Let 𝐽 = Stab𝐺(∞). By Proposition 3.3.9, no element of 𝐽 is loxodromic. In particular, every
element of 𝐽 is a Euclidean isometry. Since 𝐺 leaves 𝐻2 invariant, these transformations must be
compositions of translations 𝑧 ↦ 𝑧 + 𝛼 for 𝛼 ∈ ℝ (which preserve 𝑇), or reflections along vertical
lines (which preserve 𝑇). Thus 𝐽𝑇 ⊆ 𝑇.

Suppose that 𝑔 ∈ 𝐺 is represented by the matrix

[𝑎 𝑏
𝑐 𝑑] ;

then by Proposition 3.4.1 either 𝑐 = 0 so 𝑔 ∈ 𝐽 or |𝑐| ≥ 1 and 𝑔 ∉ 𝐽; we prove that the latter elements
move 𝑇 off itself. Observe that the radius of the isometric circle 𝐼(𝑔) of 𝑔 is |𝑐|−1 ≤ 1, andwrite 𝑔 = 𝑞𝑟
for 𝑞 a Euclidean motion and 𝑟 a reflection in 𝐼(𝑔). Since 𝑟 is the reflection in a sphere of radius at
most 1 about some point on ℝ (Lemma 7.2.2), it moves 𝑇 inside this sphere (and hence off itself);
the following Euclidean motion does not change heights aboveℝ and so does not move 𝑇 back onto
itself. mAk

7.2.4 Theorem. Let 𝐺 be a Fuchsian group acting on 𝐻2 and containing the parabolic element 𝑗 ∶
𝑧 ↦ 𝑧 + 1 such that if 𝑔 ∈ 𝐺 satisfies 𝑔𝑚 = 𝑗 for some 𝑚 > 0, we have 𝑔 = 𝑗 and 𝑚 = 1. Then
there is a punctured disc, conformally embedded in 𝐻2∕𝐺, so that under the natural homomorphism
𝜋1((𝐻2 ∩ ◦Ω)∕𝐺)→ 𝐺 the element 𝑗 corresponds to a loop about the puncture.

Proof. Let 𝑇 = {𝑧 ∈ ℂ ∶ Im 𝑧 > 1}; since 𝐺 is Fuchsian, Stab𝐺(𝑇) = ⟨𝑗⟩ by Lemma 7.2.3. The map
𝑓 ∶ ℂ → ℂ given by 𝑓(𝑧) = exp(2𝜋𝑖𝑧) is a conformal map which sends 𝑇 onto a punctured disc
centred at 0; further it is a covering map with defining group ⟨𝑗⟩, i.e. for 𝑧, 𝑤 ∈ 𝑇, 𝑓(𝑧) = 𝑓(𝑤) iff 𝑧
and 𝑤 are ⟨𝑗⟩-equivalent. mAk

Our goal is now the generalisation of Theorem 7.2.4 to the Kleinian case.
Let 𝐺 be a Kleinian group, and let 𝐽 ≤ 𝐺 be an elementary group of parabolic type generated by

a single element; let 𝑥 be the unique fixed point of 𝐽. We say that 𝐽 is cusped and that 𝑥 is a cusp
point of𝐺 if there is an open disc 𝐵 ⊆ ℂ̂ such that 𝐽 = Stab𝐺(𝐵) and such that 𝐵 is precisely invariant
under 𝐵. We say 𝑥 is the centre of 𝐵, and that 𝐵 is a cusped region for 𝐽.

7.2.5 Example. Let 𝐺 = 𝐽 = ⟨𝑗 = 𝑧 ↦ 𝑧∕(𝑧 + 1)⟩. The element 𝑗 is parabolic (it has trace 2) with
fixed point 0. What might the invariant discs be? Well, the element 𝑗 normalises to 𝑧 ↦ 1 + 𝑧 upon
conjugation by 𝑧 ↦ 1∕𝑧; an invariant disc for 𝑧 ↦ 1 + 𝑧 is𝐻2; and 1∕(𝐻2) is −𝐻2.

Remark. Here is a geometric dictionary:
cusps ↔ punctures

cone points ↔ branch points (of finite order).
See [24] for an explanation of the name ‘cone point’.
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Similarly, we say that 𝐽 is doubly cusped if there are two disjoint open discs 𝐵1, 𝐵2 ⊆ ℂ̂ such that
𝐵1∪𝐵2 is precisely invariant under 𝐽; we also say, in this case, that 𝐵 = 𝐵1∪𝐵2 is a cusped region for
𝐽. In the double cusp case it is clear that 𝐵1 and 𝐵2 are tangent at 𝑥: if 𝐵 is precisely invariant under 𝐽
then its closure must contain 𝑥 otherwise we would not be able to find 𝑥 as a limit point of the orbits
of elements of 𝐵; a little further thought shows that this argument in fact implies that 𝑥 ∈ 𝐵1 ∩ 𝐵2!
Remark. Compare with [35, p. 49].

7.2.6 Example. Let 𝐽 = 𝐺 = ⟨𝑧 ↦ 𝑧 + 1, 𝑧 ↦ −𝑧⟩. Set 𝐵1 = {𝑧 ∈ ℂ ∶ Im 𝑧 > 1} and 𝐵2 = {𝑧 ∈ ℂ ∶
Im 𝑧 < −1}. Clearly 𝐵1 ∪ 𝐵2 is precisely invariant under 𝐽 while each individual 𝐵𝑖 is not.

Observe here that the unique fixed point of 𝐽 is∞, and the quotientΩ∕𝐺 = ℂ∕𝐺 is a sphere with
two punctures and two cone points of angle 𝜋.

7.2.7 Example. Suppose 𝐺 is a Fuchsian group with 𝑥 a parabolic fixed point; then 𝑥 is a double
cusp point of 𝐺. Indeed, we may conjugate 𝐺 such that the fixed point is∞ and the fixed disc is 𝐻2,
and then use Theorem 7.2.4 to see that 𝑥 is a double cusp point with two regions𝐻2 and −𝐻2.

Suppose that 𝐵 is a cusped region for 𝑥; then there is some ℎ ∈ 𝕄 with ℎ(𝑥) = ∞ conjugating
the generator of 𝐽 to 𝑧 ↦ 𝑧 + 1. The set 𝐸 = {𝑧 ∶ |Re 𝑧| < 1∕2} is a fundamental domain for ℎ𝐽ℎ−1;
then ℎ−1 is a fundamental domain for 𝐽, and ℎ−1(𝐸) ∩ 𝐵 is called a cusp for 𝐽.

7.2.8 Proposition. Let 𝐺 be a geometrically finite Kleinian group with fundamental polyhedron 𝐷; let
𝑥 be a point of 𝐷 ∩ 𝜕𝐻3. Then either 𝑥 ∈ Ω(𝐺), or 𝐽 ≔ Stab𝐺(𝑥) is elementary of parabolic type. If 𝐽 is
cyclic, then 𝑥 is doubly cusped.

Proof. mAk
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Chapter 8

Moduli spaces of Kleinian groups

We follow closely the paper [28] to prove various continuity results about one-parameter holomor-
phic families of Kleinian groups: in particular, that the geodesic length function and the bending
measure vary continuously with the parameter (exact statements may be found in Section 8.3).

This is the first of three chapters on the Riley slice and related moduli spaces.

8.1 Preliminaries on Kleinian group spaces
Let 𝐷 ⊆ ℂ be a connected domain; for each 𝜇 ∈ 𝐷, let 𝐺𝜇 be a finitely generated Kleinian group of
the second kind (so Ω(𝐻𝜇) ≠ ℂ̂). The system (𝐺𝜇) is a holomorphic family of Kleinian groups if
we may choose a basepoint 𝜇0 ∈ 𝐷 and a map 𝑖 ∶ 𝐷 × ℂ̂→ ℂ̂ such that

• 𝑖(⋅, 𝑧) is holomorphic for all 𝑧 ∈ ℂ̂;

• 𝑖(𝜇, ⋅) is a quasi-conformal homeomorphism for each 𝜇 ∈ 𝐷, such that the induced map

𝜙𝜇 ∶ 𝐺𝜇0 → 𝕄

𝑔 ↦ 𝑖𝜇𝑔𝑖−1𝜇

is a type-preserving isomorphism onto 𝐺𝜇.

Throughout, we shall be working with fixed connected components of Ω(𝐺𝜇). For each 𝜇 ∈ 𝐷,
fix a connected component Ω∗(𝐺𝜇); we will usually write Ω(𝜇) for Ω(𝐺𝜇), and Ω∗(𝜇) for Ω∗(𝐺𝜇).

Snce𝐺𝜇 is finitely generated, byAhlfors’ finiteness theorem (Theorem4.1.5) the spaceΩ∗(𝜇)∕ Stab𝐺𝜇 Ω
∗(𝜇)

is a compact Riemann surface of finite genus with finitely many punctures.
Let 𝒞(𝜇) for each 𝜇 denote h−conv Λ(𝐺𝜇), and let 𝜕𝒞(𝜇) be the boundary of 𝒞(𝜇) in 𝐻3. Each

connnected component of 𝜕𝒞(𝜇)may be naturally identified with a component of Ω(𝜇): the restric-
tion of the retraction 𝑟 ∶ 𝐻𝑛 → 𝒞(𝜇) to each component of Ω(𝜇) is a bijection onto a connected
component of 𝜕𝒞(𝜇), and different components of Ω(𝜇) are associated to different components of
𝜕𝒞(𝜇). We shall write 𝜕𝒞∗(𝜇) for the connected component corresponding to Ω∗(𝜇).

We write 𝛽𝜇 for the induced transverse measure on 𝜕𝒞∗(𝜇)∕ StabΩ∗(𝜇) obtained by restricting
and projecting the bending measure on 𝜕𝒞(𝜇). Let 𝓁𝜇 denote the intrinsic measure on 𝜕𝒞(𝐺𝜇).

The following result is proved as [28, proposition 3.1] and relies on a result of Moore [37, 45]

8.1.1 Proposition. The surfaces
𝑆𝜇 ≔ 𝜕𝒞(𝜇)∕𝐺𝜇

89
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and
Ω∗(𝜇)∕ StabΩ∗(𝜇)

are homeomorphic for all 𝜇 ∈ 𝐷. mAk

8.1.2 Corollary. If 𝜇, 𝜈 ∈ 𝐷, then 𝑆𝜇 and 𝑆𝜈 are quasiconformally homeomorphic. mAk

8.1.3 Corollary. Themap 𝑖(𝜇, ⋅) inducing the isomorphism𝜙𝜇 ∶ 𝐺𝜇0 → 𝐺𝜇 induces a homeomorphism
𝑆𝜇0 → 𝑆𝜇 and an isomorphism 𝜋1(𝑆𝜇0)→ 𝜋1(𝑆𝜇). mAk

The inclusion Ω∗(𝜇)↪ 𝐻3 ∪ Ω∗(𝜇) induces a homomorphism

𝑗𝜇 ∶ 𝜋1 (
Ω∗(𝜇)

StabΩ∗(𝜇)
) ≃ 𝜋1(𝑆𝜇)→ 𝜋1 (

𝐻3 ∪ Ω∗(𝜇)
𝐺𝜇

) ≃ 𝐺𝜇.

8.1.4 Proposition (Existence of conjugacy lift). There is a map

𝑅 ∶ 𝐷 × 𝑍(𝜇0)→ 𝑍(𝜇)

(where 𝑍(𝜇) ≔ 𝑍(𝐺𝜇), the supporting hyperplane parameter space) such that for each 𝜇 ∈ 𝐷, the
induced map 𝑅(𝜇, ⋅) is a homeomorphism 𝑍(𝜇0) → 𝑍(𝜇) with the additional property that the lifted
map

𝑅𝜇∗ ∶ 𝜋1(𝑆𝜇0)→ 𝜋1(𝑆𝜇)

makes the following diagram commute:

𝜋1(𝑆𝜇0) 𝜋1(𝑆𝜇)

𝐺𝜇0 𝐺𝜇.

𝑅𝜇∗

𝑗𝜇0 𝑗𝜇
𝜙𝜇

Proof. Let 𝑟𝜇 ∶ Ω∗(𝜇)→ 𝜕𝒞(𝜇) be the retractionmap; this lifts to a map 𝑟𝜇 ∶ Ω∗(𝜇)→ 𝑍𝜇 by sending
𝑧 ↦ (𝑟𝜇(𝑧), 𝑃𝑟(𝑧)) where 𝑃𝑟(𝑧) is the support plane tangent to the horosphere based at 𝑧 passing
through 𝑟𝜇(𝑧). This lift is a homeomorphism. Set 𝑅(𝜇, 𝑃) ≔ 𝑟𝜇(𝑖(𝜇, 𝑟−1𝜇0 (𝑃))) for all 𝑃 ∈ 𝑍(𝜇0). This
is a homeomorphism which conjugates the action of 𝐺𝜇0 on 𝑍𝜇0 to the action of 𝐺𝜇 on 𝑍𝜇; a simple
diagram chase shows the commutativity required. mAk

8.2 Measured laminations
Let 𝐿 be a geodesic lamination on a complete oriented hyperbolic surface 𝑆 of finite area, and let 𝜈
be a transverse measure on 𝐿 such that 𝜈 is preserved by isotopies moving one transversal to another
which preserve the leaves of the lamination. We call the system (𝐿, 𝜈) ameasured lamination.

If 𝛾 is a simple closed geodesic on 𝑆, then 𝛿𝛾 denotes the measured lamination whose single leaf
is the geodesic 𝛾, and whose measure is an atomic unit mass on intervals transverse to 𝛾.

Denote by ℳℒ(𝑆) the space of all measured laminations on 𝑆. There is a natural topology on
ℳℒ(𝑆): if Σ is the set of free homotopy classes of simple closed curves on 𝑆, then we may define an
embedding ofℳℒ(𝑆) into (ℝ>0)Σ as follows: if 𝜈 ∈ℳℒ(𝑆) and [𝜎] ∈ Σ then define

𝜈̂([𝜎]) ≔ inf
𝜎∈[𝜎]

𝜈(𝜎)
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where the infimum is taken over curves which are piecewise made up of transversal geodesics to 𝜈
or geodesics running along leaves of 𝜈 (such geodesics have measure zero by convention). Then the
map

𝜈 ↦ 𝜈̂

is the required embedding. (This agrees with the weak topology on the measure space.)
If 𝑆 has cusps, we useℳℒ0(𝑆) to denote the set of measured laminations whose leaves end at

cusps of 𝑆 with the induced topology.
Restrict again to the situationwherewe have amoduli space of Kleinian groups; with the notation

of the previous section,

8.2.1 Lemma. For 𝜇, 𝜈 ∈ 𝐷, the spacesℳℒ(𝑆𝜇) andℳℒ(𝑆𝜈) are homeomorphic.

Proof. It suffices to show thatℳℒ(𝑆𝜇) is homeomorphic toℳℒ(𝑆𝜇0) for 𝜇0 some fixed basepoint as
above. If Γ is a family of pairwise disjoint geodesics on 𝑆𝜇0 then 𝑅𝜇 maps this family to a family of
quasi-geodesics (why?) and so we may associate to each geodesic 𝛾0 in Γ a geodesic in 𝑆𝜇 homotopic
to 𝑅𝜇(𝛾) in an invertible manner (since 𝑅𝜇 is a homeomorphism). mAk

Wewriteℳℒ(𝑆) forℳℒ(𝑆𝜇0) and identify this space, for each 𝜇, withℳℒ(𝑆𝜇) under the home-
omorphism defined in the lemma.

8.3 Statements of theorems on continuity
We now state the main theorems of [28]. Again we have a holomorphic family of Kleinian groups
{𝐺𝜇}𝜇∈𝐷 and the associated notation. In addition, use 𝓁𝜇 to denote the geodesic length measure with
respect to the intrinsic metric on 𝑆𝜇.

8.3.1 Theorem (Continuity of geodesic length). Recall that the 𝑆𝜇 are all homeomorphic, so 𝜋1(𝑆𝜇)
is independent of 𝜇. For each [𝜎] ∈ 𝜋1(𝑆𝜇), the length function

𝐷 𝑅≥0

𝜇 𝓁𝜇([𝜎])

is continuous.

8.3.2 Corollary. The hyperbolic structure of 𝑆𝜇 varies continuously with 𝜇.

Proof. The Teichmüller space of a hyperbolic surface is embedded in (ℝ>0)Σ by the map

𝜇 ↦ {𝓁𝜇([𝜎])}[𝜎∈Σ]

(where Σ is the set of free homotopy classes of simple closed curves on 𝑆𝜇, again this is independent
of 𝜇). mAk

8.3.3 Theorem (Continuity of bending measure). The map

𝐷 ℳℒ(𝑆)

𝜇 𝛽𝜇

is continuous.
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If 𝜈 ∈ℳℒ(𝑆𝜇) then write 𝓁𝜇(𝜈) for the total mass of the measure on 𝑆𝜇 which is locally defined
as the product of the measure 𝜈 on transversals to the lamination of 𝜈 and hyperbolic distance along
the leaves of 𝜈.

8.3.4 Theorem (Continuity of lamination length). The map

𝐷 ×ℳℒ0(𝑆) ℝ≥0

(𝜇, 𝜈) 𝓁𝜇(𝜈)

is continuous in each variable.

8.4 Proofs of the continuity of geodesic length and bending
measure

The goal of this section is the exposition of the proofs of Theorem 8.3.1 and Theorem 8.3.3. In this
section, the propositions (which are named) are the main results which we shall use to prove the
theorems; the lemmata are steps in the proofs of the propositions.
Notation. Let 𝛽𝜇 and 𝓁̂𝜇 denote the lifts of 𝛽 and 𝓁 to 𝑍(𝜇). We write:

1. 𝜌▥(𝑥, 𝑦) for the Euclidean distance between 𝑥 and 𝑦 in the halfspace model of 𝐻3;

2. 𝜌◦(𝑥, 𝑦) for the Euclidean distance between 𝑥 and 𝑦 in the ball model of𝐻3 and area(∆) for the
Euclidean area of some shape ∆ in the disc model of𝐻2;

3. 𝑑(𝑥, 𝑦) for the intrinsic hyperbolic metric in𝐻3 and h−area(∆) for the hyperbolic area of some
shape ∆ in𝐻2;

4. 𝑑𝜔(𝑥, 𝑦) for the distance between 𝑥 and 𝑦 measured along some curve 𝜔 with respect to the
intrinsic hyperbolic metric; more generally, 𝑑𝑋 for the distance in some metric space 𝑋 when
needed.

Fix 𝜇; we study finite approximations to the bending measure and geodesic lengths with respect
to 𝐺𝜇. Since continuity is a local property, we may restrict ourselves to the situation that 𝜇 varies in
some compact 𝐾 ⊆ 𝐷.

A polygonal approximation (𝑥𝑖 , 𝑃𝑖)𝑛𝑖=0 to a path 𝜔 in 𝑍 is an (𝛼, 𝑆)-approximation if

max
1≤𝑖≤𝑛

𝜃(𝑃𝑖−1, 𝑃𝑖) < 𝛼 and max
1≤𝑖≤𝑛

𝑑𝜕𝒞(𝑥𝑖−1, 𝑥𝑖) < 𝑠.

8.4.1 Proposition (Local error estimate). There is a universal constant 𝐾 (independent of 𝜇) and a
function 𝑠 ∶ [0, 2𝜋)→ (0, 1) such that if (𝑥𝑖 , 𝑃𝑖)𝑛𝑖=0 is an (𝛼, 𝑠(𝛼))-approximation to a path𝜔 in 𝑍 where
𝛼 < 𝜋∕2, then

1.
|||||||||

𝑛∑

𝑖=1
𝑑𝑖(𝑥𝑖−1, 𝑥𝑖) − 𝓁(𝜔)

|||||||||
< 𝐾𝛼𝓁(𝜔), and

2.
|||||||||

𝑛∑

𝑖=1
𝜃(𝑃𝑖−1, 𝑃𝑖) − 𝛽(𝜔)

|||||||||
< 𝐾𝛼𝓁(𝜔)

where 𝑑𝑖 denotes the induced metric on 𝑃𝑖−1 ∪ 𝑃𝑖 for each 𝑖.
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Figure 8.1: Computing, locally, the error of the geodesic length when taken along a polygonal ap-
proximation.

Proof. Fix a polygonal approximation (𝑥𝑖 , 𝑃𝑖)𝑛𝑖=0 for 𝜔.

1. We consider the error 𝑑𝑖 − 𝓁𝑖 , where 𝑑𝑖(𝑥𝑖−1, 𝑥𝑖) and 𝓁𝑖 denotes the distance from 𝑥𝑖−1 to 𝑥𝑖
along 𝜔. Choose a hyperbolic plane 𝐻 through 𝑥𝑖−1 and 𝑥𝑖 such tht the shortest path between
𝑥𝑖−1 and 𝑥𝑖 in 𝑃𝑖−1 ∪ 𝑃𝑖 is contained in 𝐻; let 𝑎1 and 𝑎2 be the lengths of this shortest path in
𝑃𝑖−1 and 𝑃𝑖 respectively, and let 𝑏 be the length of the geodesic [𝑥𝑖−1, 𝑥𝑖] in 𝐻3. Let 𝐵 be the
orthogonal projection of the point 𝑃𝑖−1∩𝑃𝑖∩𝐻 onto 𝛾, and let 𝑏1 = 𝑑(𝑥𝑖−1, 𝐵) and 𝑏2 = 𝑑(𝐵, 𝑥𝑖)
such that 𝑏 = 𝑏1 + 𝑏2. This notation is summarised in Fig. 8.1.

Suppose the angle of the triangle 𝐴𝑥𝑖−1𝑥𝑖 at 𝑥𝑖−1 is 𝜅1, and the angle at 𝑥𝑖 is 𝜅2. Then by
hyperbolic trigonometry (in particular, [6, theorem 7.11.2]) we have tanh 𝑎𝑖 = tanh 𝑏𝑖 sec 𝜅𝑖 for
𝑖 ∈ {1, 2}.

Since 𝛼 < 𝜋∕2, and the acute angles of the triangle 𝐴𝑥𝑖−1𝑥𝑖 are less than 𝛼 (indeed, if these
angles are 𝜅1, 𝜅2 then we have (𝜋 − 𝛼) + 𝜅 + 𝜆 < 𝜋, so 𝜅 + 𝜆 < 𝛼), we have that sec 𝜅𝑖 < sec𝛼;
thus

tanh 𝑎𝑖 < tanh 𝑏𝑖 sec𝛼, and𝑏𝑖 < 𝑎𝑖 < 𝑏 ≤ 𝑑𝜔(𝑥𝑖−1, 𝑥𝑖).

Now use a CAT(0)-space argument to see that there exists some choice of 𝑠 = 𝑠(𝛼) such that

𝑑𝜔(𝑥𝑖−1, 𝑥𝑖) < 𝑠 ⟹ tanh 𝑎𝑖 > (1 − 𝛼)𝑎𝑖

(namely, make 𝑠 sufficiently small that the triangle𝐴𝑥𝑖−1𝑥𝑖 must have large side length to have
the same fixed 𝛼). Using the standard inequality tanh 𝑏𝑖 ≤ 𝑏𝑖 and applying the above results,
we have

𝑎1 + 𝑎2 < (𝑏1 + 𝑏2) sec𝛼 + 𝛼(𝑎1 + 𝑎2)

and hence, since sec𝛼 ≥ 1,
𝑎1 + 𝑎2 − 𝑏 < 𝐾𝛼𝑑𝜔(𝑥𝑖−1, 𝑥𝑖).
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Figure 8.2: Computing, locally, the error of the bending measure when taken along a polygonal ap-
proximation.

2. Let 𝑡 ∈ [0, 1] be an intermediate partition point, so 𝑡𝑖−1 < 𝑡 < 𝑡𝑖; let (𝑧, 𝑃) = 𝜔(𝑡). Apply
Lemma 5.4.1 to the triplet of planes 𝑃𝑖−1, 𝑃, 𝑃𝑖: there is either a unique horosphere 𝜎 through
𝑥𝑖−1 and orthogonal to each of the three planes, or there is a unique hyperbolic plane 𝜎 orthog-
onal to each of them. Let 𝑙𝑖−1 = 𝜎 ∩ 𝑃𝑖−1, 𝑙 = 𝜎 ∩ 𝑃, and 𝑙𝑖 = 𝜎 ∩ 𝑃𝑖 . For the notation, see
Fig. 8.2.
Observe that the angle sum of the approximation before refinement is

𝜃(𝑃0, 𝑃1) +⋯ + 𝜃(𝑃𝑖−2, 𝑃𝑖−1) + 𝜃(𝑃𝑖−1, 𝑃𝑖) + 𝜃(𝑃𝑖 , 𝑃𝑖+1) +⋯ + 𝜃(𝑃𝑛−1, 𝑃𝑛)

and after refinement it is

𝜃(𝑃0, 𝑃1) +⋯ + 𝜃(𝑃𝑖−2, 𝑃𝑖−1) + 𝜃(𝑃𝑖−1, 𝑃) + 𝜃(𝑃, 𝑃𝑖) + 𝜃(𝑃𝑖 , 𝑃𝑖+1) +⋯ + 𝜃(𝑃𝑛−1, 𝑃𝑛);

since refinement decreases the approximation, the change in the approximation is

𝜖 = 𝜃(𝑃𝑖−1, 𝑃𝑖) − 𝜃(𝑃𝑖−1, 𝑃) − 𝜃(𝑃, 𝑃𝑖).

We have two cases:

• If 𝜎 is a horosphere (so has Euclidean intrinsic geometry), then the triangle formed by
𝑙𝑖−1, 𝑙, and 𝑙𝑖 is Euclidean and thus the error 𝜀 is zero (consider Fig. 8.3).

• If 𝜎 is a hyperbolic plane, then the error is

𝜃(𝑃𝑖−1, 𝑃𝑖) − 𝜃(𝑃𝑖−1, 𝑃) − 𝜃(𝑃, 𝑃𝑖) = 𝜋 − (𝜋 − 𝜃(𝑃𝑖−1, 𝑃𝑖)) − 𝜃(𝑃𝑖−1, 𝑃) − 𝜃(𝑃, 𝑃𝑖);

that is, 𝜖 is 𝜋 minus the sum of the triangle angles; it is a standard result in hyperbolic
geometry (see for instance [6, theorem 7.13.1]) that this is exactly the hyperbolic area of
the triangle.

Using this argument, we shall prove the following intermediate claim:
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Figure 8.3: Change in the error of an approximation under a refinement.

Claim. The hyperbolic area h−area(𝑅) is an upper bound for the error 𝜃(𝑃𝑖−1, 𝑃𝑖)−𝛽(𝜔𝑖)where
𝜔𝑖 is the portion of 𝜔 between 𝑡𝑖−1 and 𝑡𝑖 , and where 𝑅 is the region bounded by the curves 𝑙𝑖 , 𝑙𝑖−1,
and 𝜔𝑖 .

Indeed, recall that 𝛽(𝜔𝑖) is the infimum over all the permissible refinements 𝑡𝑖−1 = 𝑠0 < ⋯ <
𝑠𝑚 = 𝑡𝑖 of [𝑡𝑖−1, 𝑡𝑖] of the quantity

∑𝑚
𝑗=1 𝜃(𝑄𝑗−1, 𝑄𝑗) where 𝑄𝑗 denotes the second component

of 𝜔(𝑠𝑗). It is therefore enough to show that h−area(𝑅) is an upper bound for the quantity
𝜃(𝑃𝑖−1, 𝑃𝑖)−

∑𝑚
𝑗=1 𝜃(𝑄𝑗−1, 𝑄𝑗) for every such refinement; and since these refinements are finite

by definition, we may prove this claim by induction. The base case was done above: denote
by ∆0 the triangle with edges 𝑙𝑖−1, 𝑙, and 𝑙𝑖 . Assume now that the claim is true for refinements
of 𝑚 − 1 points, and consider the partition 𝑡𝑖−1 = 𝑠0 < ⋯ < 𝑠𝑚 = 𝑡𝑖 as above. Removing
the point 𝑥1, we have by induction a disjoint union of triangles ∆0, ...,∆𝑚 whose area is an
upper bound (by doing the argument above for each triangle) for the error in the approximation
given the partition of 𝑚 − 1 points. Adding back in 𝑥1 and forming the plane 𝜎𝑚 as above
(using Lemma 5.4.1), the change in the approximation is bounded above (by the argument
given above) by the area of the triangle formed by𝑄1∩𝜎𝑚,𝑄0∩𝜎𝑚, and𝑄2∩𝜎𝑚, which is in turn
bounded above by the area of the triangle ∆𝑚 bounded by 𝑄1 ∩𝜎, 𝑄0 ∩𝜎, and 𝑄2 ∩𝜎 (since the
former is an orthogonal projection of the latter). Hence the error 𝜃(𝑃𝑖−1, 𝑃𝑖)−

∑𝑚
𝑗=1 𝜃(𝑄𝑗−1, 𝑄𝑗)

increases by at most the area of ∆𝑚; i.e.

𝜃(𝑃𝑖−1, 𝑃𝑖) −
𝑚∑

𝑗=1
𝜃(𝑄𝑗−1, 𝑄𝑗) ≤ h−area∆0 +⋯ + h−area∆𝑚 ≤ h−area(𝑅)

as desired. This proves the intermediate claim.

We now prove a bound on h−area(𝑅) by comparing it with the Euclidean area area(𝑅) in the
disc model. Map the plane 𝜎 into the unit disc using the standard identification of 𝐻2 with
𝐵2, sending 𝐴 ↦ 0; call this map 𝜙. By convexity, the region 𝜙(𝑅) is contained within the
(Euclidean) triangle ∆′ with vertices 0, 𝜙(𝑥𝑖−1), and 𝜙𝑖 . By assumption, 𝑑𝜔(𝑥𝑖−1, 𝑥𝑖) < 𝑠; since
the hyperbolic distance 𝑑 is a lower bound on the distance along 𝜔, 𝑑(𝑥𝑖−1, 𝑥𝑖) < 𝑠; and hence
𝑑𝜎(𝑥′𝑖−1, 𝑥

′
𝑖 ) < 𝑠, where 𝑥′𝑖−1 and 𝑥

′
𝑖 are the projections of 𝑥𝑖−1 and 𝑥𝑖 onto 𝜎. Since 𝛼 < 𝜋∕2,



96 CHAPTER 8. MODULI SPACES OF KLEINIAN GROUPS

Figure 8.4: Images of 𝑧 and 𝑤 under 𝑟 in the proof of Lemma 8.4.3.

the triangle ∆′ is contained within a circle of bounded Euclidean radius in 𝐵2; and thus there
is a bounded comparison (say with constant 𝐿) between the Euclidean and hyperbolic areas of
∆′. Choose 𝑠(𝛼) sufficiently small now such that the Euclidean distance 𝜌◦(𝜙(𝑥𝑖−1), 𝜙(𝑥𝑖)) is at
most 1; then the Euclidean triangle has area bounded above by 𝑑(𝑥𝑖−1, 𝑥𝑖)𝛼. In particular,

𝜃(𝑃𝑖−1, 𝑃𝑖) − 𝛽(𝜔𝑖) ≤ area(𝑅) ≤ 𝐿 area(∆′) ≤ 𝐿𝛼𝜌◦(𝜙(𝑥𝑖−1), 𝜙(𝑥𝑖)) ≤ 𝐿𝛼𝑑𝜔(𝜙(𝑥𝑖−1), 𝜙(𝑥𝑖))

as required. mAk

8.4.2 Proposition (Continuity of conjugacy lift). If {𝐺𝜇}𝜇∈𝐷 is a holomorphic family of Kleinian
groups, then the map

𝑅⋅ ∶ 𝑍𝜇0 × 𝐷 → 𝑍𝜇
defined (as in Proposition 8.1.4) by

(𝜔, 𝜇)↦ (𝑟𝜇𝑖𝜇𝑟−1𝜇0 )(𝜔)

is continuous when the domain is equipped with the usual product topology.

The proof of Proposition 8.4.2 will depend on the following lemmata.

8.4.3 Lemma. Let Λ ⊆ ℂ be an arbitrary closed set with diameter greater than some constant 𝑐 > 0;
let 𝐾 be a closed bounded convex subset of a connected component of ℂ ⧵Λ. Let 𝑟 be the retraction map
𝐻3 → h−conv Λ. Then 𝑟 is uniformly continuous on𝐾, where the modulus of continuity1 depends only
on 𝑎 = 𝑑▥(𝐾,Λ), 𝑏 = sup𝑧∈𝐾 𝑑▥(𝑧,Λ), and 𝑐.

Proof. Let 𝑧, 𝑤 ∈ 𝐾 and let 𝑟(𝑧) = (𝜉, 𝑃𝜉) and 𝑟(𝑤) = (𝜂, 𝑃𝜂). Since 𝑧 and 𝑤 lie in the same compo-
nent of ℂ̂ ⧵ Λ, the hemispheres bounded by 𝑃𝜉 and 𝑃𝜂 cannot be nested (Fig. 8.4).

1Recall that the modulus of continuity for a function on metric spaces 𝑓 ∶ (𝑋1, 𝑑1) → (𝑋2, 𝑑2) is an increasing real-
valued function 𝜔 ∶ ℝ̂≥0 → ℝ̂≥0 vanishing and continuous at 0 such that for all 𝑥, 𝑦 ∈ 𝑋1, 𝑑2(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜔(𝑑1(𝑥, 𝑦)).
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Figure 8.5: The case 𝜉 = 𝜂 but 𝑃𝜉 ≠ 𝑃𝜂 may occur if 𝜉 = 𝜂 lies on a pleating edge.

Figure 8.6: The case 𝜉 = 𝜂 and 𝑃𝜉 ≠ 𝑃𝜂 may occur if 𝜉 and 𝜂 lie on adjoining flat pieces.

Since 𝐾 is bounded, there exist positive constants 𝑎′ and 𝑏′ depending only on 𝑎, 𝑏, and 𝑐 such
that for all choices of 𝑧, 𝑤 ∈ 𝐾,

𝑎′ ≤ height 𝜉 ≤ 𝑏′ 𝑎′ ≤ height 𝜂 ≤ 𝑏′
𝑎′ ≤ diam 𝑆(𝜉) ≤ 𝑏′ 𝑎′ ≤ diam 𝑆(𝜂) ≤ 𝑏′

where height is the height function in the half-space model, and where 𝑆(𝜉) and 𝑆(𝜂) are the horo-
spheres tangent to 𝑃𝜉 and 𝑃𝜂 respectively.

In particular we have four bounds:

1. If𝑃𝜉 = 𝑃𝜂 then 𝑑▥(𝜉, 𝜂) depends only on 𝑧 and𝑤, and tends uniformly to 0 as |𝑧 − 𝑤|→ 0with
constants depending only on 𝑎′ and 𝑏′. Indeed, if 𝜋𝜉 and 𝜋𝜂 are the orthogonal projections of
𝜉 and 𝜂 onto ℂ, then

𝑑▥(𝜋𝜉, 𝜋𝜂) ≤ 𝑑▥(𝑧, 𝑤)

(since 𝜋 is distance-reducing) and so 𝑑▥(𝜋𝜉, 𝜋𝜂) depends uniformly only on 𝑑(𝑧, 𝑤). Hence

[𝑑▥(𝜉, 𝜂)]2 = [height(𝜉 − 𝜂)]2 + [𝑑▥(𝜋𝜉, 𝜋𝜂)]2

and height(𝜉 − 𝜂) is also uniform in 𝑧 and 𝑤 with bounds depending on 𝑎′ and 𝑏′.

2. If 𝜉 = 𝜂 but 𝑃𝜉 ≠ 𝑃𝜂 (for instance this may occur if 𝜉 = 𝜂 lies on a pleating edge, see Fig. 8.5)
By similar arguments to (1), we see that |𝑧 − 𝑤| tends to zero iff 𝑑𝑍((𝜉, 𝑃𝜉), (𝜂, 𝑃𝜂)) tends to
zero, uniformly with constants depending on 𝑎′ and 𝑏′.

3. If 𝜉 ≠ 𝜂 and 𝑃𝜉 ≠ 𝑃𝜂 but 𝑃𝜉 ∩ 𝑃𝜂 ≠ ∅ (see Fig. 8.6), then by convexity of 𝐾 there is a point
𝜁 ∈ 𝑃𝜉 ∩ 𝑃𝜂 such that 𝑟−1(𝜁) ⊆ 𝐾.

Choose some 𝑢, 𝑣 ∈ 𝑟−1(𝜁) such that 𝑟(𝑢) = (𝜁, 𝑃𝜉) and 𝑟(𝑣) = (𝜁, 𝑃𝜂). Apply (1) and (2) above
to the pairs (𝑧, 𝑢) (case 1), (𝑢, 𝑣) (case 2), and (𝑣, 𝑤) (case 1) to see that |𝑧 − 𝑤| tends to zero iff
𝑑𝑍((𝜉, 𝑃𝜉), (𝜂, 𝑃𝜂)) tends to zero, uniformly with constants depending on 𝑎′ and 𝑏′.
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Figure 8.7: The case 𝑃𝜉 ∩ 𝑃𝜂 = ∅ does not have any effect on convergence.

4. Finally, consider the case that 𝑃𝜉 ∩ 𝑃𝜂 = ∅. In this case, |𝑧 − 𝑤| is uniformly bounded below
by height(𝜉 − 𝜂) (which is in turn bounded below since 𝜉 and 𝜂 lie above the same connected
component of Ω— see Fig. 8.7) and so we cannot send |𝑧 − 𝑤|→ 0.

Combining the cases 1–3 gives the desired convergence. mAk

8.4.4 Lemma. The function 𝜇 ↦ 𝑑(𝐾,Λ(𝜇)) is continuous at 𝜇0.

Proof. By definition, Λ(𝜇) = 𝑖𝜇Λ(𝜇0) and so we wish to estimate

|||𝑑(𝐾,Λ(𝜇)) − 𝑑(𝐾,Λ(𝜇0))||| =
||||𝑑(𝐾, 𝑖𝜇Λ(𝜇0)) − 𝑑(𝐾,Λ(𝜇0))

||||;

observe that 𝑑(𝐾, 𝑖𝜇Λ(𝜇0)) ≤ 𝑑(𝐾,Λ(𝜇0)) + 𝑑(Λ(𝜇0), 𝑖𝜇(Λ(𝜇0))) and so 𝑑(𝐾,Λ(𝜇)) − 𝑑(𝐾,Λ(𝜇0)) ≤
𝑑(Λ(𝜇0), 𝑖𝜇(Λ(𝜇0))); by uniform continuity of 𝑖𝜇 in 𝜇 in a small neighbourhood of 𝜇0, the right hand
side can be bounded below 𝜀 for 𝜇 sufficiently close to 𝜇0. A similar estimate holds for the lower
inequality.2 mAk

8.4.5 Lemma. The function 𝜇 ↦ diamΛ(𝜇) is continuous at 𝜇0.

Proof. Let 𝜀 > 0. Let 𝐾 be a compact neighbourhood of 𝜇0; observe that 𝑖 ∶ 𝐾 × ℂ̂→ ℂ̂ is uniformly
continuous by the Heine-Cantor theorem. Hence we may pick 𝛿 > 0 such that for all 𝜇 ∈ 𝐾 and all
𝑥 ∈ ℂ̂, if |||𝜇 − 𝜇0||| < 𝛿 then |||𝑖(𝜇, 𝑥) − 𝑖(𝜇0, 𝑥)||| < 𝜀.

Now observe that

diamΛ(𝜇) = sup
𝑥,𝑦∈Λ(𝜇0)

|||𝑖(𝜇, 𝑥) − 𝑖(𝜇, 𝑦)|||

≤ sup
𝑥,𝑦∈Λ(𝜇0)

(|||𝑖(𝜇, 𝑥) − 𝑖(𝜇0, 𝑥)||| + |||−𝑖(𝜇, 𝑦) + 𝑖(𝜇0, 𝑦)||| + |||𝑖(𝜇0, 𝑥) − 𝑖(𝜇0, 𝑦)|||)

≤ 2 sup
𝑥∈Λ(𝜇0)

|||𝑖(𝜇, 𝑥) − 𝑖(𝜇0, 𝑥)||| + sup
𝑥,𝑦∈Λ(𝜇0)

|||𝑖(𝜇0, 𝑥) − 𝑖(𝜇0, 𝑦)|||

= 2 sup
𝑥∈Λ(𝜇0)

|||𝑖(𝜇, 𝑥) − 𝑖(𝜇0, 𝑥)||| + diamΛ(𝜇0)

and so
|||diamΛ(𝜇) − diamΛ(𝜇0)||| ≤ diamΛ(𝜇) − diamΛ(𝜇0) ≤ 2𝜀

when 𝜇 is chosen 𝛿-close to 𝜇0 as above. mAk

8.4.6 Lemma. Let {𝐺𝜇}𝜇∈𝐷 be a holomorphic family of Kleinian groups and pick a basepoint 𝜇0 ∈ 𝐷.
Without loss of generality, assume that the component Ω∗(𝜇) is bounded in ℂ (if ∞ ∈ Ω∗(𝜇) then
replace 𝐺 with its conjugate under a transformation moving∞ into Λ𝐺𝜇). Let 𝐾 ⊆ Ω∗(𝜇0) be convex
and compact. Then, for every 𝜀 > 0, there exists 𝛿 > 0 depending only on 𝜀 and 𝑑(𝐾,Λ𝜇0) such that

2I should add the general principles of this to the chapter on hyperbolic convexity... in fact there should be a ‘chapter 0’ on
hyperbolic geometry and convexity.
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Figure 8.8: Heights above retractions of h−conv Λ(𝜇).

1. 𝐾 ⊆ Ω∗(𝜇) whenever |||𝜇 − 𝜇0||| < 𝛿; and

2. 𝑑𝑍(𝑟𝜇(𝑧), 𝑟𝜇0(𝑧)) < 𝜀 whenever |||𝜇 − 𝜇0||| < 𝛿 and 𝑧 ∈ 𝐾

(where 𝑑𝑍 is the metric on 𝐻3 × 𝔾2(𝐻3) which induces the Euclidean distance on the first component
and the dihedral angle metric on the second).

Proof. ByLemma8.4.4 andLemma8.4.5, wemaypick some 𝛿0 > 0 such that𝑑(𝐾,Λ(𝜇)) > 𝑑(𝐾,Λ(𝜇0))∕2
and diamΛ(𝜇) > diamΛ(𝜇0)∕2 whenever |||𝜇 − 𝜇0||| < 𝛿0. Hence, since 𝑑(𝐾,𝑤) ≥ 𝑑(𝐾,Λ(𝜇)) for all
𝑤 ∉ Ω∗(𝜇), we have that 𝐾 ⊂ Ω∗(𝜇) for all such 𝜇.

Assume now that diamΛ(𝜇) is bounded below by 𝑐 > 0, and let 𝑧 ∈ 𝐾 be arbitrary. Since
𝑑(𝐾,Λ(𝜇)) > 𝑑(𝐾,Λ(𝜇0))∕2 for 𝜇 𝛿0-close to 𝜇0, there exists (by a compactness argument) a constant
𝑎′ independent of 𝑧 such that height 𝑟𝜇(𝑧) ≥ 𝑎′ (Fig. 8.8)

Let 𝑟0(𝑧) = (𝜉, 𝑃0), and let 𝛾 be the geodesic extending [𝜉, 𝑧]. Let 𝐻𝑡, for 𝑡 ∈ (−height 𝜉,∞), be
the horosphere based at 𝑧 through the point on 𝛾 with signed distance 𝑡 from 𝜉, measured such that
the values of 𝑡 corresponding to points on [𝜉, 𝑧] are negative. mAk

Proof of Proposition 8.4.2. mAk
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Chapter 9

Combination theorems

The notes in this chapter are based on the lectures by Jeroen.

9.1 Amalgamated free products
Let 𝐺1, 𝐺2 be subgroups of some fixed universal group Γ, and let 𝐽 ≤ Γ be a shared subgroup of both
𝐺1 and 𝐺2 such that [𝐺𝑚 ∶ 𝐽] > 1 for 𝑚 ∈ {1, 2}. We say that a word in the elements of 𝐺1 ∪ 𝐺2 is a
normal form if it is of the form 𝑔𝑚⋯ 𝑔1 where either

• for all 𝑖 odd, 𝑔𝑖 ∈ 𝐺1 ⧵ 𝐽; and for all 𝑖 even, 𝑔𝑖 ∈ 𝐺2 ⧵ 𝐽; or

• for all 𝑖 odd, 𝑔𝑖 ∈ 𝐺2 ⧵ 𝐽; and for all 𝑖 even, 𝑔𝑖 ∈ 𝐺1 ⧵ 𝐽.

We place an equivalence relation on the space of normal forms; for all 𝑗 ∈ 𝐽 and all 1 < 𝑘 ≤ 𝑛, we
say

𝑔𝑛⋯ 𝑔1 ∼ 𝑔𝑛⋯ (𝑔𝑘𝑗)(𝑗−1𝑔𝑘−1)⋯ 𝑔1.

(Observe that 𝑔𝑘𝑗 must lie in 𝐺𝑚 if 𝑔𝑘 lies in 𝐺𝑚, and cannot be an element of 𝐽 as otherwise 𝑔𝑘
= (𝑔𝑘𝑗)𝑗−1 is an element of 𝐽; similarly, 𝑗−1𝑔𝑘−1 ∈ 𝐺3−𝑚 and so the word on the right is indeed a
normal form.)

We say that the normal form 𝑔𝑛⋯ 𝑔1 is a𝑚-form if 𝑔𝑛 ∈ 𝐺𝑛.

9.1.1 Lemma. If the normal forms 𝜑 and 𝜗 are equivalent, and 𝜑 is a 𝑚-form, then 𝜗 is an 𝑚-form.
mAk

We impose a multiplication on normal forms as follows: the product of two forms 𝜑 = 𝑔𝑛⋯ 𝑔1
and 𝜗 = ℎ𝑘⋯ℎ1 is the word obtained by juxtaposing 𝜑.𝜗; this is clearly a normal form, unless
𝑔1ℎ𝑘 ∈ 𝐽 in which case either 𝑘 = 𝑛 = 1 and 𝜑.𝜗 = 𝑔1ℎ𝑘 ∈ 𝐽, or one of 𝑔2(ℎ1ℎ𝑘) or (𝑔1ℎ𝑘)ℎ𝑘−1 lies in
some𝐺𝑚 ⧵𝐽 (being the same type as 𝑔2 or ℎ𝑘−1 respectively if either of these exists). In particular, 𝜑.𝜗
is either an element of 𝐽 or a normal form. The amalgamated free product of 𝐺1 and 𝐺2 along 𝐽 is
the group 𝐺1 ∗𝐽 𝐺2 supported on the union of the set of equivalence classes of words normal forms
and the set of elements of 𝐽, with the natural extension of this multiplication.
Remark. An alternative description of the amalgamated product is found in [41, section I.1].

9.1.2 Example. ℤ ∗ ℤ ≃ 𝐹2 (here we adhere to the convention that if the common subgroup is
omitted from the notation, it is implicitly understood to be 1).

9.1.3 Example. For this example we use the following theorem from algebraic topology.

101
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Theorem ([33, theorem 10.12]). Let𝑋 be a finite connected graphwithmaximal spanning tree𝑇; then
𝜋1(𝑋) is a free group generated by elements in bijective correspondence with the edges not in 𝑇.

Let 𝑋 and 𝑌 be the disjoint graphs

𝑋 = 𝑎 𝑏 ; 𝑌 = 𝑐 𝑑 .

In each case, the graph induced by the black edges is a maximal spanning tree and so 𝜋1(𝑋) ≃ ⟨𝑎, 𝑏⟩
and 𝜋1(𝑌) ≃ ⟨𝑐, 𝑑⟩. Consider the graph 𝑍 obtained by gluing 𝑋 and 𝑌 along the 4-cycles containing
𝑎 and 𝑐 respectively:

𝑍 = 𝑎 ∼ 𝑐 𝑑𝑏 .

Again the black edges induce a spanning tree, so the fundamental group of 𝑍 is the amalgamated
product of 𝜋1(𝑋) and 𝜋1(𝑌) along the subgroup 𝐽 obtained by identifying ⟨𝑎⟩ ≤ 𝜋1(𝑋) with ⟨𝑐⟩ ≤
𝜋1(𝑌). More abstractly, 𝜋1(𝑍) = 𝐹2 ∗ℤ 𝐹2.

This is a special case of the Seifert-Van Kampen theorem [33, theorem 10.1].

9.1.4 Example (Advanced example). SL(2,ℤ) ≃ ℤ∕4ℤ ∗ℤ∕2ℤ ℤ∕6ℤ [41, section I.4.2].

Let Φ denote the natural group homomorphism

Φ ∶ 𝐺1 ∗𝐽 𝐺2 → 𝐺 = ⟨𝐺1, 𝐺2⟩

Φ(𝑔) = {
𝑔𝑛⋯ 𝑔1 when 𝑔 is the normal form 𝑔𝑛⋯ 𝑔1;
𝑔 when 𝑔 ∈ 𝐽.

If 𝜗 = 𝑔𝑛⋯ 𝑔1 is a normal form, we set |𝜗| = 𝑛 and call this number the length of the normal form.

9.1.5 Lemma. If the normal forms 𝜑 and 𝜗 are equivalent, then |||𝜑||| = |𝜗|. mAk

Observe that normal forms are not necessarily unique unless the amalgamated product is actually
a free product (i.e. 𝐽 = 1).

9.1.6 Lemma. Suppose 𝐺 = 𝐺1 ∗𝐽 𝐺2 and 𝐺̃ = 𝐺1 ∗𝐽 𝐺2. If 𝜙1 ∶ 𝐺1 → 𝐺2 and 𝜙2 ∶ 𝐺1 → 𝐺2 are
isomorphisms such that 𝜙1↾𝐽 = 𝜙2↾𝐽 is an isomorphism 𝐽 → 𝐽, then there exists a unique 𝜙 ∶ 𝐺 → 𝐺̃
with 𝜙↾𝐺1 = 𝜙1 and 𝜙↾𝐺2 = 𝜙2. mAk

Our goal is a criterion for writing 𝐺 as an amalgamated free product. We will actually do some-
thing less impressive, namely develop a criterion for writing a group 𝐺 = ⟨𝐺1, 𝐺2⟩ which acts freely
discontinuously on 𝑋 as an amalgamated free product.

We shall be proving a version of the ping-pong lemma, the philosophy of which is often at-
tributed to Fricke and Klein.
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Figure 9.1: A generic interactive pair.

Figure 9.2: An interactive pair on 𝑆3.

9.1.7 Definition. Suppose 𝐺 = ⟨𝐺1, 𝐺2⟩ and 𝐽 is a shared proper subgroup of 𝐺1 and 𝐺2. Suppose 𝐺
acts on a set 𝑋.

A pair (𝑋1, 𝑋2) of subsets of 𝑋 is an interactive pair if the following hold (compare Fig. 9.1):

1. 𝑋1 ≠ ∅, 𝑋2 ≠ ∅, and 𝑋1 ∩ 𝑋2 = ∅;

2. 𝐽𝑋1 ⊆ 𝑋1 and 𝐽𝑋2 ⊆ 𝑋2; and

3. (𝐺1 ⧵ 𝐽)𝑋1 ⊆ 𝑋2 and (𝐺2 ⧵ 𝐽)𝑋2 ⊆ 𝑋1.

9.1.8 Proposition. Let𝑋 = 𝑆𝑛,𝐺 = M(𝑛) the group ofMöbius transformationswith the natural action
on the unit sphere via stereographic projection (see chapter 1), and let𝑊 be a topological (𝑛−1)-sphere
on 𝑋 bounding two open discs 𝑋1 and 𝑋2 (see Fig. 9.2). Suppose 𝐺 = ⟨𝐺1, 𝐺2⟩ with 𝐽 a shared proper
subgroup of both 𝐺1 and 𝐺2.

If each 𝑋𝑚 is precisely invariant under 𝐽 in 𝐺𝑚, then (𝑋1, 𝑋2) is an interactive pair.

Proof. Take 𝑔 ∈ 𝐺1⧵𝐽. Since𝑋1 is 𝐽-invariant,𝑋1 is 𝐽-invariant (by continuity). Wehave 𝑔𝑋1∩𝑋1 = ∅
for all such 𝑔 and so since𝑊 = 𝜕𝑋1 we have 𝑔𝑊∩𝑋1 = ∅. Then 𝑔(𝑋1) ⊆ 𝑋2 by inspection of Fig. 9.2;
similarly 𝑔(𝑋2) ⊆ 𝑋1. mAk

If Γ is a group acting on a space 𝑋, by the axiom of choice there is a set 𝐷 ⊆ 𝑋 containing exactly
one representative of each orbit of Γ∕𝑋. We call such a set a fundamental set.
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9.1.9 Theorem. If 𝐺 acts freely discontinuously on a non-empty open set𝑈 ⊆ 𝑋, and if 𝐺 = 𝐺1 ∗𝐽 𝐺2,
then there exists an interactive pair for the action.

Proof. By the axiom of choice, there exists a fundamental set 𝐷 ⊆ 𝑈 containing exactly one repre-
sentative for each orbit of 𝐺 in 𝑋. Let 𝑋1 =

⋃
𝑔(𝐷) where the union is taken over 2-forms and let

𝑋2 =
⋃
𝑔(𝐷)where the union is taken over 1-forms. Both𝑋1 and𝑋2 are non-empty since there exist

1- and 2-forms; both 𝑋1 and 𝑋2 are 𝐽-invariant, since if 𝑔(𝑑) ∈ 𝑔(𝐷) for some 𝑑 ∈ 𝐷 and some 𝑔 an
𝑚-form, then 𝑗𝑔 is also an𝑚-form and so 𝑗𝑔(𝑑) = (𝑗𝑔)(𝑑) ∈ 𝑋𝑚.

We now show that 𝑋1 ∩ 𝑋2 = ∅. Suppose for the sake of contradiction that 𝑥 ∈ 𝑋1 ∩ 𝑋2. Then
𝑥 = ℎ1(𝑦1) = ℎ2(𝑦2) for some 𝑦1, 𝑦2 ∈ 𝐷 and some ℎ1, ℎ2 ∈ 𝐺 respectively a 1- and a 2-form.
Hence 𝑦1 = 𝑦2 ≕ 𝑦 since otherwise 𝑦1, 𝑦2 would be two distinct orbit representatives in 𝐷. Write
ℎ1 = 𝑔𝑛⋯ 𝑔1 and ℎ2 = 𝑓𝑘⋯𝑓1; by construction ℎ−11 ℎ2(𝑦) = 𝑦 and so since 𝑦 ∈ ◦Ω we have
ℎ−11 ℎ2 = 1. On the other hand, ℎ−11 ℎ2 = 𝑔−11 ⋯ 𝑔−1𝑛 𝑓𝑘⋯𝑓1; since 𝑔−1ℎ ∈ 𝐺1 ⧵ 𝐽 and 𝑓𝑘 ∈ 𝐺2 ⧵ 𝐽, so
ℎ−11 ℎ2 is a normal form, thus not the identity (contradiction.) mAk

We remark that the converse is not true:

9.1.10 Example. Define subgroups of𝕄 as follows:

𝑗(𝑧) = 𝑧 + 1 𝐽 = ⟨𝑗⟩
𝑔1(𝑧) = −𝑧 𝑔2,𝑎 = −𝑧 + 2𝑎 (𝑎 > 0)
𝐺1 = ⟨𝑗, 𝑔1⟩ 𝐺2,𝑎 = ⟨𝑗, 𝑔2,𝑎⟩.

Then 𝐺1 ≃ 𝐷∞ and 𝐺2,𝑎 is a conjugate of 𝐺1 in𝕄.
Now we show that there exists an interactive pair for the action of 𝐺 with respect to the data

𝐺1 ≥ 𝐽 ≤ 𝐺2, but that 𝐺 is not the amalgamated product 𝐺1 ∗𝐽 𝐺2. Let 𝑋1 = 𝐻2 be the upper
half-plane and 𝑋2 = 𝐻2− the lower half-plane of ℂ.

Observe that 𝑋1 is precisely invariant under 𝐽 in 𝐺1 and that 𝑋2 is precisely invariant under 𝐽 in
𝐺2,𝑎. Thus (𝑋1, 𝑋2) is an interactive pair.

Suppose 𝑎 is irrational. Then 𝐺2,𝑎 is not discrete, so the action is not freely discontinuous. Sup-
pose 𝑎 is rational. Then some power of 𝑔1𝑔2,𝑎 lies in 𝐽, but 𝑔1𝑔2,𝑎 is an alternating nontrivial product
of elements not in 𝐽.

We say that 𝜗 = 𝑔𝑛⋯ 𝑔1 is a (𝑚, 𝑘)-form if 𝑔𝑛 ∈ 𝐺𝑚⧵𝐽 and 𝑔1 ∈ 𝐺𝑘⧵𝐽. We say that an interactive
pair (𝑋1, 𝑋2) is proper if either

• there exists a point in 𝑋1 not 𝐺2-equivalent to any point in 𝑋2, or

• there exists a point in 𝑋2 not 𝐺1-equivalent to any point in 𝑋1.

The claim is that this condition is enough to ensure that the situation of Example 9.1.10 does not
occur, and in fact we get a converse to Theorem 9.1.9.

We hide the difficulties in the following lemma.

9.1.11 Lemma. Suppose 𝐺 = ⟨𝐺1, 𝐺2⟩ acts on 𝑋 and suppose 𝐺1 > 𝐽 < 𝐺2 is a shared subgroup.
If there exists an interactive pair (𝑋1, 𝑋2) for this data, and if 𝜗 = 𝑔𝑛⋯ 𝑔1 is an (𝑚, 𝑘)-form, then
Φ(𝑔)(𝑋𝑘) ⊆ 𝑋3−𝑚. Further, this inclusion is proper if (𝑋1, 𝑋2) is proper and |𝜗| > 1.

Proof. Wego by induction on𝑛. If𝑛 = 1 then𝑚 = 𝑘 and 𝑔1(𝑋𝑘) ⊆ 𝑋3−𝑘 by the properties of inductive
pairs. Now assume 𝑛 ≥ 1 and thatΦ(𝑔𝑛⋯ 𝑔1)(𝑋𝑘) = 𝑔𝑛⋯ 𝑔1(𝑋𝑘) ⊆ 𝑋3−𝑚, where 𝑔𝑛⋯ 𝑔1 is a (𝑚, 𝑘)-
form; if 𝑔𝑛+1 ∈ 𝐺3−𝑚 − 𝐽 then 𝑔𝑛+1(𝑋3−𝑚) ⊆ 𝑋𝑚 and thus 𝑔𝑛+1⋯ 𝑔1(𝑋𝑘) ⊆ 𝑔𝑛−1(𝑋3−𝑚) ⊆ 𝑋𝑚. This
proves the first statement.

We now prove the properness statement; suppose (𝑋1, 𝑋2) is proper and |𝜗| > 1/ Without loss of
generality, assume the 𝐺1-translates of 𝑋1 do not cover 𝑋2. We have two cases:
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(a) If 𝑔1 ∈ 𝐺1 ⧵ 𝐽, then 𝑔1(𝑋1) ⊂ 𝑋2 and so 𝑔𝑛⋯ 𝑔1(𝑋1) ⊂ 𝑋3−𝑚.

(b) If 𝑔1 ∈ 𝐺2 ⧵ 𝐽, then (here is where we use |𝜗| > 1) 𝑔2 ∈ 𝐺1 ⧵ 𝐽, so 𝑔2𝑔1(𝑋1) ⊂ 𝑋2 by (a). mAk

9.1.12 Theorem (Ping-pong lemma). Suppose 𝐺 = ⟨𝐺1, 𝐺2⟩ acts on 𝑋 and suppose 𝐺1 > 𝐽 < 𝐺2 is a
shared subgroup. If there exists a proper interactive pair (𝑋1, 𝑋2) for this data, then 𝐺 ≃ 𝐺1 ∗𝐽 𝐺2.

Proof. No normal form of length 1 can be the identity. Assume |𝜗| = 𝑛 > 1 for 𝜗 = 𝑔𝑛⋯ 𝑔1; then for
each𝑚 ∈ {1, 2}, Φ(𝜗)(𝑋𝑚) is properly contained in either 𝑋1 or 𝑋2 by Lemma 9.1.11 and soΦ(𝜗) ≠ 1
(so 𝜗 ≠ 1). mAk

9.2 Applications of amalgamated products to group theory

See [5] for this and further material.

9.2.1 Theorem (Higman, 1951). There exists a finitely presented group 𝐺 which is isomorphic to one
of its proper factor groups.

9.2.2 Theorem (Higman, Neumann, and Neumann, 1949). Every countable group can be embedded
in a 2-generator group.

For a proof of Theorem 9.2.2 see [5, p. 105].

Proof of Theorem 9.2.1. Let 𝐴 = ⟨𝑎, 𝑠 ∶ 𝑠𝑎𝑠−1 = 𝑎2⟩, 𝐵 = ⟨𝑏, 𝑡 ∶ 𝑡𝑏𝑡−1 = 𝑏2⟩, 𝐺 = 𝐴 ∗𝐽 𝐵 where 𝐽 is
the subgroup of 𝐴 ∗ 𝐵 generated by 𝑎𝑏−1. Let 𝐻 = ⟨𝑎⟩, 𝐾 = ⟨𝑏⟩, and let 𝜑 ∶ 𝐻 → 𝐾 be the natural
isomorphism sending 𝑎 ↦ 𝑏.

Define 𝛼 ∶ 𝐴 → 𝐺 and 𝛽 ∶ 𝐵 → 𝐺 by

𝛼(𝑎) = 𝑎2 𝛽(𝑏) = 𝑏2
𝛼(𝑠) = 𝑠 𝛽(𝑡) = 𝑡;

clearly 𝛼 and 𝛽 agree on 𝐻 (in the sense that 𝛼(ℎ) = 𝛽(𝜑(ℎ)) for all ℎ ∈ 𝐻) and so there is a homo-
morphism 𝜇 ∶ 𝐺 → 𝐺 which restricts to 𝛼 = 𝛽 on the subgroup 𝐽 (Lemma 9.1.6).

Note that 𝜇𝐺 includes {𝑎2, 𝑠, 𝑡} and so 𝜇𝐺 contains 𝑎 = 𝑠−1𝑎2𝑠; hence 𝜇𝐺 includes {𝑎, 𝑠, 𝑡} which
is a generating set for 𝐺, i.e. 𝜇𝐺 = 𝐺; hence 𝐺 ≃ 𝐺∕ ker𝜇.

It remains to show that ker𝜇 ≠ 1: one can check easily that 𝑠𝑎𝑠−1𝑡𝑏−1𝑡−1 ∈ ker𝜇, and this is an
alternating product of elements of 𝐴 and 𝐵 so is a normal form, hence not the identity. mAk

We conclude by noting that the usual definition of the amalgamated product is as follows: if
𝐴 ≤ 𝐺 and 𝐵 ≤ 𝐻 are groups, and 𝜑 ∶ 𝐴 → 𝐵 is an isomorphism, then we define

𝐴 ∗𝜑 𝐵 ≔ 𝐺 ∗ 𝐻

{𝜑(𝑎)𝑎−1 ∶ 𝑎 ∈ 𝐴}

(where 𝐾 denotes the normal closure in Γ of some 𝐾 ≤ Γ).
This construction (and the construction following ofHNN-extensions) is a special case of the prin-

ciple of Bass-Serre theory in which various generalisations of free products are realised as fundamen-
tal groups of a ‘graph of groups’, see [41, section I.5].
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Figure 9.3: The interactive pair and one half of the packing 𝐷 for Theorem 9.3.1.

9.3 The Klein combination theorem
Let 𝐺 be a group acting on a space 𝑋, and let 𝑌 ⊆ 𝑋 be precisely invariant under 𝐻 ≤ 𝐺. We say
that a fundamental set 𝐷 for 𝐺 ismaximal (with respect to 𝑌) if 𝐷 ∩𝑌 is a fundamental set for the
action of 𝐽 on 𝑌.

See Fig. 9.3 for the setup of the following.

9.3.1 Theorem. Let 𝐺1 ≥ 𝐽 ≤ 𝐺2 act discontinuously on 𝑋. Assume that there is an interactive pair of
sets (𝑋1, 𝑋2) for this system, and assume that for each 𝑚 ∈ {1, 2} there exists a minimal fundamental
set 𝐷𝑚 for 𝐺𝑚 such that for all 𝑔 ∈ 𝐺𝑚,

𝑔(𝐷𝑚 ∩ 𝑋3−𝑚) ⊆ 𝑋3−𝑚

Let 𝐷 = (𝐷1 ∩ 𝑋2) ∪ (𝐷2 ∩ 𝑋1). Then 𝐷 is a 𝐺-packing.

Proof. Without loss of generality, assume 𝑥 ∈ 𝐷1 ∩ 𝑋2 and that 𝑥 is nontrivial.

Case that 𝑔 ∈ 𝐽. If 𝑔 ∈ 𝐽, then 𝑔(𝑥) ∈ 𝑋2 since 𝑋2 is 𝐽-invariant; further, 𝑔(𝑥) ∉ 𝐷1, since
otherwise 𝑥, 𝑔(𝑥) ∈ 𝐷1 contradicting uniqueness of orbit representatives. Thus 𝑔(𝑥) ∈ 𝑋2 ⧵ 𝐷1 and
thus 𝑔(𝑥) ∉ 𝐷.

Case that 𝑔 ∉ 𝐽. We proceed by induction on the length of 𝑔 as a normal form. If |||𝑔||| = 1, then we
have two cases: either 𝑔 ∈ 𝐺1 ⧵ 𝐽, or 𝑔 ∈ 𝐺2 ⧵ 𝐽. In either case using the hypothesised properties of
the 𝑋𝑚 and 𝐷𝑚 we have 𝑔(𝑥) ∈ 𝑋1 ⧵ 𝐷1.

Now suppose 𝑔 = 𝑔𝑛⋯ 𝑔1 is in normal form with 𝑛 > 1; the inductive hypthesis takes the form
‘if ℎ ∈ 𝐺 is an 𝑚-form with |ℎ| < 𝑛 then Φ(ℎ)(𝑥) ∈ 𝑌3−𝑚 ⧵ 𝐷𝑚’. Take ℎ = 𝑔𝑛−1⋯ 𝑔1. Case I: ℎ is a
1-form. Then 𝑔𝑛−1 ∈ 𝐺1 ⧵ 𝐽 so ℎ(𝑥) ∈ 𝑋2 ⧵ 𝐷1, and 𝑔𝑛 ∈ 𝐺2 ⧵ 𝐾 so 𝑔𝑛(𝑋2) ⧵ 𝑋1 i.e. 𝑔(𝑥) ∈ 𝑋1 and
𝑔(𝑥) ∉ 𝐷2. Case II: ℎ is a 2-form. Similar proof. mAk

9.3.2 Theorem (Klein combination theorem). Let𝐺1, 𝐺2 act freely and discontinuously on some open
subset of a topological space𝑋, and let 𝐺 = ⟨𝐺1, 𝐺2⟩. Suppose for each𝑚 there exists a fundamental set
𝐷𝑚 for 𝐺𝑚 with 𝐷1 ∪ 𝐷2 = 𝑋 and 𝐷1 ∩ 𝐷2 ≠ ∅. Then 𝐺 = 𝐺1 ∗ 𝐺2 and 𝐷 ≔ 𝐷1 ∩ 𝐷2 is a 𝐺-packing.



9.4. HNN-EXTENSIONS 107

Proof. Assume𝐺1,𝐺2 nontrivial. Then both𝐷1⧵𝐷2 and𝐷2⧵𝐷1 are both nontrivial. Let𝑋1 ≔ 𝐷1⧵𝐷2
and 𝑋2 ≔ 𝐷2. We show that (𝑋1, 𝑋2) is a proper interactive pair for the system 𝐺1 ≥ 1 ≤ 𝐺2. If
𝑔 ∈ 𝐺1 ⧵ {1} then 𝑔𝐷1 ∩ 𝐷1 ≠ ∅ since 𝐷1 is fundamental for 𝐺1; hence 𝑔𝑋1 ⊆ 𝑔𝐷1 ⊆ 𝐷2 = 𝑋2.
If 𝑔 ∈ 𝐺2 ⧵ {1} then 𝑔𝑋2 ⊆ 𝑋1 since 𝑔𝑋2 = 𝑔𝐷2 ∩ 𝐷2 = ∅. Further the pair is proper since if
𝑥 ∈ 𝐷 = 𝐷1 ∩𝐷2 then 𝑥 ∈ 𝑋2 and 𝑔𝑥 ∉ 𝑋1 for any 𝑔 ∈ 𝐺1. We now use Theorem 9.1.12 to conclude
that 𝐺 = 𝐺1 ∗ 𝐺2.

Now we show that 𝐷 is a 𝐺-packing. Note that 𝐷𝑚 ∩𝑋𝑚 = 𝑋𝑚 for each𝑚, hence 𝐷𝑚 is maximal;
then apply Theorem 9.3.1. mAk

9.4 HNN-extensions

Motivation:

1. Given two isomorphic subgroups of a given group 𝐺, are they always conjugate in 𝐺? Answer:
no, for instance if 𝐺 is abelian then all conjugacy classes are trivial. However, there is some
overgroup of 𝐺 in which they are conjugate.

2. Algebraic topology: see e.g. [22, section 13.3] or [26, p. 93].

Here is the ‘correct’ definition:

9.4.1 Definition. Let 𝐺 be a group, 𝐴, 𝐵 ≤ 𝐺, and 𝜑 ∶ 𝐴 → 𝐵 an isomorphism. Suppose ⟨𝑡⟩ is the
free group on some symbol 𝑡 unrelated to𝐺. Then theHNN-extension of𝐺 relative to𝐴 and 𝐵with
stable letter 𝑡 is the group

𝐺 ∗𝑡≔ ⟨𝐺, 𝑡 ∶ ∀𝑎∈𝐴𝑡−1𝑎𝑡 = 𝜑(𝑎)⟩ = 𝐺 ∗ ⟨𝑡⟩

{𝑎 ∈ 𝐴 ∶ 𝑡−1𝑎𝑡(𝜑(𝑎))−1}
.

Remark. It follows, e.g. from the lemma of Britton [41, I.5.2 theorem 11], that the quotient in the
definition above does not collapse.

A more concrete definition is now given. Let 𝐺0, 𝐺1 and 𝐽1, 𝐽2 ≤ 𝐺0 be groups such that

1. 𝐺0 ∩ 𝐺1 = ∅;

2. 𝐺1 is the cyclic group on the symbol 𝑓;

3. the map 𝑓∗ ∶ 𝐽1 → 𝐽2 defined by 𝑓∗𝑗 = 𝑓𝑗𝑓−1 (the product taken in ⟨𝐺0, 𝐺1⟩) is an isomor-
phism.

9.4.2 Definition. A normal form is a word in 𝐺0 ∪ 𝐺1 of the form 𝑓𝛼𝑛𝑔𝑛⋯𝑓𝛼1𝑔1, where

1. each 𝑔𝑘 ∈ 𝐺0;

2. for 𝑘 > 1, 𝑔𝑘 ≠ 1;

3. all 𝛼𝑘 ∈ ℤ, with only 𝛼0 allowed to be 0;

4. if 𝛼𝑘 < 0 and 𝑔𝑘+1 ∈ 𝐽1 ⧵ 1, then 𝛼𝑘+1 < 0;

5. if 𝛼𝑘 > 0 and 𝑔𝑘+1 ∈ 𝐽2 ⧵ 1, then 𝛼𝑘+1 > 0.



108 CHAPTER 9. COMBINATION THEOREMS

Two such forms are equivalent if wemay obtain one from the other by a finite sequence of insertions
and deletions of words of the form 𝑓𝑗𝑓−1(𝑓∗𝑗)−1 or conjugates or inverses of these. Every word
𝑓𝛼𝑛𝑔𝑛⋯𝑓𝛼1𝑔1 is equivalent either to a normal formor to 1. TheHNN-extension of𝐺0 by𝑓, denoted
𝐺0 ∗𝑓 , is the set of normal forms (together with 1) modulo equivalence, with juxtaposition as the
operation.

There exists a natural homomorphism Φ ∶ 𝐺0 ∗𝑓→ ⟨𝐺0, 𝐺1⟩ defined by Φ(𝑓𝛼𝑛𝑔𝑛⋯𝑓𝛼1𝑔1) =
𝑓𝛼𝑛𝑔𝑛⋯𝑓𝛼1𝑔1.

Normal forms have unique representative in 𝐺0 ∗𝑓 iff 𝐽1 = 𝐽2 = 1 (and in this case 𝐺 = 𝐺0 ∗ 𝐺1).
The length of a normal form is |||𝑓𝛼𝑛𝑔𝑛⋯𝑓𝛼1𝑔1||| ≔

∑𝑛
𝑚=1

|||𝛼𝑚|||. This is well-defined by properties
4 and 5 of the definition above of normal forms. In addition, we say that 𝑔 = 𝑓𝛼𝑛𝑔𝑛⋯𝑓𝛼1𝑔1 is
positive (𝑔 > 0), null (𝑔 ∼ 0), or negative (𝑔 < 0) if 𝛼𝑛 is positive, 0, or negative respectively. Again
by properties 4 and 5 of the definition, sign is well-defined.

9.4.3 Lemma. Isomorphisms on 𝐺0 and 𝐺1 can be extended. More precisely, suppose 𝐺 = 𝐺0 ∗𝑓 ,
𝐺̃ = 𝐺0 ∗𝑓 , and suppose 𝑓 and 𝑓 respectively conjugate 𝐽1 → 𝐽2 and 𝐽1 → 𝐽2. Given 𝜑0 ∶ 𝐺0 →
𝐺0 and 𝜑1 ∶ 𝐺1 → 𝐺1 both isomorphisms with 𝜑1(𝑓) = 𝑓 and with 𝜑0(𝐽𝑚) = ̃𝐽𝑚 (𝑚 ∈ {1, 2}), if
𝜑0𝑓∗↾𝐽1 − 𝑓∗𝜑0↾𝐽1 , then we obtain an isomorphism 𝜑 ∶ 𝐺 → 𝐺̃ which agrees with 𝜑0 and 𝜑1 on their
respective domains. mAk



Chapter 10

Combinatorial group theory and
algebraic geometry

In this chapter, we study combinatorial group theory from the point of view of Bass-Serre theory
and algebraic geometry. Our primary source is [15]. We shall often reference [40] for representation
theory, and [42] and [25] for algebraic geometry.

10.1 Representation theory
Let Π be a finitely generated group. Eventually, Π will be 𝜋1(𝑀) for some 3-manifold𝑀.

Recall that a representation of Π is a homomorphism 𝜌 ∶ Π → GL(2, 𝑘), where 𝑘 is a field.
In this chapter, we will usually be interested in representations with image in SL(2,ℂ); the set of
all such representations will be denoted by Rep(Π). We say that two representations 𝜌1 and 𝜌2 are
equivalent if there exists some 𝛼 ∈ GL(2, 𝑘) such that 𝜌1 = 𝛼𝜌2𝛼−1.

Given a representation 𝜌, the character of 𝜌 is the function 𝜒𝜌 ∶ Π → 𝑘 defined by 𝜒𝜌(𝑔) =
tr 𝜌(𝑔). Since tr is conjugacy invariant, 𝜌1 ∼ 𝜌2 implies 𝜒𝜌1 = 𝜒𝜌2 . The converse of this statement is
a standard fact in the finite group case (see for instance [40, corollary 2 to theorem 4 of chapter 2])
but is less standard in the finite generated group case, and requires additional qualification. Recall
that a representation 𝜌 ∶ Π→ GL(𝑛, 𝑘) is irreducible if the only subspaces ofℝ𝑛 irreducible under
𝜌(Π) are 0 and 𝑘𝑛.

10.1.1 Theorem. Let 𝜌1 and 𝜌2 be representations ofΠ intoGL(𝑛,ℂ). If 𝜌1 is irreducible, then 𝜌1 ∼ 𝜌2
if and only if 𝜒𝜌1 = 𝜒𝜌2 . mAk

Let Π = ⟨𝑔1, ..., 𝑔𝑛⟩. Define

𝑅(Π) ≔ {(𝜌𝑔1, ..., 𝜌𝑔𝑛) ∶ 𝜌 ∈ Rep(Π)}.

10.1.2 Lemma. The set 𝑅(Π) is an affine subvariety of ℂ4𝑛.
For each choice of generators of Π, there is a natural bijective correspondence between the set 𝑅(Π)

defined with respect to that set of generators, and the set Rep(Π). Further, if {𝑔1, ..., 𝑔𝑛} and {ℎ1, ..., ℎ𝑚}
are generating sets forΠ then the natural bijection

{(𝜌𝑔1, ..., 𝜌𝑔𝑛) ∶ 𝜌 ∈ Rep(Π)}→ {(𝜌ℎ1, ..., 𝜌ℎ𝑚) ∶ 𝜌 ∈ Rep(Π)}
(𝜌𝑔1, ..., 𝜌𝑔𝑛)↦ (𝜌ℎ1, ..., 𝜌ℎ𝑚)

109
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is an isomorphism of varieties. Thus 𝑅(Π), as an abstract variety, is well-defined independent of any
choice of generating set.

Proof. Suppose thatΠ = ⟨𝑔1, ..., 𝑔𝑛⟩ and that𝑊 is the set of words in the generators which are trivial
in Π. Suppose that 𝑧 ∈ 𝑅(Π) with respect to these generators; then 𝑧 = (𝜌𝑔1, ..., 𝜌𝑔𝑛) for some
𝜌 ∶ Π→ SL(2,ℂ). Since 𝜌 is a homomorphism, if 𝑤 ∈𝑊 is of the form 𝑤 = 𝑔𝑛1𝑖1 ⋯ 𝑔𝑛𝑟𝑖𝑟 then

(*) 𝐼 = 𝜌(𝑤) = (𝜌𝑔𝑖1)
𝑛1 ⋯ (𝜌𝑔𝑖𝑟 )

𝑛𝑟 .

In particular, we obtain for each 𝑤 ∈ 𝑊 a set of four polynomial equations in the coefficients of
elements of SL(2,ℂ)𝑛, one for each component of the matrix equation (*). Let 𝑆 be the set of all
of the equations in obtained in this way (so 𝑆 contains four equations for each relation in 𝐺). If
𝑧 ∈ SL(2,ℂ)𝑛 satisfies all of these relations, then we may define a representation 𝜌 ∈ Rep(Π) by
setting 𝜌𝑔𝑖 to be thematrix corresponding to the 𝑖thmatrix component of 𝑧. We have shown therefore
that 𝑅(Π) is the affine subvariety cut out of SL(2,ℂ)𝑛 by the polynomials of 𝑆.

To show that the bijection in the statement is an isomorphism of varieties, it suffices to note that
the equations for the 𝑔𝑖 in terms of the ℎ𝑗 are polynomial in the entries of the matrices in the image
of the representation. mAk

Due to this lemma, it is a valid abuse of notation to identify points in 𝑅(Π) with representations
of Π.

10.1.3 Proposition. Let 𝑉 ⊆ 𝑅(Π) be an irreducible component and let 𝜌 ∈ 𝑉. If 𝜎 ∈ 𝑅(Π) is
equivalent to 𝜌 in SL(2,ℂ), then 𝜎 ∈ 𝑉.

Proof. Consider the morphism of varieties

𝑓 ∶ 𝑉 × SL(2,ℂ)→ 𝑅(Π)
(𝑥, 𝛼)↦ (𝛼𝑥1𝛼−1, ..., 𝛼𝑥𝑛𝛼−1);

since SL(2,ℂ) is irreducible, 𝑉 × SL(2,ℂ) is irreducible and since 𝑓 is a morphism the image 𝑓(𝑉 ×
SL(2,ℂ)) is an irreducible subvariety of 𝑅(Π). Hence there exists a component 𝑉′ of 𝑅(Π) such that
𝑓(𝑉×SL(2,ℂ)) ⊆ 𝑉′. On the other hand, 𝑉 = 𝑓(𝑉×{1}) and so𝑉 ⊆ 𝑉′. It follows that𝑉 = 𝑉′ since
both 𝑉 and 𝑉′ are irreducible components of 𝑅(Π).

Suppose now that 𝜎 is equivalent to 𝜌; then there exists some 𝛼 ∈ SL(2,ℂ) such that 𝜎 = 𝛼𝜌𝛼−1.
Thus for each 𝑖, 𝜎𝑔𝑖 = 𝛼𝑥𝑖𝛼−1 where 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ 𝑉 is the point corresponding to 𝜌. In
particular, (𝜎𝑔1, ..., 𝜎𝑔𝑛) ∈ 𝑉 by the previous paragraph, as desired. mAk

If 𝑘 is a field, we say that a representation 𝜌 ∶ Π → GL(𝑛, 𝑘) is absolutely irreducible if it is
irreducible when considered as a representation into GL(𝑛, 𝑘̄).

10.1.4 Proposition. Let 𝑘 be a field of characteristic 0, and let 𝜌 ∶ Π → SL(2, 𝑘) be a representation
with non-abelian image. Then the following are equivalent:

1. 𝜌 is reducible;

2. 𝜌 is reducible over 𝑘̄;

3. for all 𝑐 ∈ [Π,Π], 𝜒𝜌(𝑐) = 2;

4. the group 𝜌([Π,Π]) has a unique invariant subspace 𝐿 ≤ 𝑘2 of dimension 1.

Further, the implication (1) ⟹ (3) does not require 𝜌(Π) to be non-abelian.
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Proof. The implication (1) ⟹ (2) is trivial.
To show (2) ⟹ (3), suppose that 𝜌 is reducible over 𝑘̄. Then there exists a representation 𝜎 ofΠ

with image consisting of upper triangular matrices such that 𝜎 ∼ 𝜌. Let 𝐴, 𝐵 ∈ 𝜎(Π). If 𝐴 = [𝑎 𝑏
𝑐 𝑑]

and 𝐵 = [𝑥 𝑦
0 𝑤], then

[𝐴, 𝐵] = 𝐴𝐵𝐴−1𝐵−1 = [1 (𝑑𝑤)−1(𝑏𝑤 − 𝑏𝑥 + 𝑎𝑦 − 𝑑𝑦)
0 1 ]

so tr[𝐴, 𝐵] = 2 as desired.
We next show that (3) ⟹ (4). Since 𝜌(Π) is non-abelian, there exists some 𝑐 ∈ [Π,Π] such

that 𝜌(𝑐) ≠ 1. Since 𝜒𝜌(𝑐) = 2we have tr 𝜌(𝑐) = 2 and det 𝜌(𝑐) = 1 and so the eigenvalues of 𝜌(𝑐) are
the solutions in 𝜆 of the characteristic equation

0 = 𝜆2 − 2𝜆 + 1 = (𝜆 − 1)2;

i.e. 𝜌(𝑐)has a single eigenvalue, 𝜆 = 1. If the eigenspace of this eigenvalue had dimension 2, then 𝜌(𝑐)
would fix the entirety of 𝑘2 and so 𝜌(𝑐) = 1, which is impossible by assumption; thus the eigenspace
of 𝜆 has dimension 1 and 𝜌(𝑐) has a unique invariant subspace 𝐿 of dimension 1.

It remains to show that this subspace 𝐿 is invariant under every element of [Π,Π]. Suppose that
there exists 𝑐′ ∈ [Π,Π] such that 𝜌(𝑐′)𝐿 ⊈ 𝐿. Then 𝜌(𝑐′) ≠ 1 and by the above argument there exists
a unique subspace 𝐿′ of dimension 1 left invariant by 𝜌(𝑐′) distinct from 𝐿. Pick 𝑙 ∈ 𝐿 and 𝑙′ ∈ 𝐿′;
then {𝑙, 𝑙′} is a basis for 𝑘2 and with respect to this basis we have

𝜌(𝑐) = [1 𝛼
0 1] , 𝜌(𝑐′) = [1 0

𝛽 1]

where 𝛼, 𝛽 ≠ 0; in particular, tr 𝜌(𝑐𝑐′) = 2 + 𝛼𝛽 ≠ 2 which provides a contradiction and establishes
that (3) ⟹ (4).

Finally we show that (4) ⟹ (1). Suppose 𝐿 is the unique dimension 1 subspace left invariant
by 𝜌([Π,Π]). Since 𝜌([Π,Π]) is normal in 𝜌(Π), 𝐿 is invariant under 𝜌(Π): indeed, if 𝐿 = 𝑘𝑙 then
pick a nontrivial 𝑘 ∈ 𝜌(Π′); for all 𝑔 ∈ 𝜌(Π), we may compute 𝑔𝑙 = 𝑔(𝑔−1𝑘𝑔)𝑙 = 𝑘(𝑔𝑙), so 𝑔𝑙 is fixed
by 𝑘 and hence by uniqueness of the fixed line we have 𝑔𝑙 ∈ 𝐿, so 𝑔𝐿 ⊆ 𝐿. In particular, 𝜌(Π) fixes a
nontrivial subspace and so 𝜌 is reducible. mAk

10.1.5 Corollary. If 𝐾 is an algebraically closed field of characteristic 0, then 𝜌 ∶ Π → SL(2,ℂ) is
reducible iff 𝜒𝜌(𝑐) = 2 for all 𝑐 ∈ [Π,Π].

Proof. Observe that the implication (1) ⟹ (3) of Proposition 10.1.4 did not use the assumption
that 𝜌(Π) was non-abelian. This supplies one direction of the corollary. For the converse, if 𝜌(Π) is
non-abelian then the result follows directly from the theorem.

Otherwise, suppose that 𝜌(Π) is abelian. Recall that every irreducible representation of an abelian
group over such a field𝐾 is of degree 1 (this follows from Schur’s lemma, which in the version stated
in [40] does not require |Π| < ∞: if 𝑔 ∈ Π then 𝑣 ↦ (𝜌𝑔)𝑣 is Π-linear by commutativity and so by
Schur’s lemma the map is given by a multiple of the identity matrix, in particular 𝜌𝑔 is diagonal for
all 𝑔 ∈ Π and so leaves 𝐾𝑒𝑖 invariant for each standard basis vector 𝑒𝑖 of 𝐾2). In particular, 𝜌(Π),
being a degree 1 representation in a dimension 2 vector space, is reducible. mAk

Remark. Compare Proposition 10.1.4 and Corollary 10.1.5 with the results of Section 2.4 above.
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10.2 Curves of representations and character varieties
We use some standard facts about projective completions and resolution of singularities of algebraic
curves; for instance, see [25, corollary I.6.11] or [42, corollary to theorem 2.23].

10.2.1 Theorem. Let 𝐶 be an affine algebraic curve over a field 𝑘. Then there exists a projective curve
𝐶̄ and a nonsingular projective curve 𝐶̃ such that𝐊(𝐶̃) ≃ 𝐊(𝐶̄) ≃ 𝐊(𝐶).

If 𝐶 and 𝐷 are affine curves and if 𝑓 ∶ 𝐶 → 𝐷 is a rational map, then there exists a unique regular
map 𝑓 ∶ 𝐶̃ → 𝐷̃. mAk

Suppose that 𝐶 is an affine curve in 𝑅(Π). We define a representation 𝑃 ∶ Π → SL(2, 𝑘) where
𝑘 = 𝐊(𝐶̃), called the canonical representationwith respect to𝐶. If 𝑔 ∈ Π is fixed, define 𝑎, 𝑏, 𝑐, 𝑑 ∶
𝐶 → ℂ (all depending on 𝑔) by the system of equations

[𝑎(𝜌) 𝑏(𝜌)
𝑐(𝜌) 𝑑(𝜌)] ≔ 𝜌(𝑔);

we then define 𝑃(𝑔) to be the matrix

[𝑎̃ 𝑏̃
𝑐 𝑑] .

10.2.2 Lemma. If 𝐶 contains an irreducible representation, then 𝑃 is absolutely irreducible.

Proof. If𝑃 is reducible over 𝑘̄, then by (2) ⟹ (3) of Proposition 10.1.4, tr𝑃(𝑐) = 2 for all 𝑐 ∈ [Π,Π].
By definition of 𝑃, tr𝑃(𝑐) = 𝑓𝑐 where 𝑓𝑐(𝜌) = 𝑎(𝜌)+𝑑(𝜌) = tr 𝜌(𝑐) for all 𝜌 ∈ 𝐶. Thus tr 𝜌(𝑐) = 2 for
all 𝑐 ∈ [Π,Π] and all 𝜌 ∈ 𝐶. Now by Corollary 10.1.5 (noting that such 𝜌 are representations over ℂ
not 𝑘) we conclude that each 𝜌 ∈ 𝐶 is reducible. mAk

For each 𝑔 ∈ Π, define a regular map 𝜏𝑔 ∶ 𝑅(Π) → ℂ by 𝜏𝑔(𝜌) ≔ 𝜒𝜌(𝑔). Let 𝑇 be the subring of
𝐊(𝑅(Π)) generated by the set {𝜏𝑔 ∶ 𝑔 ∈ Π}.

10.2.3 Lemma. For all 𝑔, ℎ ∈ Π, 𝜏𝑔𝜏ℎ = 𝜏𝑔ℎ + 𝜏𝑔ℎ−1 . mAk

10.2.4 Proposition. The ring 𝑇 is finitely generated.

Proof. Let 𝑇0 ⊆ 𝑇 be the subring generated by all the maps 𝜏𝑔𝑖1⋯𝑔𝑖𝑟
, where 𝑖1, ..., 𝑖𝑟 are 𝑟 distinct

elements of {1, ..., 𝑛}. We will show that 𝑇0 = 𝑇.
Suppose first that 𝑔 = 𝑔𝑚1

𝑖1
⋯ 𝑔𝑚𝑟

𝑖𝑟
where 𝑖1, ..., 𝑖𝑟 ∈ ℕ are distinct and 𝑚1, ..., 𝑚𝑟 ∈ ℤ. We show

that 𝜏𝑔 ∈ 𝑇0 by induction on the quantity

𝜈 =
𝑟∑

𝑖=1
𝐾𝑖

where

𝐾𝑖 = {
−𝑚𝑖 𝑚𝑖 ≤ 0,
𝑚𝑖 − 1 𝑚𝑖 > 0.

If 𝜈 = 0, then all of the𝑚𝑖 are 0 or 1 and so 𝑔 is a generator of 𝑇0. If 𝜈 > 0, then we may assume that
𝑚𝑟 ≠ 0 (otherwise 𝑔𝑚𝑟

𝑖𝑟
= 1 and so we can simply cease to write it). If𝑚𝑟 = 1, then consider

𝑔𝑖𝑟𝑔𝑔
−1
𝑖𝑟

= 𝑔𝑖𝑟𝑔
𝑚1
𝑖1
⋯ 𝑔𝑚𝑟−1

𝑖𝑟−1



10.2. CURVES OF REPRESENTATIONS AND CHARACTER VARIETIES 113

which has the same value of 𝜈 as 𝑔; repeating the same process and using the fact that not all of the
𝑚𝑖 are 0 or 1, we may assume (after repeated conjugations, which preserve 𝜏⋅) that𝑚𝑟 ≠ 1 too.

If𝑚𝑟 < 0, then by Lemma 10.2.3 we have

𝜏𝑔𝑔𝑖𝑟 𝜏𝑔−1𝑖𝑟
= 𝜏𝑔 + 𝜏𝑔𝑔2𝑖𝑟

;

by induction, 𝜏𝑔𝑔𝑖𝑟 and 𝜏𝑔𝑔2𝑖𝑟
lie in 𝑇0; and by definition, 𝜏𝑔−1𝑖𝑟

∈ 𝑇0; so 𝜏𝑔 ∈ 𝑇0. If 𝑚𝑟 > 1 then a
similar argument shows that 𝜏𝑔 ∈ 𝑇0.

Now suppose 𝑔 ∈ Π is arbitrary; write 𝑔 = 𝑔𝑚1
𝑖1
⋯ 𝑔𝑚𝑟

𝑖𝑟
and induct on 𝑟. We may assume that

the 𝑖𝑘 are not all distinct; by a similar conjugation argument as above, we may assume that there is
some 𝑠 < 𝑟 such that 𝑖𝑠 = 𝑖𝑟. Now set 𝑉 = 𝑔𝑚1

𝑖1
⋯ 𝑔𝑚𝑠

𝑖𝑠
and 𝑊 = 𝑔𝑚𝑠+1

𝑖𝑠+1
⋯ 𝑔𝑚𝑟

𝑖𝑟
. By Lemma 10.2.3,

𝜏𝑔 = 𝜏𝑉𝑊 = 𝜏𝑉𝜏𝑊 − 𝜏𝑉𝜏𝑊−1 ; but all of 𝜏𝑉 , 𝜏𝑊 , and 𝜏𝑉𝜏𝑊−1 lie in 𝑇0 by induction; and hence
𝜏𝑔 ∈ 𝑇0. mAk

Since 𝑇 is finitely generated, there exist 𝛾1, ..., 𝛾𝑚 ∈ Π such that 𝑇 = ⟨𝜏𝛾𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚⟩. Define a
map 𝑡 ∶ 𝑅(Π)→ ℂ𝑚 by

𝑡(𝜌) ≔ (𝜏𝛾1(𝜌), ..., 𝜏𝛾𝑚 (𝜌)).

As in the case of 𝑅(Π), there is a natural correspondence between the points of 𝑋(Π) ≔ 𝑡(𝑅(Π)) and
the characters of representations of Π in SL(2,ℂ).

Our immediate goal is now the proof that 𝑋(Π) is a closed subvariety of ℂ𝑚.

10.2.5 Lemma. The set of reducible representationsΠ→ SL(2,ℂ) is of the form 𝑡−1(𝑉) for some closed
subvariety 𝑉 ⊆ ℂ𝑚.

Proof. By Corollary 10.1.5, a point 𝜌 ∈ 𝑅(Π) is reducible iff 𝜏𝑐(𝜌) = 2 for all 𝑐 ∈ [Π,Π]. Since 𝑇 is
generated by the 𝜏𝛾𝑖 , the function 𝜏𝑐(⋅) is of the form 𝑓(𝑡(⋅)) for some 𝑓 a polynomial function with
integral coefficients. This exhibits the set of reducible representations as the inverse image of𝐙(𝑓−2)
via 𝑡. mAk

10.2.6 Lemma. Let𝐴 be a principal ideal domain, let𝐹 = Frac𝐴, and let 𝑃 ∶ Π→ GL(𝑛, 𝐹) be an ab-
solutely irreducible representation for some 𝑛 > 0. If𝜒𝑃(Π) ⊆ 𝐴 then 𝑃 is equivalent to a representation
with image in GL(𝑛,𝐴).

Proof. mAk
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Appendix A

Algebraic topology

We review some basic concepts from algebraic topology, such as are contained in many excellent
books like [33, 8, 7].

A.1 Homotopy
Let 𝑋 be a topological space, and fix some 𝑥0 ∈ 𝑋. A continuous map 𝑓 ∶ [0, 1]→ 𝑋 is a loop based
at 𝑥0 if 𝑓(0) = 𝑥0 = 𝑓(1).

Let 𝑓 and 𝑔 be loops based at 𝑥0; we define their concatenation 𝑓 ∗ 𝑔 ∶ [0, 1] → 𝑋 to be the
map

𝑡 ↦ {
𝑓(2𝑡) 𝑡 ≤ 1∕2
𝑔(2𝑡 − 1) 𝑡 ≥ 1∕2.

In addition, we say that 𝑓 and 𝑔 are homotopic and write 𝑓 ≃ 𝑔 if there is a continuous map
𝐹 ∶ [0, 1] × [0, 1]→ 𝑋 (the homotopy) such that

• 𝐹(𝑥, 0) = 𝑓(𝑥) and 𝐹(𝑥, 1) = 𝑔(𝑥) for all 𝑥 ∈ [0, 1];

• 𝐹(𝑥0, 𝑡) = 𝑥0 for all 𝑡 ∈ [0, 1].

More generally, a homotopy is a continuous map𝑊 × [0, 1]→ 𝑋 for𝑊 an arbitrary topological
space.

The following elementary fact is easy to prove (take the concatenation of the two homotopymaps
in the obvious way):

A.1.1 Lemma. If 𝑓1 ≃ 𝑓2 and 𝑔1 ≃ 𝑔2, then (𝑓1 ∗ 𝑔1) ≃ (𝑓2 ∗ 𝑔2). mAk

This shows, in particular, that concatenation is well-defined on the equivalence classes of loops
based at 𝑥0. It is easy to see that:

• if 𝑓, 𝑔, ℎ ∶ [0, 1]→ 𝑋 are loops then (𝑓 ∗ 𝑔) ∗ ℎ ≃ 𝑓 ∗ (𝑔 ∗ ℎ);

• the constant map 𝜄 ∶ [0, 1] ∋ 𝑡 ↦ 𝑥0 ∈ 𝑋 satisfies 𝜄 ∗ 𝑓 ≃ 𝑓 ≃ 𝑓 ∗ 𝜄 for all loops 𝑓; and

• for a loop 𝑓 we may define 𝑓 ∶ [0, 1] → 𝑋 by 𝑓(𝑡) ≔ 𝑓(1 − 𝑡) for all 𝑡 ∈ [0, 1], and that
𝑓 ∗ 𝑓 = 𝜄 = 𝑓 ∗ 𝑓.

115
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Thus the set of all equivalence classes under homotopy of loops based at 𝑥0 forms a group un-
der the operation ∗; we denote this group, called the first homotopy group or the fundamental
group, by the symbol 𝜋1(𝑋, 𝑥0). Observe that, a priori, the group depends on 𝑥0. In fact, if 𝑋 is
path-connected then it is independent of the basepoint up to isomorphism (but not up to natural
isomorphism).

A.1.2 Lemma. If 𝑋 is path-connected and 𝑥0, 𝑥1 ∈ 𝑋 then 𝜋1(𝑋, 𝑥0) ≃ 𝜋1(𝑋, 𝑥1).

To prove the lemma, it suffices to observe that if 𝛼 ∶ [0, 1] → 𝑋 is a path such that 𝛼(0) = 𝑥0
and 𝛼(1) = 𝑥1 then the map 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋, 𝑥1) defined on equivalence class representatives by
𝑓 ↦ 𝛼𝑓𝛼−1 is well-defined up to homotopy and is an isomorphism of groups.

We give some standard examples whose proofs may be found in any algebraic topology textbook
such as those listed above.

A.1.3 Example. 1. 𝜋1(𝑆1) ≃ ℤ

2. 𝜋1(𝑆𝑛) ≃ 𝜋1(ℝ2) ≃ 1 for 𝑛 ≥ 2

3. 𝜋1(𝑇1,0) ≃ ℤ⊕ℤ (𝑇1,0 ≃ 𝑆1 × 𝑆1 is the torus with a single ‘hole’)

4. 𝜋1(𝑇1,1) ≃ ℤ ∗ ℤ (𝑇1,1 is the torus with a single ‘hole’ and a single puncture)

5. 𝜋1(𝑇1,𝑟) ≃ ∗𝑟+1ℤ (𝑇1,𝑟 is the torus with a single ‘hole’ and 𝑟 punctures)

Finally, observe that if 𝑋 and 𝑌 are topological spaces, and if 𝜙 ∶ 𝑋 → 𝑌 is a continuous map,
then for each choice of 𝑥0 we have a natural map

𝜙# ∶ 𝜋1(𝑋, 𝑥0)→ 𝜋1(𝑌, 𝑓(𝑥0))

via the diagram
[0, 1]

𝑋 𝑌

𝑓
𝜙#𝑓

𝜙

(that is, 𝜙#𝑓 ≔ 𝜙◦𝑓 for all 𝑓 ∈ 𝜋1(𝑋, 𝑥0)). It is easy to check that the maps sending 𝑋 ↦ 𝜋1(𝑋, 𝑥0)
and 𝜙 ↦ 𝜙# define a functor (i.e. 𝜙#◦𝜓# = (𝜙𝜓)#).

A.2 Covering spaces and deck transformations
The definition of a covering space is motivated by the generalisation of various classical examples:

A.2.1 Example. 1. The ‘spiral covering’ of 𝑆1 by ℝ (namely, 𝑓 ∶ ℝ → 𝑆1 ⊆ ℂ defined by 𝑓(𝑡) =
exp(𝑖𝑡))

2. The covering of the torus 𝑇1,0 by ℝ2 (namely, the projection map ℝ2 → ℝ2∕ℤ2).

The formal definition follows.

A.2.2 Definition. Let 𝑋 and 𝑌 be topological spaces which are Hausdorff, path-connected, and
locally path-connected. A continuous map 𝑝 ∶ 𝑋 → 𝑌 is a covering map if each point 𝑦 ∈ 𝑌 has a
path-connected neighbourhood𝑈 such that 𝑝−1(𝑈) is a nonempty disjoint union

⋃
𝛼∈𝐴𝑈𝛼 with the

property that 𝑝↾𝑈𝛼 ∶ 𝑈𝛼 → 𝑈 is a homeomorphism for each 𝛼 ∈ 𝐴.
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A.2.3 Theorem (Covering Homotopy Theorem). Let𝑊 be a locally connected topological space and
let 𝑝 ∶ 𝑋 → 𝑌 be a covering map. Let 𝐹 ∶ 𝑊 × [0, 1] → 𝑌 be a homotopy, and let 𝐹̂ ∶ 𝑊 × {0} → 𝑋
be any map such that (𝑝◦𝐹̂)(𝑤, 0) = 𝐹(𝑤, 0) (such a map exists since 𝑝 is surjective). Then there is a
unique homotopy 𝐺 ∶𝑊 × [0, 1]→ 𝑋 making the following diagram commute:

𝑊 × {0} 𝑋

𝑊 × [0, 1] 𝑌

𝐹̂

𝑝
𝐺

𝐹

Moreover, if𝐴 ⊆ 𝑊 is such that𝐹(𝑎, 𝑡) is independent of 𝑡 for all 𝑎 ∈ 𝐴, then𝐺(𝑎, 𝑡) is also independent
of 𝑡 for all 𝑎 ∈ 𝐴. mAk

A.2.4 Corollary. Let 𝑝 ∶ 𝑋 → 𝑌 be a covering map and let 𝑥0 ∈ 𝑋 be fixed. Then the map 𝑝# ∶
𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑝(𝑥0)) is a monomorphism whose image consists of the classes of loops at 𝑝(𝑥0) in
𝑌 which lift to loops at 𝑥0 in 𝑋.

Proof. Suppose 𝑓 ∈ ker𝜋1(𝑋, 𝑥0); then there exists a homotopy 𝐹 ∶ [0, 1]×[0, 1]→ 𝑌 with 𝐹(𝑥, 0) =
(𝑝#𝑓)(𝑥) = 𝑝𝑓(𝑥) and 𝐹(𝑥, 1) = 𝑝(𝑥0) for all 𝑥 ∈ [0, 1]. Let 𝐹̂ and 𝐺 be the lifts of 𝐹 as in the
theorem (𝐹̂ chosen arbitrarily); it will suffice to check that 𝐺 is a homotopy such that 𝐺(𝑥, 0) = 𝑓(𝑥)
and 𝐺(𝑥, 1) = 𝑥0 for all 𝑥 ∈ [0, 1]. But this follows immediately from the diagram. mAk

If the image 𝑝#𝜋1(𝑋, 𝑥0) is normal in 𝜋1(𝑌, 𝑝(𝑥0)), then we say that the covering 𝑝 is a normal
covering or a regular covering (with respect to the basepoint 𝑥0).

A.2.5 Theorem. Let 𝑝 ∶ 𝑋 → 𝑌 be a covering map, with 𝑥0 ∈ 𝑋 distinguished. If 𝑊 is a path-
connected and locally path-connected topological space, 𝑤0 ∈ 𝑊, and 𝑓 ∶ 𝑊 → 𝑌 satisfies 𝑓(𝑤0) =
𝑝(𝑥0), then there exists a map 𝑔 ∶𝑊 → 𝑋 such that the following diagram exists

𝑋

𝑊 𝑌

𝑝
𝑔

𝑓

if and only if 𝑓#𝜋1(𝑊,𝑤0) ⊆ 𝑝#𝜋1(𝑋, 𝑥0) in 𝜋1(𝑌, 𝑝(𝑥0)). mAk

A.2.6 Proposition. Let𝑊 be connected, 𝑝 ∶ 𝑋 → 𝑌 a covering map, and 𝑓 ∶ 𝑊 → 𝑌 continuous.
Let 𝑔1, 𝑔2 ∶𝑊 → 𝑋 be lifts of 𝑓. If 𝑔1(𝑤) = 𝑔2(𝑤) for some 𝑤 ∈𝑊, then 𝑔1 = 𝑔2. mAk

There is a bijective correspondence

(A.2.7) {right cosets of 𝑝#𝜋1(𝑋, 𝑥0) in 𝜋1(𝑌, 𝑝(𝑥0))}↔ the fibre 𝑝−1(𝑝(𝑥0))

which comes from the right action of 𝐽 = 𝜋1(𝑌, 𝑝(𝑥0)) on 𝐹 = 𝑝−1(𝑝(𝑥0)) defined for 𝛼 ∈ 𝜋1(𝑌, 𝑦0)
and 𝑥 ∈ 𝐹 by

𝑥 ⋅ 𝛼 ≔≔ 𝑔(1)

where 𝑔 is defined as a lift of some representative of 𝛼 in 𝑌 to 𝑋 via Theorem A.2.5.
We now consider maps which move the covering space but not the base space; for instance, con-

sider the map 𝑡 ↦ 𝑡 + 2𝜋 on ℝ, which behaves well with the covering 𝑡 ↦ exp(𝑡𝑖) of 𝑆1 in Exam-
ple A.2.1.

A.2.8 Definition. Let 𝑝 ∶ 𝑋 → 𝑌 be a covering map. A homeomorphism 𝐷 ∶ 𝑋 → 𝑋 is a deck
transformation or an automorphism of the covering if 𝑝◦𝐷 = 𝑝.
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The deck transformations under conjugation form a group, Aut(𝑝). The deck transformations
have a natural action on the fibres of 𝑝

A.2.9 Lemma. The covering 𝑝 ∶ 𝑋 → 𝑌 is normal with respect to the basepoint 𝑥0 iff Aut(𝑝) acts
transitively on the fibre 𝑝−1𝑝(𝑥0).

A.2.10 Theorem. Let𝑝 ∶ 𝑋 → 𝑌 be a coveringmap, and let𝑁(𝐻) denote the normaliser of a subgroup
𝐻 ≤ 𝜋1(𝑌, 𝑝(𝑥0)). There is an isomorphism

Aut(𝑝) ≃
𝑁(𝑝#𝜋1(𝑋, 𝑥0))
𝑝#(𝜋1(𝑋, 𝑥0))

which is induced by the epimorphism Θ ∶ 𝑁(Stab𝑥0) → Aut(𝑝) defined by 𝛼 ↦ 𝐷𝛼 , where 𝐷𝛼 ∈
Aut(𝑝) is the unique deck transformation such that 𝐷𝛼(𝑥0) = 𝑥0 ⋅ 𝛼. mAk

A.2.11 Corollary. If 𝑝 ∶ 𝑋 → 𝑌 is a normal covering map with respect to the basepoint 𝑥0, then
Aut(𝑝) ≃ 𝜋1(𝑌, 𝑝(𝑥0))∕𝜋1(𝑋, 𝑥0). mAk

A.2.12Corollary. If𝑝 ∶ 𝑋 → 𝑌 is a coveringmapwith𝑋 simply connected, thenAut(𝑝) ≃ 𝜋1(𝑌, 𝑝(𝑥0))
(𝑥0 ∈ 𝑋). mAk

A.3 Freely discontinuous actions
We repeat the opening definition of Section 3.1:

A.3.1 Definition. Let 𝑋 be a topological space, and let 𝐺 be a group with an action as a group of
homeomorphisms on 𝑋. The action is said to be freely discontinuous (or properly discontinu-
ous, or a covering space action) on 𝑋 if, for every 𝑥 ∈ 𝑋, there exists a neighbourhood 𝑈 ∋ 𝑥
(called a nice neighbourhood) such that 𝑔𝑈 ∩𝑈 = ∅ for all 𝑔 ∈ 𝐺 nontrivial.

A.3.2 Proposition. If 𝐺 acts freely discontinuously on a path-connected and locally path-connected
Hausdorff space 𝑋, then 𝑝 ∶ 𝑋 → 𝑋∕𝐺 is a regular covering map with Aut(𝑝) = 𝐺.

Proof. Let 𝑈 ⊆ 𝑋 be a nice neighbourhood of some 𝑥 ∈ 𝑋; we may choose 𝑈 to be path-connected.
Set 𝑈∗ = 𝑝(𝑈); this set is open since the projection is an open map. The connected components of
𝑈∗ are the sets 𝑔𝑈 for 𝑔 ∈ 𝐺. The maps 𝑔𝑈 → 𝑈∗ are continuous, open, injective, and surjective,
so are homeomorphisms; thus 𝑝 is a covering map and clearly 𝐺 acts as a subgroup of Aut(𝑝) by left
multiplication. We may apply Proposition A.2.6 to conclude that there are no others. mAk

A.3.3 Corollary. If 𝑋 is simply connected and locally path-connected, and if 𝐺 acts freely discontinu-
ously on 𝑋, then 𝜋1(𝑋∕𝐺) ≃ 𝐺.

Proof. Combine the above proposition with Corollary A.2.12. mAk



Appendix B

Measures

We follow the terminology of [39].
A collection𝔐 of subsets of a set 𝑋 is a 𝜎-algebra if it has the following properties:

1. 𝑋 ∈𝔐;

2. If 𝐴 ∈𝔐 then 𝑋 ⧵ 𝐴 ∈ℳ;

3. If 𝐴𝑛 ∈𝔐 for 𝑛 ∈ ℕ and 𝐴 = ∪∞𝑛=1𝐴𝑛 then 𝐴 ∈𝔐.

A set 𝑋 equipped with a 𝜎-algebra ℳ is a measurable space. The members of ℳ are the mea-
surable sets. A map 𝑓 ∶ 𝑋 → 𝑌, where 𝑋 is a measurable space and 𝑌 is a topological space, is
measurable if 𝑓−1(𝑉) is a measurable set for each 𝑉 ⊆ 𝑌 open.

B.0.1 Theorem. If ℱ is any family of subsets of 𝑋, then there exists a smallest 𝜎-algebra𝔐 in 𝑋 such
thatℱ ⊆𝔐. mAk

B.0.2 Example. Let 𝑋 be a topological space. By Theorem B.0.1, there exisrs a smallest 𝜎-algebra𝔅
in 𝑋 such that every open set of 𝑋 lies in𝔅. The members of this algebra are the Borel sets on 𝑋.

If𝔐 is a 𝜎-algebra then a function 𝜇 ∶𝔐→ [0,∞] is ameasure if it is countably additive: that
is, if {𝐴𝑛}𝑛∈ℕ is a collection of disjoint members of𝔐, then

𝜇(∪∞𝑛=1𝐴𝑛) =
∞∑

𝑛=1
𝜇(𝐴𝑛).

B.0.3 Example. Let𝔐 be the collection of all subsets of some set𝑋; then for 𝑥 ∈ 𝑋 and𝑚 ∈ [0,∞],
the function

𝔞 ∶𝔐→ [0,∞]

𝐸 ↦ {
𝑚 𝑥 ∈ 𝐸
0 otherwise

is a measure on𝔐, the atomic measure at 𝑥 with mass𝑚.

A measure 𝜇 defined on the 𝜎-algebra𝔅 of Borel sets on a locally compact Hausdorff space 𝑋 is
called a Borel measure on 𝑋. We say that 𝜇 is regular if
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• for every 𝐸 ∈ 𝔅, we have

𝜇(𝑈) = inf {𝜇(𝑉) ∶ 𝑉 open and containing 𝐸};

• for every 𝐸 ∈ 𝔅 either open in 𝑋 or with finite measure, we have

𝜇(𝑈) = sup{𝜇(𝐾) ∶ 𝐾 compact and contained in 𝐸}.
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𝒢-manifold, 65
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𝑚-form, 101
𝑚-simplex, 63

absolutely irreducible, 110
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usual definition, 105
analytic continuation, 75
atomic measure, 119
automorphism, 73, 117
axis, 24, 27

ball model of hyperbolic 𝑛 + 1-space, 13
based, 85
bending lines, 70
bending locus, 80
bending measure, 71
Bianchi groups, 32
Borel measure, 119
Borel sets, 119
bounds a disc, 53
bounds a puncture, 53
branch point, 52, 86

canonical representation, 112
Cassini oval, 43
Cauchy-Riemann equations, 1
centre, 64, 86
character, 109
chordal metric, 3, 6
classical Schottky group, 58
commutator, 25
compactly discontinuous, 29
complete, 78
complete hyperbolic manifold with boundary, 80

completed Kleinian manifold, 80
complex inversion, 7
concatenation, 115
cone point, 86
conformal, 1
converge uniformly on compact subsets, 36
convex, 61, 79
convex core, 79
convex hull, 61
convex hull quotient manifold, 80
coordinate chart, 51
Covering Homotopy Theorem, 117
covering map, 73, 116
covering space action, 29, 118
Coxeter groups, 32
cross-ratio, 9
cusp, 31, 86, 87
cusp point, 86
cusped, 86
cusped region, 86, 87

deck transformation, 73, 117
developing map, 76
differentiable, 1
Dihedral groups, 32
dilation, 21
dimension, 63
Dirichlet region, 59, 84
disc, 23
discontinuous, 30
distance-decreasing, 61
doubly cusped, 87

edge, 63
effective, 73
elementary, 38
elliptic, 22
elliptic point, 31
equivalence
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of Riemann surfaces, 51
equivalent, 108, 109

face, 61
facet, 63, 83
first homotopy group, 116
flat pieces, 68
foliation, 65
Ford region, 59
fractional reflection, 8
free regular set, 29
freely discontinuous, 29, 118
Fuchsian group, 54, 85
full, 63
fundamental domain, 33, 54
fundamental group, 116
fundamental polyhedron, 83
fundamental polytopes, 83
fundamental set, 103

general Möbius group, 7
geodesic lamination, 68
geometrically finite, 85
graph of groups, 105

half-plane model of hyperbolic (𝑛 + 1)-space, 12
HNN-extension, 105, 107, 108
holomorphic, 1, 51
holomorphic family of Kleinian groups, 89
holonomy group, 78
holonomy map, 78
homotopic, 115
homotopy, 115
homotopy lifting property, 73
Hopf fibration, 66
horoball, 85
horosphere, 85
hyperbolic, 22
hyperbolic 2-manifold, 52
hyperbolic point, 31
hyperbolic Riemann surface, 52
hyperbolic subspace, 63
hyperbolically convex, 61

in general position, 63
interactive pair, 103
inversive topology, 6
irreducible, 109

Jørgensen’s inequality, 48

Klein combination theorem, 57, 106
Kleinian group, 14, 31, 73

of the first kind, 31
of the second kind, 31

Kleinian manifold, 80

lamination, 66
laminations, 64
leaf, 65
leaves, 66
length, 102, 108
limit point, 36
limit set, 36, 37
linear fractional transformation, 2
locally convex, 79
loop based at 𝑥0, 115
loxodromic, 22
loxodromic point, 31

Möbius transformation, 7
maximal fundamental set, 106
measurable, 119
measurable sets, 119
measurable space, 119
measure, 119
measured lamination, 90
modular group, 32, 50
modulus of continuity, 96
multiplier, 21

nice neighbourhood, 29, 118
non-elementary, 38
normal, 73
normal covering, 117
normal form, 20, 23

amalgamated free product, 101
HNN-extension, 107
null, 108
sign, 108

of elliptic type, 38
of finite type, 54
of loxodromic type, 38
of parabolic type, 38
open shell, 64
openly discontinuous, 29
orientation preserving, 1
orientation reversing, 1
orthogonal, 1
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parabolic, 20
ping-pong lemma, 102, 105
pleated, 64
pleated surface, 68
pleating locus, 68
Poincaré extension, 11
polygonal approximation, 71
power of a point, 4
precisely invariant, 52
proper, 29, 104
properly discontinuous, 29, 118
pseudogroup, 64
puncture, 53, 86

quaternion algebra, 16

Rado’s theorem, 51
ramification point, 52
rectifiable, 64
Reeb foliation, 66
reflection, 5
regular, 73, 119
regular covering, 117
regular set, 14, 29
relative interior, 63
removed disc, 53
representation, 109
retraction, 61
Riemann surface, 51

closed, 51
Riley slice, 48, 57, 58, 89
rotation, 21

sheets, 73
Shimizu-Leutbecher lemma, 47
side, 83
side-pairing transformation, 55
sides, 54
span, 63
sphere inversion, 3
stable letter, 107
strictly convex, 79
strictly loxodromic, 22
support, 66
supporting half-space, 61
supporting hyperplane, 61

totally geodesic, 68
transition map, 51
transverse measure, 71

triply transitive, 2

unitary, 1

vertex, 64
vertices, 55

weakly discontinuous, 29
weakly nice neighbourhood, 29
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