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§0. Introduction
In these notes, we continue the study of the deformation spaces of Kleinian groups.

Recall, a Kleinian group is a discrete subgroup Γ ≤ PSL(2, ℂ); we may identify PSL(2, ℂ) with
various groups of geometric interest, as in the following �gure.

(0.1)

conformal (angle-preserving) maps
of the sphere

biholomorphic automorphisms
of ℂ̂=ℙℂ

PSL(2, ℂ) fractional linear
transformations

isometries of ℍ3

For the basic theory of these groups, one may look at the books by Beardon [3] and Maskit [16]. The
hyperbolic geometry is discussed further in Kapovich [9], Matsuzaki–Taniguchi [19], Ratcli�e [24],
and Thurston [26]; the dynamical systems viewpoint is discussed in Beardon [2] and McMullen [21,
22]; and the arithmetic viewpoint is discussed in Maclauchlan–Reid [15].

We shall use ℍ3 to denote the halfspace model of hyperbolic 3-space, and B3 to denote the ball
model. The sphere at in�nity of ℍ3 is the Riemann sphere ℂ̂; the sphere at in�nity of B3 is the usual
sphere S2. We write ℍ3 ≔ ℍ3 ∪ ℂ̂ and B3 ≔ B3 ∪ S2.

Let Γ be a Kleinian group, and let 
 ∈ Γ be nontrivial. We say variously that:-

• 
 is parabolic if any of the following equivalent conditions hold:

– tr
2

 = 4;

– 
 is conjugate in PSL(2, ℂ) to the translation z ↦→ z + 1;
– 
 has a unique �xed point on ℂ̂.

• 
 is elliptic if any of the following equivalent conditions hold:

– tr
2

 ∈ [0, 4);

– 
 is conjugate in PSL(2, ℂ) to a rotation z ↦→ �2z for |�| = 1 and � ≠ ±1;
– 
 has a �xed point in ℍ3;
– 
 has two �xed points in ℂ̂, and if z0 is such a �xed point then d(z, z0) = d(
z, z0) for all
z ∈ ℂ̂;

– Fix
ℍ3

 is the closure of a hyperbolic line.

• 
 is loxodromic if any of the following equivalent conditions hold:

– tr
2

 ∉ [0, 4];

– 
 is conjugate in PSL(2, ℂ) to a map z ↦→ �2z for |�| ≠ 1;

– 
 has exactly two �xed points in ℍ3.

If 
 ∈ Γ is loxodromic with real trace, it is called hyperbolic; otherwise it is strictly loxodromic.
Given an element which is either elliptic or loxodromic, the hyperbolic line joining its two �xed
points is called its axis.

The limit set of a Kleinian group Γ, denoted Λ(Γ), is the set of accumulation points of its orbits.
If |ΛΓ| < ∞, then Γ is called elementary (equivalent conditions include |||Λ(Γ)

||| ≤ 2, or that Γ has a
global �xed point in ℍ3). The complement of the limit set, Ω(Γ), is the ordinary set.
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0.2 Proposition. Suppose Γ is a non-elementary Kleinian group. Then Λ(Γ) is the minimal closed
Γ-invariant subset of ℂ̂; and if x ∈ Λ(Γ), then Γx is dense in Λ(Γ). ▮

The main result is the following:

0.3 Theorem. If Γ is a Kleinian group, then Ω(Γ)∕Γ is a marked Riemann surface, with cone points
corresponding to elliptic �xed points and punctures corresponding to parabolic �xed points. Further,
ℍ3∕Γ is a hyperbolic 3-manifold, and the boundary is naturally identi�ed withΩ(Γ)∕Γ. ▮

In order to compute the fundamental group of these manifolds, we recall the following two facts
from algebraic topology; for proofs, see Bredon [6] (corollary III.6.9 and proposition III.7.2 resp.), or
Lee [14] (corollary 12.8 and theorem 12.14 resp.):

0.4 Proposition. If p ∶ X → Y is a regular covering map, with x0 ∈ X and y0 = p(x0), then
Aut(p) ≃ �1(Y, y0)∕p∗(X, x0). ▮

0.5 Proposition. IfG acts freely discontinuously on a path connected and locally path connectedHaus-
dor� space X, then p ∶ X → X∕G is a regular covering map such that Aut(p) = G. ▮

As an easy corollary, we see that if X is simply connected, then �1(X∕G) ≃ G.

§1. Some groups of interest
In this �rst lecture, we shall discuss a number of examples of groups of interest.

§1.1. A digression: the Poincaré polyhedron theorem

We follow the presentation of Ratcli�e [24, section 13.5] for the statement of the Poincaré polyhedron
theorem; alternative presentations are Beardon [3, section 9.8] (for the Fuchsian case) or Maskit [16,
section IV.H].

Let P be a (closed convex) polyhedron in ℍ3, and suppose that to each facet S of P we assign an
isometry fS such that fS(S) = S′ for some other facet S′; further, suppose that these assignments are
compatible, in the sense that if fS(S) = S′ then fS′ = f−1

S
. Let Φ be the set of these facet-pairing

transformations. We shall continue to notate the (unique) facet paired with some facet S by S′.
We say that two points x, y ∈ P are paired by Φ if there exists a facet S of P such that x ∈ S,

y ∈ S′, and y = fS(x); in this case, we write x ≃ y. Observe that ≃ is a symmetric relation. We
extend it to an equivalence relation in the following way: if x, y ∈ P, we say that x and y are related
by Φ and write x ∼ y if either x = y or there is a �nite sequence x1, ..., xm of points of P such that

x = x1 ≃ ⋯ ≃ xm = y.

An equivalence class of related points is called a cycle of Φ; the cycle containing x ∈ P is denoted
[x]. If x ∈ int P, then [x] = {x}. If x ∈ relint S for some facet S of P, then [x] = {x, fS(x)}. If x lies
on an edge or vertex of P, then the cycles become less trivial.

Suppose x ∈ relint e for some edge e of P; then every point of [x] lies in the relative interior of
some edge of P, and we call [x] an edge cycle. Let [x] = {x1, ..., xm} be a �nite edge cycle of Φ. For
each i, the element xi is paired to at most two other elements of [x] by Φ (since each edge bounds
exactly two facets of P) and so we can reindex [x] such that x1 ≃ x2 ≃ ⋯ ≃ xm. Such a cycle is said
to be dihedral if there is a facet S ofP containing x1 such that S = S′ and fS(x1) = x1. An edge cycle
which is not dihedral is called cyclic (!). In either case, we may de�ne the dihedral angle sum of
[x] to be

�[x] ≔ �(x1) +⋯+ �(xm)

where �(xi) is the dihedral angle of P along the edge xi for each i.
In order forΦ to induce a tessellation ofP, the dihedral angles must have particularly nice forms:
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Figure 1: Three hyperbolic dodecahedra centered at 0 ∈ B3 with respective dihedral angles 60◦, 72◦,
and 90◦, as drawn by Matthias Weber [28].

1.1 De�nition. A side-pairing transformation Φ for a polyhedron P is said to be subproper if

• each cycle of Φ is �nite,

• each dihedral edge cycle of Φ has dihedral angle sum a submultiple of �, and

• each cyclic edge cycle of Φ has dihedral angle sum a submultiple of 2�.

For a proof of the following theorem, see Ratcli�e [24, theorem 13.4.2].

1.2 Theorem. Let G be a group of similarities of ℍ3, and let M be the space obtained by gluing a
hyperbolic polyhedron P according to a subproper facet pairing Φ (more precisely, let M be the space
P∕ ∼ of cycles endowedwith the quotient topology). ThenM is an (ℍ3, G)-orbifold such that the natural
injection int P → M is an (ℍ3, G)-map. ▮

1.3 Example. Let P be a regular hyperbolic dodecahedron in ℍ3 with dihedral angles all �∕2 (see
Fig. 1). We de�ne facet-pairing transformations as follows. Pick a set E of six edges of P with the
property that, given any choice of two distinct facets F, G of P, there is a unique edge e ∈ E such
that F ∼ e ∼ G. (That is, E is a perfect matching on the adjacency graph of the facets of P; e.g.
the orange edges of Fig. 2.) For each facet F of P, if e is the edge in E incident with F and G is the
other facet adjacent to e, let fF be the rotation by �∕2 around the axis e that rotates F onto G; let
Φ = {fF ∶ F ∈ P(2)}.

If x ∈ relint e for e ∈ E, observe that �[x] = �∕2 (blue points of Fig. 2); if x ∈ relint e for
e ∈ P(1) ⧵ E, observe that �[x] = 4(�∕2) = 2� (green points of Fig. 2).

In particular, the pairing structure Φ is subproper; thus we can obtain a quotient orbifoldM by
gluing along Φ. By gluing one pair at a time, we see thatM is topologically a 3-sphere; and that the
singular points ofM are the images inM of the perfect matching E, and after gluing these edges are
the Borromean rings.
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Figure 2: The cycles of an edge pairing on the dodecahedron.

The content of the Poincaré polyhedron theorem is that, if one is given a polyhedron P together
with a facet pairing structure Φ which has su�cient regularity properties, then the group Γ = ⟨Φ⟩

has a presentation determined exactly by the combinatorial properties of Φ and P is a fundamental
polyhedron for Γ.

1.4 Theorem (Poincaré (1883)). LetΦ be a subproper facet pairing for a polyhedronP inℍ3, such that
the glued orbifoldM is complete. Then:

1. Γ ≔ ⟨Φ⟩ is a Kleinian group withM = ℍ3∕Γ;

2. P is a (convex) fundamental polyhedron for Γ;

3. P is exact, that is for each facet S ∈ P(2) there exists some 
 ∈ Γ such that S = P ∩ 
P;

4. If R is the set of words in the symbols P(2) corresponding to all of the side-pairing and cycle re-
lations of Φ, then ⟨P(2) ∶ R⟩ is a presentation for Γ under the isomorphism P(2) ∋ S ↦→ fS ∈

Φ. ▮

In order to apply this theorem, we need a criterion for completeness of hyperbolic manifolds.
Let P ⊆ B3 be a convex polyhedron; a cusp point of P is a point c ∈ P ∩ §2 such that there exists
a neighbourhood U of c in ℝ3 such that the intersection of the closures in B3 of all the facets of P
which meet U is {c}. (Compare the proof of proposition VI.A.10 in Maskit [16].)

Suppose c is such a cusp point, and let b ∈ [c]. The link of b is the (Euclidean) convex polygon
L(b) obtained by intersecting P with a horosphere Σb based at b which meets only the sides of P
incident with b. It is easy to see that we may choose the horospheres Σb to be su�ciently small that
the L(b) are mutually disjoint (suppose not; then there must be a sequence (bn) of points of [c] such
that bn → c; in particular, some subsequence of the bn must lie on an edge incident with c; and
the two facets of P incident with that edge intersect at in�nitely many points in any neighbourhood
in the sense above of c). We now show that if Φ is a facet-pairing for P, then Φ induces a set Ψ
of Euclidean similarities which acts as a side-pairing for the disjoint union of the set of polygons
{L(b) ∶ b ∈ [c]} after they have been embedded into ℝ2. Suppose e is an edge of L(b); we de�ne
the side-pairing transformation ge. The edge e lies in some facet S of P; now take fS(e), this lies on
some facet S′ = fS(S) incident with b′ = fS(b) ∈ [c]; and take ge to be the Euclidean similarity in
ℝ2 which sends e to the edge corresponding to the radial projection of fS(e) onto the horosphere Σb′ .
De�ne L[c] to be the space obtained by taking the quotient of {L(b) ∶ b ∈ [c]} according to Ψ; this
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Figure 3: The cycles of an edge pairing on the octahedron.

space is called the link of the cusp point [c]. By the more general form of Theorem 1.2 for gluing
in arbitrary geometric manifolds, the link L[c] is a connected (ℝ2, S(ℝ2))-orbifold.

The following theorem is proved as theorem 13.4.7 of Ratcli�e [24].

1.5 Theorem. With the above notation, the link L[c] for a cusp point [c] of P is complete i� each L(b)
for b ∈ [c] can be chosen such that Φ restricts to a side-pairing for {L(b) ∶ b ∈ [c]} (i.e. if the radial
projections in the de�nition are trivial). The manifold M obtained by gluing P is complete i� L[c] is
complete for each cusp point [c] of P. ▮

1.6 Example. Themanifold of Example 1.3 is trivially complete, as the dodecahedron has no vertices
at in�nity and hence no cusp points.

1.7 Example. Let O be the regular hyperbolic octahedron h.conv{±e1, ±e2, ±e3} ⊆ B3 (the ei being
the standard basis vectors of ℝ3). The dihedral angles of O are �∕2. The horizontal edges of O in
ℝ2 induce a perfect matching on the facets of O; de�ne a facet-pairing Φ by sending a facet to the
matched facet by a �∕2 rotation with axis the horizontal edge incident to both. The relative interior
points of horizontal edges form edge cycles with dihedral angle sum �∕2, and the relative interior
points of the other edges form edge cycles with dihedral angle sum �; thus Φ is subproper, and we
may de�ne the gluing manifoldM of O with respect to Φ (see Fig. 3). Observe that the polyhedron
has �ve cusps: four corresponding to the (singleton) cycles of the vertices in the horizontal plane,
and one corresponding to the 2-cycle of the upper and lower vertices (c and d in the �gure). Choose
links for these cusps which are equidistant from the origin: then Φ restricts to a side-pairing on the
set of these cusps, andM is complete.

§1.2. Schottky groups

A (classical) Schottky group on two generators is de�ned in the following way: let S, S′, R, R′ be
disjoint circles in ℂ̂, and let f, g ∈ PSL(2, ℂ) be transformations such that f (resp. g) maps the exte-
rior of S (resp. R) onto the interior of S′ (resp. R′). Since everything is disjoint, the side-pairing trans-
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Figure 4: The �∕6-Schottky group (Example 1.9).

formation of the polyhedron P with sides the extensions of S, S′, R, R′ into ℍ3 generates a Kleinian
group Γ with fundamental polyhedron P.

1.8 Lemma. A Schottky group Γ on two generators is free of rank 2 and purely loxodromic, and Ω(Γ)
is dense in ℂ̂; the common exterior of S, S′, R, R′ is a fundamental domain for Γ. ▮

For a proof in the general case of n-generator Schottky groups, see sections VIII.A and X.H of
Maskit [16]. For the simple case of two generated classical Schottky groups, see section 5.3 of Beardon
[3].

1.9 Example. The �-Schottky group is the group generated by

1

sin �
[

1 i cos �

−i cos � 1
] and 1

sin �
[

1 cos �

cos � 1
] ;

in Fig. 4, we see the paired circles of the�∕6-Schottky group alongwith their images (we observe that,
for instance, the limit set of the group is contained within the circles, as guaranteed by the Poincaré
polyhedron theorem). For more detail, see “project 4.2” of Mumford-Series-Wright [23].

It is easy to see from the fundamental polyhedron that the quotient surface Ω(Γ)∕Γ is a 2-torus
T2; since the fundamental polyhedron is simply connected, we have that �1(MΓ) = Γ, with the two
generating loops (one around each ‘torus hole’) lifting naturally to the axes off and g. For the surface,
the group computation is more complicated since the fundamental domainW ≔ int()P ∩ ℂ̂) is not
simply connected. In Fig. 5 we observe that �1(T2) = ⟨a, b, c⟩ (for a, b, c the three indicated loops),
by using the Seifert-Van Kampen theorem. In Fig. 6, we compute the image p∗�1(W), and �nd that
it is the normal subgroup ⟪b⟫. Hence,

F(2) ≃
⟨a, b, c⟩

⟪b⟫
=

�1(T2)

p∗�1(W)
≃ Γ

(as expected, of course).
Suppose we deform this quotient surface such that these geodesics are pinched to zero and the

surface becomes a 4-punctured sphere. This is equivalent to deforming f and g to parabolics (that is,
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Figure 5: The fundamental group of the 2-torus T2.

Figure 6: The fundamental group of T2 in relation to the cover p ∶ W → T2.
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moving the �xed points of each generator together); or to moving the paired disjoint circles S, S′ and
R, R′ to become tangent circles. The space of these groups lies on the boundary of the deformation
space of classical Schottky groups on two generators (see [8]), and is called the Riley slice.

We may also ‘deform’ the generators f and g to elliptics (by sending the translation length to
zero but not modifying the rotational component — this will move the paired circles to intersect
transversely in their pairs); now the generators correspond to cone points.

§1.3. Groups generated by two parabolic elements

In this section we begin to study the Riley slice; more precisely, we will introduce the coordinate
systemwhich we shall use initially. Let � ∈ ℂ⧵ {0}, and let Γ� be the group ⟨f, g⟩where f(z) ≔ z+1

and g(z) ≔ z

�+1
for all z ∈ ℂ̂. It is clear that every group generated freely by two parabolic elements

may be normalised into this form.
The groupΓ� is non-elementary: clearly 0,∞ ∈ Λ(Γ�); in addition, the elementfgf−1 is parabolic,

with �xed points distinct from 0 and∞; so ||||Λ(Γ�)
|||| ≥ 3. We may therefore compute approximations

to the limit set by looking at the translates of 0 under the elements of the group. Some examples may
be found in Fig. 7.

The isometric circles of g and g−1 are S(|||�|||
−1
, −�−1) and S(|||�|||

−1
, �−1); let S1 and S2 be the two

hyperbolic planes inℍ3whichmeet ℂ̂ at these circles, and letP1 andP2 be the two hyperplaneswhich
meet ℂ̂ at the lines−1∕2+ℝi and 1∕2+ℝi. LetP be the convex polyhedron with facets P1, P2, S1, S2;
then f is a facet-pairing transformation sending P1 → P2, and g is a facet-pairing transformation
sending S1 → S2. For convenience, we consider the case that P1 ∪ P2 and S1 ∪ S2 are disjoint. This
occurs if (and only if) the following equations hold:

Re(−�−1 − |||�
|||
−1
) > 1∕2 ⇐⇒ 2(− cos(−�) − 1) > r

Re(−�−1 + |||�
|||
−1
) < 1∕2 ⇐⇒ 2(− cos(−�) + 1) < r

Re(�−1 − |||�
|||
−1
) > 1∕2 ⇐⇒ 2(cos(−�) − 1) > r

Re(�−1 + |||�
|||
−1
) < 1∕2 ⇐⇒ 2(cos(−�) + 1) < r.

One can plot the region in which all these equations hold: it is the common exterior of the cardioids
of Fig. 8. Let ℛ∗ be this common exterior.

1.10 Theorem. When � lies inℛ∗, the quotient surfaceΩ(Γ�)∕Γ� is a four-times punctured sphere and
the quotient manifold ℍ3∕Γ� is a hyperbolic 3-ball with four cusps and deleted arcs joining the arcs in
pairs.

The gluing procedure for the surface is depicted in Fig. 9, and the 3-manifold is depicted in Fig. 10.
It is clear that the fundamental group of the 3-manifold is a free group on two generators— one loop
about each of the two arcs — and this is as expected, since Γ ≃ ℍ3∕Γ� by the algebraic topology (as
the fundamental polyhedron P is simply connected). We now compute the relationship between Γ
and�1(Ω(Γ�)∕Γ�). Consider the fundamental domainW = int(ℂ̂∩P); it is topologically an annulus,
so �1(W) = ⟨a⟩. In Fig. 11, we compute that �1(W∕Γ�) = ⟨�, �, 
⟩ for three speci�c loops �, �, 
,
and that with this choice of generators p∗�1(W) = ⟪
⟫. In particular,

Γ� ≃
⟨�, �, 
⟩

⟪
⟫
= ⟨�, �⟩.

Using the �gure, we observe also that the curves � and � are obtained as the (homotopy classes of
the) images under p of the invariant circles of f and g; and the nontrivial loops about the arcs in the
3-manifold come from the invariant horocircles in ℍ3 based at the parabolic �xed points.
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(a) � = 4 (b) � = i (c) � = 2i

(d) � = 1.5 + 1.3i (e) � = i (f) � = 1 + 2i

(g) � =
√
2(1 + i)

(h) � = −exp(2�i∕3) (dense in
ℂ̂) (i) � = 3 + 0.1i (dense in ℂ̂?)

Figure 7: Some limit sets of 2-parabolic groups.

-4 -2 2 4

-2

-1

1

2

Figure 8: Cardioids bounding the region ofℂ in which the Klein combination theorem works for us.
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Figure 9: The 4-punctured sphere obtained from the 2-parabolic groups.

Figure 10: The 3-manifold corresponding to the 2-parabolic groups.

Figure 11: The fundamental group of the 4-punctured sphere in relation to the coverW.

12



Figure 12: A second view of the 4-punctured sphere obtained from the 2-parabolic groups, showing
the geodesic �� which is pinched as we move to the boundary.

Figure 13: For arbitrary horospheres S at the cusps, the links (boundaries of the green horocircles)
can never be paired by f and g due to the lack of symmetry: more precisely, the green circles are not
even mapped onto each other, so their edges are not paired.

The curve 
 essentially determines the geometry of the four-times punctured sphere. By this, we
mean that in order to determine the complex geometry of the sphere it su�ces to give the data of the
length of 
, and the angle made by the geodesics joining the pairs of punctures in each hemisphere
determined by 
. The space of the four-times punctured spheres of interest is 2-dimensional over ℝ
(namely, the real and complex parts of �) and so we have found all of the dimensions. (The distances
between the punctures can be varied biholomorphically, of course.)

If we pinch o� the geodesic �� (see Fig. 12) by sending the distance to zero then we split the
surface into a pair of 3-punctured spheres. Onemight naïvely try to do this by expanding the isometric
circles of g so that they become tangent to the lines paired by f; for instance, this occurs when � = 4.
It is easy to show by the reasoning above that the circles are tangent in this way precisely when
� lies on the shared boundary of the cardioids of Fig. 8; e.g. if � = r exp(�i) (the centre of the
isometric circle) satis�es 2(cos � + 1) = r. The problem is, of course, that we may not apply the
Poincaré polyhedron theorem to this situation: consider the points c, c′ of tangency between the
isometric circles of g and the lines paired by f. By inspection, [c] = {c, c′} = [c′]. If we take any
small horosphere S based at c, then the obstruction is illustrated by Fig. 13. This obstruction occurs
for all possible orientations of the circles for � on the boundaries of the region bounded by Fig. 8,
except for the extremal values � = ±4 or � = ±2i (i.e. the only values of � for which the paired
horocircles are symmetric with respect to f and g). This shows us that the region of four-punctured
sphere groups is not just the exterior of the cardioids of Fig. 8 — we are simply drawing the ‘wrong’
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Figure 14: A lift of the geodesic �� from the four-punctured sphere to the fundamental domain.

fundamental domain in the cases within the cardioids, except at the four extremal points (the only
points where the polyhedron theorem continues to hold).

Another way of seeing this is to consider the ‘lift’ of �� to the fundamental domain, as in Fig. 14;
it is clear from the picture that if the circles expand to meet the boundary then the lift is still not
deformed to zero length, as the tangency does not occur at the points where the curve meets the
isometric circles.

1.11 Exercise. Draw the lifts of�� for � = ±2i and � = ±4. Reconcile this with the above discussion.

One can deduce better bounds by considering ‘slanted’ fundamental domains instead of choosing
vertical lines. That is, the quotient is a four-times punctured sphere if the pairs of isometric circles of g
and their f-translates are disjoint. (This is inspired by the fundamental domains drawn by Jørgensen
[7].) One shows that the pair of isometric circles tangent at 0 and the translated pair centred at −1
become tangent when � satis�es one of the following:

||||�
−1 − (�−1 − 1)

|||| =
||||�
−1||||

||||�
−1 − (−�−1 − 1)

|||| =
||||�
−1||||

||||−�
−1 − (�−1 − 1)

|||| =
||||�
−1||||

||||−�
−1 − (−�−1 − 1)

|||| =
||||�
−1||||

Plotting this bound, we obtain the diagram included as Fig. 15.
The Riley slice boundary was �rst drawn by Riley in the 1980s with the aid of a computer; his

drawing, which shows one quadrant of the boundary, is reproduced in Fig. 16, and the full boundary
is approximated as the boundary of the plotted points in Fig. 17. (The method by which this plot was
obtained will be explained later on.) Observe that the exterior of the slice (that is, the region �lled
out in blue) is contained within the interior of the cardioid shape, and has clear vertices at the four
special points we have just considered.

To round o� the discussion, let us mention that the boundary of the slice does have the main
property which we indicated above via our informal deformation argument: groups Γ� such that
the quotient Ω(Γ�)∕Γ� is a disjoint union of 3-punctured spheres (called cusp groups) do lie on the
boundary of the Riley slice. This was shown by Bers and Maskit in a series of two papers in the
1960s [5, 17] (though of course not explicitly in the context we study here). In the early 1990s it was
shown by McMullen [20] that the cusps groups are actually dense on the boundary of the Riley slice
(again, in a more general context). He won a Fields Medal in 1998, in part for this result. See also
Theorem 2.1 below.
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Figure 15: Three circles bounding the region of ℂ in which the Klein combination theorem works
for us.

Figure 16: A quadrant of the Riley slice boundary as drawn by Riley. This �gure is reproduced from
[1, p. VIII].
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Figure 17: A plot of the boundary of the Riley slice.

§1.4. Groups generated by two elliptic elements

Observe that if we instead consider groups generated by two elliptic elements, then the isometric
circles intersect transversely rather than at tangent points. We may conjugate any such group to the
group generated by the two elements

f = [
� 0

0 �
] , g = [

� 1

� �
]

where |||�
||| =

|||�
||| = 1 and � ∈ ℂ ⧵ {0}. The isometric circles of g±1 are

S1 = S (|||�
|||
−1
, −

1

��
) S2 = S (|||�

|||
−1
, −

�

�
)

§1.5. Once-punctured torus groups

We shall now brie�y study the Kleinian groups Γ such that Ω(Γ)∕Γ is a once-punctured torus; the
study of such groups was initiated by Jørgensen; see the lecture notes by Series [25] or the book of
Akiyoshi, Sakuma, Wada, and Yamashita [1]

1.12 De�nition. Let T be a topological once-punctured torus. Amarked punctured torus group
is the image Γ of a discrete faithful representation � ∶ �1(T) → PSL(2, ℂ) such that if ! ∈ �1(T) is
represented by a simple loop about the puncture, then �! ∈ Γ is parabolic.

It is clear that such a group is necessarily of the form Γ = ⟨�, � ∶ tr
2
[�, �] = 4⟩, where the

generators � and � correspond to the ‘standard’ generating loops of �1(T), such that [�, �] is a loop
about the puncture.

We can produce some once-punctured torus groups by performing surgery on Riley cusp groups.
Suppose Γ� = ⟨f, g⟩ is such a group, and let S be one of the 3-punctured sphere components, say
corresponding to the component containing the puncture produced by A. The surgery we perform
is the deletion of a neighbourhood of the two cusps belonging to A and the gluing together of the
produced boundary curves.
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The group produced is the extension group

⟨Γ, ℎ ∶ ℎfℎ−1 = g⟩.

We can justify this geometrically: this new element ℎ will correspond to the longitude of the new
‘handle’.

The technical justi�cation comes from the secondMaskit combination theorem. In order to state
this theorem we shall need some terminology.

1.13 De�nition. Suppose G is a Kleinian group, that J, J1, and J2 are geometrically �nite subgroups
of G0, and that B, B1, B2 ⊆ ℂ̂ are closed topological discs. We say variously that

• B is precisely invariant under J in G0 if J = StabG0 ℂ̂ and gB ∩ B = ∅ for all g ∈ G0 ⧵ J.

• (B1, B2) are precisely invariant under (J1, J2) in G0 if, for each m, Bm is precisely invariant
under Jm and for all g ∈ G0, gBm ∩ B3−m = ∅.

• B is a (J, G0)-block if it is J-invariant and the following conditions are satis�ed:

1. B ∩ Ω(G0) = B ∩ Ω(J);
2. B ∩ Ω(J) is precisely invariant under J in G0; and
3. For every puncture onΩ(J)∕J, there is a punctured-disc neighbourhoodU of the puncture

such that eitherU is contained in the projection of B, orU is disjoint from the projection
of B.

• B1 and B2 are jointly t-blocked for some t ∈ PSL(2, ℂ) ⧵ G0:

1. Form ∈ {1, 2}, Bm is a (Jm, G0)-block;
2. Form ∈ {1, 2}, (B1 ∩ Ω(G0), B2 ∩ Ω(G0)) is precisely invariant under (J1, J2), ;
3. t maps the interior of B1 onto the interior of B2; and
4. tJ1t−1 = J2.

• If B1, B2 are jointly t-blocked, then a fundamental set D0 for G0 is calledmaximal if D0 ∩ Bm
is a fundamental set for the action of Jm on Bm for eachm, and if t(D ∩ )B1) = D ∩ )B2.

1.14 Theorem (Maskit (1988)). Let J1 and J2 be geometrically �nite subgroups of a Kleinian group G0
, and let G1 = ⟨t⟩ be in�nite cyclic. Let B1 and B2 be jointly t-blocked closed topological discs, and let A
be the common exterior of B1 and B2.

Let D0 be a maximal fundamental set for G0, set G = ⟨G0, t⟩, and set D = D0 ∩ (A ∪ )B1). Then we
may conclude the following:

(i) G = G0 ∗t .

(ii) G is discrete.

(viii) D is a fundamental domain for G.

The full theorem gives more detailed information about the cusps and the shape of the limit set
of G; for the full statement and proof, see section VII.E of Maskit [16].
Remark. There is a strong case for giving this theorem a more descriptive name: perhaps one might
call the second combination theorem the ‘Maskit puncture-pair gluing theorem’ and the �rst combi-
nation theorem the ‘Maskit handle gluing theorem’.
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Figure 18: The fundamental domainD constructed for a punctured torus group by the secondMaskit
combination theorem.

In our case, the extension element ℎ = [
a b

c d
] must satisfy the equation

[
a b

c d
] [
1 1

0 1
] [

d −b

−c a
] = [

1 1

� 1
] ;

solving the above equation for ℎ shows that a = 0 and c2 = −�, so after normalisation ℎ is the
transformation

ℎ(z) =
i�−1∕2

i�1∕2z + d
=

−�−1

−z + i�−1∕2d
.

Consider for simplicity the case � = 4, so the transformation reduces to

ℎ(z) =
−1∕4

−z + i1∕2d
=

1

4z − 2id
.

Take J1 = ⟨f⟩ and J2 = ⟨g⟩. The relevant blocks will then be small discs tangent to∞ and to 0 (the
blue discs B1 and B2 in Fig. 18); D0 can be taken to be the closure of the isometric circle exterior
fundamental domain; and so D is the region of Fig. 18 in orange.

1.15 Exercise. Apply the Poincaré polyhedron theorem to the domain D of Fig. 18 and check that
we in fact obtain a 3-punctured sphere and a 1-punctured torus as quotient surface.

§2. The thick-thin decomposition
In this lecture, we shall formalise the notion of a ‘cusp’ which we used informally in the previous
lecture, using Thurston’s “thick-thin decomposition”. The goal of the next few lectures is to prove
the following theorem, and to give the analogue for 2-elliptic groups:
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2.1 Theorem. Let Γ be a Kleinian group generated by two parabolic elements; let G be a deformation1
of Γ. Then the Riemann surface Ω(G)∕G is either a 4-punctured sphere, or a disjoint union of two 3-
punctured spheres.

(This theorem may be found in [18].)

§2.1. The Kazhdan-Margulis lemma

In this section, we shall follow the proof of the Kazhdan-Margulis lemma given in chapter D of
Benedetto-Petronio [4]; this proof is essentially the same as that given by Thurston [26] (section 5.10).
An alternative proof which is more group-theoretic is found in section 12.6 of Ratcli�e [24]. The the-
ory has an essentially arithmetic �avour, and this viewpoint is pursued in section 1.3 ofMaclauchlan-
Reid [15] and in section 12.8 of Ratcli�e [24].

2.2 Theorem (Kazhdan-Margulis lemma). There exists some " > 0 such that, for every x ∈ ℍ3 and
every Kleinian group Γ, the subgroup Γ"(x) ≤ Γ generated by

F"(x) ≔ {
 ∈ Γ ∶ d(gx, x) ≤ "}

is essentially nilpotent.

Notation. The supremum of all " satisfying the conclusion of the Kazhdan-Margulis lemma is called
the third Margulis constant. We denote it by �3.
Remark. One may make the following improvements: For all n ∈ ℕ there exists "n > 0 such that for
every connected, simply connected, complete, Riemannian n-manifoldM with sectional curvatures
k satisfying −1 ≤ k ≤ 0, and for every x ∈ M, and for every freely discontinuous Γ ≤ Isom(M), then
the subgroup of Γ generated by

{
 ∈ Γ ∶ d(gx, x) ≤ "n}

is essentially nilpotent.
The supremum of the set of all the "n satisfying the above conclusion is called the nthMargulis

constant.
Our main interest is actually the following corollary:

2.3 Corollary. There exists some " > 0 such that, for every x ∈ ℍ3 and every Kleinian group Γ, the
subgroup Γ"(x) ≤ Γ is elementary.

Proof of the corollary. In fact, we show that every solvable subgroup of PSL(2, ℂ) is elementary.
Let Γ ≤ PSL(2, ℂ) be solvable; the solvability degree of Γ is the smallest natural number k such

that Γ(k) = 1. We prove that Γ is elementary by induction on k. If k = 0 then Γ = 1 is trivially
elementary, so assume that k > 0 and that all subgroups of PSL(2, ℂ) with solvability degree less
than k are elementary. In particular, Γ(1) = [Γ, Γ] is elementary, as it has solvability degree k − 1.2
We split into two cases.

Γ(1) is not of elliptic type. The union F of all the �nite orbits of Γ(1) in this case is exactly the
limit set. Let 
 ∈ Γ and � ∈ Γ(1), so 
−1�
 ∈ Γ(1) (as derived subgroups are normal); hence

−1�
F = F so �
F = 
F. Thus 
F is left invariant by every � ∈ Γ−1 and thus by cardinality
must equal F; hence F is left invariant by Γ, so Γ is elementary.

1We shall de�ne this in the next lecture.
2We avoid the notation Γ′ for the derived subgroup here, as later in the proof of the Kazhdan-Margulis lemma we shall be

de�ning ‘primed’ groups in a completely di�erent way.
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Γ(1) is of elliptic type. The second case is not such a familiar argument. If Γ(1) is elliptic, then
let F be the set of all points in B3 �xed by Γ(1). By the classi�cation of elementary groups, this
is either a point or a hyperbolic line. Suppose x ∈ F, 
 ∈ Γ, and � ∈ Γ(1); then 
−1�
x = x,
so �
x = 
x, and thus 
x ∈ F since � was arbitrary. In particular, ΓF ⊆ F. Let Γ̄ be the set
of hyperbolic isometries of F obtained by restricting elements of Γ, and let � ∶ Γ → Γ̄ be the
restriction epimorphism. Since Γ(1) ≤ ker �, � induces an epimorphism Γ∕Γ(1) → Γ̄. But note
that Γ∕Γ(1) is the abelianisation of Γ, and so Γ̄ is abelian and hence elementary. In particular, Γ̄
has a �nite orbit in F, so Γ has a �nite orbit on F and thus is elementary.

This completes the proof of the corollary. ▮

Wenow prove the Kazhdan-Margulis lemma. The idea is to study elements of Γwhich are both "-
small atx (in that theymovex a distancemost "), andwhich have "-small derivatives atx. The second
notion is slightly harder to make precise, since the derivatives of elements of 
 are not isometries of
ℍ3 — one must transfer images of dxg ‘back’ to Txℍ3 from Tgxℍ

3 via parallel transport.
These ideas are encapsulated in the following de�nition. For x ∈ ℍ3 and g ∈ PSL(2, ℂ), de�ne

‖g‖
x
≔ max{d(x, gx), �x(I, Pgx,x◦dxg)}

where d(⋅, ⋅) is the usual hyperbolic metric, Pz,y is the parallel transport from Tyℍ
3 to Tzℍ3 along

the unique geodesic segment [y, z] (c.f. chapter 4 of Lee [12]), and �x(⋅, ⋅) is the angular metric on
PSL(2, ℂ) de�ned by

�x(A, B) ≔ max{�(Aw, Bw) ∶ w ∈ Txℍ
3}.

In order to show nilpotency, we must be able to bound the norms of commutators. The next
lemma is essentially a ‘di�erential’ bound; it says that, if we restrict ourselves to "′-neighbourhoods
(for some su�ciently small "′) of the identity in PSL(2, ℂ), then the commutator is on the order of
1∕2"′.

2.4 Proposition. There exists a constant "′ such that, for all g, ℎ ∈ PSL(2, ℂ), if

‖g‖
x
≤ "′ and ‖ℎ‖

�,x
≤ "′

then
‖[g, ℎ]‖

x
≤
1

2
max{‖g‖

x
, ‖ℎ‖

x
}.

2.5 Lemma. The statement of Proposition 2.4 for arbitrary x ∈ ℍ3 follows from the statement of Propo-
sition 2.4 for x = 0 ∈ B3.

Proof. To see this, we �rst note that for k ∈ PSL(2, ℂ) and y, z ∈ ℍ3, we have

Pky,kz = dzk◦Py,z◦(dyk)
−1.
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We deduce from this equality that for all f ∈ PSL(2, ℂ),

(2.6)

�x(I, Pf−1gfx,x◦dx(f
−1gf))

= max
v∈Txℍ

3
�(v, (Pf−1gfx,x◦dx(f

−1gf))v)

= max
v∈Txℍ

3
�(v, (dfxf

−1◦Pgfx,fx◦(dgfxf
−1)−1

◦dgfxf
−1◦dfxg◦dxf)v) applying (*) with k = f−1

and the chain rule
= max

v∈Txℍ
3
�(v, ((dxf)

−1◦Pgfx,fx◦dfxg)(dxf(v))) simplifying

= max
v∈Txℍ

3
�((dxf)v, (Pgfx,fx◦dfxg)(dxf(v))) dxf is orthogonal

= max
w∈Tfxℍ

3
�(w, (Pgfx,fx◦dfxg)w) di�erential is pushforward

= �fx(I, Pg(fx),fx◦dfxg).

It is easy to see that for all such f we have d(x, f−1gf(x)) = d(fx, gfx) as well, and so we may
conclude that for all isometries f

‖g‖
x
= ‖g‖

fx
.

Noting also that [f−1gf, f−1ℎf] = f−1[g, ℎ]f, and choosing any isometry f sending x to 0, the
statement of the lemma for x follows from the statement of the lemma for 0 and the observations just
made. This proves the claim. ▮

We shall view the tangent bundle TB3 as canonically identi�ed with B3 × ℝ3 such that each
tangent space has as basis the parallel transport of the basis {e1, e2, e3}; thismeans that, iff ∶ B3 → B3

is smooth, we may view d0f ∶ {0} × ℝ3 → {f(0)} × ℝ3 as a linear map ℝ3 → ℝ3 and ask that it is a
homothety with respect to the transported basis.

2.7 Lemma. If x0 ∈ B3, then there is a unique element f(x0) ∈ PSL(2, ℂ) such that f(x0)(0) = x0 and
such that d0f(x0) is a homothety T0B3 → Tx0B

3.

Proof. Uniqueness. Suppose f1, f2 are two such elements. Then f−1
1
f2 �xes 0, and d0f−11 f2 =

dx0f
−1
1
◦d0f2 = (d0f1)

−1◦d0f2 = �−1�I for some �, � > 0. But an element �xing 0 is elliptic so
�−1� = 1, thus f1 = f2.

Existence. Take f(0) to be the identity; if x0 ≠ 0, then

f(x0)(x) =
(1 − ‖x0‖

2
)x + (1 + ‖x‖

2
+ 2 ⟨x0, x

|||x0, x⟩)x0

1 + 2 ⟨x0, x
|||x0, x⟩ + ‖x0‖

2
‖x‖

2
.

▮

Proof of Proposition 2.4. By Lemma 2.5, we may assume x = 0 and so for the remainder of the proof,
we use ‖⋅‖ for the norm ‖⋅‖

0
.

Using the maps of Lemma 2.7, we construct a map

� ∶ O(3) × B3 → PSL(2, ℂ)

(A, x) ↦→ f(x)◦A.

21



This is a bicontinuous group isomorphism by construction; using this, wemay endow PSL(2, ℂ)with
a Lie group structure. This is not the usual Lie group structure on PSL(2, ℂ) fromGL(2, ℂ); it is the Lie
group structure coming from the hyperboloid model of ℍ3. We now compare this Lie structure to the
normed structure (PSL(2, ℂ), ‖⋅‖).

Observe that given any x0 ∈ B3, there is a unique isometric homothety f ∶ T0B
3 → Tx0B

3

(there is a single parameter associated with a homothety, and it is determined by the action on the
norm). Since geodesics through 0 inB3 are Euclidean, P0,x0 is a homothety. Further, since P0,x0 is an
isometry, it must coincide with d0f(x0) which is also an isometric homthety.

This observation allows us to make the following computation:

d0�(A, x0) = d0(d
x0◦A) = dA0f

(x0)◦d0A = P0,x0◦A

and hence

max
v∈T0B

3
�(v, Px0,0◦d0�(A, x0)v) = max

v∈T0B
3
�(v, P−1

0,x0
◦P0,x0◦Av) = max

v∈T0B
3
�(v, Av);

in particular,

‖�(A, x0)‖ = max{d(0, �(A, x0)0),max{�(v, Px0,0◦d0�(A, x0)v) ∶ v ∈ T0ℍ
3})}

= max{d(0, x0), max
v∈T0B

3
�(v, Av)})}

= max{d(0, x0), �0(I, A)}.

In particular, ‖⋅‖ is comparable with the norm on O(3) × B3.
Recall now that for any Lie group G, the di�erential of G × G ∋ (g, ℎ) ↦→ [g, ℎ] ∈ G at (1, 1) is

0 (e.g. this follows immediately from the easy exercise 7-2 of [13]). Let us recall now the statement
we are trying to prove, and let g, ℎ ∈ PSL(2, ℂ); considering this di�erential, after mapping back
through � there exists "′ > 0 such that ‖[g, ℎ]‖ ≤ 1

2
max{‖g‖, ‖ℎ‖} whenever ‖g‖, ‖ℎ‖ < "′. ▮

De�ne now the group Γ′"(x) (for " > 0 and x ∈ B3) generated by the set

F′"(x) = {
 ∈ Γ ∶ ‖
‖
x
≤ "};

this is the subgroup of elements of Γ"(x) which also have ‘small derivative’ in the sense described
above. As mentioned above, we wish to check that for su�ciently small ", the group Γ′"(x) is nilpo-
tent; this result is an easy corollary of Proposition 2.4.

2.8 Corollary. The group Γ′
"′
(x) is nilpotent.

Remark. This is in fact a special case of theZassenhaus theorem, see e.g. theorem 4.52 of Kapovich
[9].

Proof. Since Γ is discrete, there exists � > 0 such that Γ′
�
(x) = 1. Choosem ∈ ℕ such that "′(1∕2)m ≤

�. If g1, ..., gm ∈ F′
"′
(x), then

‖[g1, [g2, ..., [gm−1, gm]...]]‖x ≤ "′2−m ≤ �;

hence [g1, [g2, ..., [gm−1, gm]...]] ∈ Γ′
�
(x) = 1. This shows that the m-fold commutators of the

generators of Γ′
"′
(x) are trivial. Now observe that for any group G, if f, g, ℎ ∈ G then [f, gℎ] =

[f, g][g, [f, ℎ]][f, ℎ], so every m-nesting of commutators of elements of Γ′
"′
(x) is a product of ≥ m-

nested commutators of elements of F′
"′
(x). ▮
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We now �nd some " such that the group G generated by elements of

Γ"(x) ∩ F
′
"′
(x) = {
 ∈ Γ"(x) ∶ ‖
‖

x
≤ "′}

is of �nite index in Γ"(x); since this group is contained in Γ′
"′
(x) it will be nilpotent and we will be

done.
To be more precise, we shall prove the following proposition and deduce the Kazhdan-Margulis

lemma as an easy corollary. Recall that the group Γ"(x) is generated by F"(x) ≔ {
 ∈ Γ ∶ d(x, 
x) ≤

"}. Since Γ is discrete, this set is �nite.; in the following, let .

2.9 Proposition. There exist k > 0 andm ∈ ℕ such that if " = "′∕k, and if the �nitely many elements
of F"(x) are labelled {
1, ..., 
ℎ}, then for all 
 ∈ Γ"(x) there exists 
̃ = 
j1⋯
jl (l dependent on 
) with
l ≤ m such that 
G = 
̃G.

2.10 Corollary (Kazhdan-Margulis). The group G is of �nite index in Γ"(x).

Proof. [Γ"(x) ∶ G] ≤ (the number of choices of at mostm elements of {
1, ..., 
ℎ} with repetition)
(count the cosets). ▮

We shall begin by �nding the correctm.

2.11 Lemma. There existsm ∈ ℕ such that for all S ⊆ O(Txℍ
3) such that |S| ≥ m, there existA, B ∈ S

such that A ≠ B and �x(A, B) ≤ "′∕2.

Proof. The metric �x induces the usual (compact) topology on O(Txℍ3) ≃ O(3). Suppose that for
each n ∈ ℕwemay �nd Sn ⊆ O(3)with |||Sn

||| ≥ n such that for every pair of distinct pointsA, B ∈ Sn,
�x(A, B) > "′∕2. Let U be the open cover of O(3) consisting of balls B("′∕4, A) for A ∈ O(3); by
compactness, �nitely many of the balls are enough to cover O(3), say B1 = B("′∕4, A1), ..., Br =

B("′∕4, Ar). Consider Sr+1. Observe that each element of Sr must lie in a di�erent Bi; and lo! we
have contradicted the pigeon-hole principle. ▮

Our main estimate for the proof of Proposition 2.9 is the following.

2.12 Lemma. There exists a constant k > 0 such that if " = "′∕k, if the elements of F"(x) are labelled
{
1, ..., 
ℎ}, and if

� = 
i1⋯
ip

� = 
j1⋯
jq

are any nontrivial elements satisfying the conditions

• p + q ≤ m + 1, and

• �x(P��x,x◦dx(��), P�x,x◦dx�) ≤ "′∕2

then ‖‖‖‖�
−1��

‖‖‖‖ ≤ "′.

We deduce the proposition �rst, and then prove the lemma.

Proof of Proposition 2.9. Letk > 0 be theuniversal constantwhose existence is postulated inLemma2.12,
and let " = "′∕k.

Let 
 ∈ Γ"(x), and suppose 
i1⋯
il is a minimal length word for 
 in the generators F"(x); we
may assume that l ≤ m + 1 (or else there is nothing to prove). For each s ∈ {0, ..., m}, de�ne

�s = 
il−s
il−s+1⋯
il

23



and construct the set {
P�sx,x◦dx�s ∶ s ∈ {0, ..., m}

}
.

By Lemma 2.11, there exist s, t ∈ {0, ..., m}, with s < t, such that

�x(P�sx,x◦dx�s, P�tx,x◦dx�t) ≤ "′∕2.

Ergo, if we de�ne

� ≔ 
i1⋯
il−t−1 = 
�−1
t

� ≔ 
il−t ⋯
il−s−1 = �t�
−1
s

� ≔ 
il−s ⋯
il = �s

then � and � satisfy the cleverly constructed conditions of Lemma 2.12 and so
‖‖‖‖�

−1��
‖‖‖‖x

≤ "′ ⇐⇒ �−1�� ∈ G

(it is in the de�ning generating set for G). Then:


G = ���G = ���(�−1��)−1G = ��G

and �� is a word of strictly lower length than 
. Either the minimal length of �� is at mostm and we
are done, or it is not and wemay iterate the same argument but with �� instead of 
; we will be done
in �nitely many steps, which proves the proposition. ▮

To complete the proof of the Kazhdan-Margulis lemma it therefore su�ces to prove Lemma 2.12.
We need one �nal geometric lemma on curvature, which we shall not prove:

2.13 Lemma. If D ⊆ M is a precompact domain with smooth boundary in an oriented Riemann
surfaceM, then

�(v, P)Dv) = ∫
D

�(x) dm(x)

where �(x) is the sectional curvature ofM at x and dm(x) is the area form at x. ▮

Proof of Lemma 2.12. We wish to �nd k to bound ‖‖‖‖�
−1��

‖‖‖‖x
by "′; there are two estimates needed.

Suppose in the following that {
1, ..., 
ℎ} are the elements of F"′∕k(x) for some k > 0.

Bounding of d(x, �−1��x). We compute:

d(x, �−1��x) = d(�x, ��x) ≤ d(x, �x) + d(x, ��x)

Bounding the two terms on the right, we obtain

(2.14)

d(x, �x) = d(x, 
j1⋯
jqx)

≤ d(x, 
j1x) + d(
j1x, 
j1⋯
jqx)

≤ "′∕k + d(x, 
j2⋯
jqx)

≤ ⋯ (induction)
≤ q"′∕k;

d(x, ��x) ≤ (p + q)"′∕k (same argument).

Thus d(x, �−1��x) ≤ (p + 2q)"′∕k; by assumption, p + q ≤ m+ 1 and so p + 2q ≤ 2(m + 1), and
so d(x, �−1��x) ≤ 2(m + 1)"′∕k. Hence if k ≥ 2(m + 1), then d(x, �−1��x) ≤ "′.
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Bounding of �x(I, P�−1��x,x◦dx�−1��). By the same argument as Eq. (2.6), we have that

�x(I, P�−1��x,x◦dx�
−1��) = ��x(I, P�(�x),�x◦d�x�).

We concentrate on bounding the form of the quantity on the right.
By hypothesis, we have that

"′∕2 ≥ �x(P��x,x◦dx(��), P�x,x◦dx�)

= �x(Px,�x◦P��x,x◦dx(��), dx�)

= �x(Px,�x◦P��x,x◦d�x�◦dx�, dx�)

= ��x(Px,�x◦P��x,x◦d�x�, I).

Consider the triangle ∆ with vertices x, �x, ��x. By Lemma 2.13,

�(v, P��x,�x◦Px,��x,x◦P�x,x) = �(v, P)∆v) = −Area∆

and so the parallel transport
' ≔ P��x,�x◦Px,��x,x◦P�x,x)

is a rotation of angle Area∆ in the hyperbolic plane spanned by ∆.
If v ∈ T�xℍ

3, then

�(P��x,�x◦d�x�v, v) = �('◦Px,�x◦P��x,x◦d�x�v, v)

≤ �('◦Px,�x◦P��x,x◦d�x�v, Px,�x◦P��x,x◦d�x�v)

+ �(Px,�x◦P��x,x◦d�x�v, v)

≤ Area(∆) + "′∕2.

Recall now that there exists � such that for any triangle∆ inℍ2with side lengths a, b, c,Area(∆) ≤
�max{a, b, c}. (Indeed, this is true for Euclidean triangles, and there is bounded comparison
between Euclidean and hyperbolic areas of triangles with non-ideal vertices in the ball model.)
In particular,

Area(∆) ≥ �max{d(x, �x), d(x, ��x), d(�x, ��x)} ≤ �(d(x, �x) + d(x, ��x))

(by the triangle inequality); and in Eq. (2.14), we bounded the �nal quantity by �2(m + 1)"′∕k.
Hence

�(P��x,�x◦d�x�v, v) ≤ �2(m + 1)"′∕k + "′∕2

and so if k ≥ 4�(m + 1) then

�x(I, P�−1��x,x◦dx�
−1��) = ��x(I, P�(�x),�x◦d�x�) = max

v∈T�xℍ
3
�(P��x,�x◦d�x�v, v) ≤ "′.

Picking k to be the maximum of the two bounds obtained completes the proof of the lemma, and
hence of the Kazhdan-Margulis lemma. ▮
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§2.2. The thick-thin decomposition

There are now two philosophical approaches to take: we can work with “thin parts” of a manifoldM
and then study the lifts of these parts toℍ3 where our groups act as deck transformations (this is the
Thurstonesque approach, and is taken in section 4.5 of his book [27]), or we can work with a group
Γ acting in ℍ3 and move to the thin parts of the manifold ℍ3∕Γ via projection (this second approach
is more group-theoretic in �avour). Because our interests are primarily with homotopy classes of
geodesics, it is preferrable to work in the second setting — that is, our basic objects will lie in ℍ3,
not in our manifolds. (We stress that the di�erence between the approaches is only philosophical
and the two approaches are not only equivalent but technically easy to convert between.) In order to
carry out this study, we follow section 4.13 of [9].

For the remainder of this section, we �x an elliptic-free Kleinian group Γ, denote byM the man-
ifold ℍ3∕Γ, and let �3 be the third Margulis constant.

2.15 De�nition. For " < �3, let Γ" denote the "–Margulis set

{x ∈ ℍ3 ∶ ∃
∈Γd(x, 
x) ≤ "}.

The idea is illustrated by Fig. 19.

2.16 Lemma. 1. The set Γ" is Γ-invariant.

2. IfU is a connected component of Γ", then StabΓU is elementary.

Proof. 1. Suppose x ∈ Γ". Then d(x, 
1x) ≤ " for some 
1 ∈ Γ. Let 
 ∈ Γ; then

d(
x, (

1

−1)
x) = d(
x, 

1x) = d(x, 
1x) ≤ "

so 

1
−1 works as the ‘"-small translator’ for 
x. In particular, 
x ∈ Γ".

2. We wish to apply Corollary 2.3; we show that if x ∈ U and 
 ∈ StabΓU then 
 is a product of
elements in F"(x).

▮

§3. Deformation spaces
In this lecture, we shall formalise the notion of a deformation space.

Also we will study Thurston’s notes, chapter 10.

§4. The enumeration of simple closed curves
Let Γ be a �nitely generated Kleinian group, generated by elements e1, ..., el. We consider the simple
closed curves on Ω(Γ)∕Γ. These correspond to paths in the cover Ω(Γ): if � ∈ �1(Ω(Γ)∕Γ) is such
a curve based at x, then it lifts to a curve based at a lift x̃ and terminating at �x̃ (treating � as an
element of the deck transformation group) which misses the other lattice points (Fig. 20)

Suppose that � ∈ �1(Ω(Γ)∕Γ) is a lift of some element �̄ ∈ Γ; write this element in terms of the
generators of Γ, say as �̄ = e

rk
jk
⋯e

r2
j2
e
r1
j1
. This provides a factorisation of the loop � in terms of lifts of

the ei which, inΩ(Γ), corresponds to writing the curve from x̃ to �x̃ as a concetenation of the curves
joining x̃, er1

j1
x̃, er2

j2
e
r1
j1
x̃, etc. In su�ciently nice situations, we can use this property to obtain such a

factorisation from a picture of the curve overlaid on a tiling like Fig. 20. For a nice example, we will
consider the Euclidean torus T obtained from the group G = ⟨g, ℎ⟩, where g, ℎ ∈ IsomEuc.(ℂ̂) are
given by g = (z ↦→ z+1) and ℎ = (z ↦→ z+i). A fundamental domain for this action is the interior
of the unit square. Pick x̃ = 0 ∈ ℂ̂; then g pairs the two horizontal edges and ℎ the two vertical
edges. Given any path from x̃ to any other point, not passing through any lattice point (i.e. any point
ofℤ+ℤi), we can homotope it to a path largely following the lattice lines butwith small deformations
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Figure 19: The loops based at a point x ∈ ℍ3∕Γ and their lifts.
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Figure 20: The lift of some � ∈ �1(Ω(Γ)∕Γ).

Figure 21: Deforming curves on T to their ‘lattice’ homotopy representatives in the cover.

around the lattice points. An example is shown in Fig. 21. Observe that the homotopy class of the
lifts of g ∈ G to �1(T) is represented by horizontal line segments, and similarly the homotopy class
of the lifts of ℎ is represented by vertical line segments.

We nowmove to the case of interest. Denote byℛ the Riley slice of Section 1.3; to �x notation, the
2-parabolic group corresponding to � ∈ ℂ will be denoted by G�, and the generators will be labelled

X = [
1 1

0 1
] , and Y = [

1 0

� 1
] .

Recall that a fundamental domain for G� for |||�||| su�ciently large is given by ℂ̂ with two pairs of
tangent deleted discs (Fig. 22). Since the properties of lifted curves are purely topological, and all 4-
times punctured spheres are topologically equivalent, it is enough to consider the groups where this
picture is qualitatively correct (i.e. the isometric circles of Y are contained in the open strip bounded
by the vertical lines z ∈ ℂ ∶ Re z = ±1∕2).

Figure 22: Two views of a fundamental domain for G� with |||�
||| large enough.
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Figure 23: Cutting along the dotted line in the fundamental domain for G� to obtain a fundamental
hexagon for an extension group.

To produce a tessellation of the plane, we ‘�atten’ the domain. Geometrically, we cut along a curve
joining 0 and∞ that is contained within the fundamental domain; algebraically, this corresponds to
adjoining to G� a new element T which will glue together the two sides of this cut. The process
of performing this cut geometrically is depicted in Fig. 23; observe that we obtain a hexagon. (In
fact, we have a hyperbolic hexagon, where the indicated sides are paired by X and Y and where the
dotted sides are paired by the adjoined transformation T.) This tiling gives a cover D ofΩ(G�), and a
word in this tiling will project to a word inWe then perform the homotopy to the retraction as above,
remembering that we are working in a cover D of Ω(G�) and so the Z factors in any expansion are
killed upon taking the quotient.

We now make the following observations, which we prove following the papers [10, §2] and [11,
§1]:

4.1 Lemma. Let 
 be any simple closed non-boundary-parallel loop on the four-times punctured sphere.
(Non-boundary-parallel in this case is equivalent to ‘separates pairs of punctures’.) Then 
 is homotopic
to a curve represented in D by a line with slope an element of ℚ̂. Conversely, every such line projects to
such a curve. This correspondence is such that the curve in �1(S) induced by the generator of �1(W)

corresponds to∞ ∈ ℚ̂.

§5. The Keen–Series theory of pleating rays
§5.1. Fuchsian groups

A reference for results in this subsection is Chapter 8 of [3].
Recall, a Kleinian group G is Fuchsian if it is conjugate in PSL(2, ℂ) to a subgroup of PSL(2,ℝ).

This is equivalent to any of the following conditions:

• There exists a disc ∆ ⊆ Ω(G) left invariant by G;

• There is a circle C ⊆ ℂ̂ such that Λ(G) ⊆ C.

In any case, G acts as a hyperbolic isometry group on the natural hyperbolic metric of ∆; the circle
C is then the sphere at in�nity of this hyperbolic metric. Whenever G is said to be Fuchsian, it will
always carry the data of the choice of ∆ along with it implicitly.
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We say that G is Fuchsian of the �rst type if, for every x ∈ ∆, every � ∈ )∆ is an accumulation
point of Gx. Otherwise, we say that G is Fuchsian of the second type. Suppose G is of the second
type; then )∆ is the disjoint union of Λ(∆) together with a countable collection of mutually disjoint
open arcs {�i}i∈I of S. For each i ∈ I, set Hi to be the hyperbolic half-plane in ∆ bounded by �i and
the hyperbolic geodesic with the same endpoints as �i; then theNielsen region of G is the set

N(G) =
⋂

i∈I

Hi .

If G is Fuchsian of the �rst type, acting on the invariant disc ∆, then N(G) is de�ned to be ∆ itself.

5.1 Proposition. N(G) is the smallest non-empty G-invariant convex open subset of ∆. ▮

We say that ℎ ∈ G is a boundary hyperbolic element if it leaves invariant one of the intervals
�i . These are studied in Sections 10.3 and 10.4 of [3]; we recall the main results here. For the sake of
language, if S is a hyperbolic surface then a cylinder on S is a boundary component corresponding
to a deleted disc.

5.2Proposition. A�nitely generatedFuchsian groupG has �nitelymany conjugacy classes ofmaximal
hyperbolic boundary elements3; and these conjugacy classes are in bijective correspondence with the
cylinders of ∆∕G. ▮

§5.2. Pleating rays ofℛ

Fix some � ∈ ℛ. Recall that 
(p∕q) denotes the unique geodesic corresponding to p∕q ∈ ℚ, and
thatWp∕q denotes the Farey word which represents that geodesic. The goal of this section is to show
that the curve 
(p∕q) splits Ω(G�)∕G� into two components, each a sphere with a deleted disc and
two punctures. To this end, let Up∕q denote the set of subgroups of G� generated by two parabolics,
say u1 and u2, such that u1u2 lifts to 
(p∕q).

Observe that the groups of Up∕q are characterised by a purely topological property. Thus we
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