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Fix an algebraically closed field 𝑘 of characteristic zero.

§1. Recalling the Hilbert scheme
Let us very quickly recall the definition of the Hilbert scheme, followingHarris and
Morrison [4, §1B]. It is the schemeℋ𝑝

𝑟 which parameterises subschemes 𝑋 ⊆ ℙ𝑟
with Hilbert polynomial 𝑝𝑥 = 𝑝, and is a fine moduli space for the contravariant
functorHilb𝑝𝑟 ∶ Schop → Setwhich sends 𝐵 to the set of proper flat families𝒳 → 𝐵
fitting into the diagram

𝒳 ℙ𝑟 × 𝐵 ℙ𝑟

𝐵

𝑖

𝜑

𝜋

𝜋

where each fibre of 𝒳 has Hilbert polynomial 𝑝.
Aswe sawonTuesday, the functorHilb𝑝𝑟 is representable by a projective scheme

ℋ𝑝
𝑟 (Grothendieck’s theorem). We also know that the tangent space to 𝑋 ∈ ℋ𝑝

𝑟 is
the space 𝐻0(𝑋,𝒩𝑋/ℙ𝑟) of global sections of the normal sheaf [4, §1C].
Notation. If 𝔞 ⊴ 𝑘[𝑥0, ..., 𝑥𝑟] is an ideal with Hilbert polynomial 𝑝 then write [𝔞]
for the corresponding point inℋ𝑝

𝑟 .
We will try to keep in mind the running example of the scheme parameterising

twisted cubics; see [10], as well as [4, pp. 14–16]. Recall that a twisted cubic is the
intersection of three cubic hypersurfaces and so is represented by the ideal

𝔞 = (𝑌𝑊 − 𝑋2,𝑊𝑍 − 𝑋𝑌, 𝑋𝑍 − 𝑌 2) ∈ 𝐴 = 𝑘[𝑊, 𝑋, 𝑌, 𝑍].
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One can show that the Hilbert function of 𝔞 is

ℎ(𝑡) = 3(𝑡 + 1
3 ) − 2(𝑡3)

and that for 𝑡 ≥ 0 this agrees with the polynomial 𝑝(𝑡) = 3𝑡+1. The corresponding
Hilbert scheme ℋ𝑝

3 has two irreducible components, one 12-dimensional param-
eterising twisted cubics and one 15-dimensional parameterising unions of plane
cubics and isolated points; the intersection consists of nodal plane cubics with em-
bedded points at the node (detecting the infinitesimal direction of the deformation
of a smooth cubic which lead to the node). Anyway the detailed study of this ex-
ample will be left to a later lecture. We are primarily interested in analysing this
example in terms of the natural PGL(4, 𝑘) action.

First observe that PGL(𝑟 + 1, 𝑘) acts on the Hilbert scheme. Each component
has a single open orbit, therefore there can be only finitely many other orbits. In
general components and singular loci are unions of group orbits.

Let 𝐺 be the Borel subgroup 𝐺 ≤ PGL(𝑟 + 1, 𝑘) of upper triangular matrices.
(General definition of Borel can be found in [11, §10.5] but we only need this one.)
Let 𝐺 act on the Hilbert schemeℋ containing a subscheme 𝑋 ⊆ ℙ𝑟, by the Borel
fixed point theorem there exists an element ℋ which is fixed by 𝐺. In particular
every subscheme of ℙ𝑟 has a flat specialisation which is fixed by 𝐺 (of course not
necessarily pointwise).

1.1 Lemma ([8, Proposition 2.3]). An ideal 𝔞 ⊴ 𝑘[𝑥0,… , 𝑥𝑛] is fixed by𝐺 iff both 𝔞 is
a monomial ideal and for all 𝑥𝑢 ∈ 𝔞 and all 𝑥𝑖 ∣ 𝑥𝑢, (𝑥𝑗/𝑥𝑖)𝑥𝑢 ∈ 𝔞 for all 𝑗 < 𝑖. mAk

1.2 Example. There are exactly three types of Borel-fixed points in the Hilbert
scheme of twisted cubics:

1. a spacial double line;

2. a planar triple line with embedded point in the same plane;

3. a planar triple line with embedded point not lying in that plane.

Orbits (1) and (2) lie in the component with generic point the twisted cubic and
(2) and (3) lie in the component with generic point a planar cusped cubic with
embedded point. Hence since every component has a fixed point these must be a
complete list of components.

Remark. Before continuing wemust explain point (1) in the above example since it
may be confusing. The degree of an 𝑛-dimensional subscheme 𝑋 ⊆ ℙ𝑟 is defined
to be 𝑟! times the leading coefficient of the Hilbert polynomial 𝑝𝑋 . One can show
(see e.g. [3, §III.3]) that this is equal to the length of the intersection of 𝑋 with a
general plane of dimension 𝑟−𝑛. In the case that𝑋 is reduced this is the same as the
number of points of the intersection (which agrees with the classical definition of
degree). Recall that the length of a zero-dimensional local ring (𝑅,𝔪) is the length
ℓ of the shortest chain

0 = 𝔪1 ⊴ 𝔪2 ⊴ ⋯ ≤ 𝔪ℓ = 𝔪 ⊴ 𝑅

such that each module𝔪𝑖/𝔪𝑖−1 ≃ 𝑅/𝔪.
A spacial double line has ideal (𝐹, 𝐺)2 where 𝐹 and 𝐺 are linear in three vari-

ables (for the sake of argument we work in 𝔸3). The intersection of this line with
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a plane 𝐻 = 0 is then defined by the ideal 𝔞 = (𝐹2, 𝐹𝐺, 𝐺2, 𝐻). The maximal
ideal of 𝐴/𝔞 (𝐴 the polynomial algebra) is the image of 𝔪 = (𝐹, 𝐺,𝐻), i.e. 𝔪/𝔞 ⊴
𝐴/𝔞. We have (𝐹, 𝐺,𝐻)/(𝐹2, 𝐹𝐺, 𝐺2, 𝐻) = (𝐹, 𝐺)/(𝐹, 𝐺)2, which has length 3: 0 ⊴
(𝐹)/(𝐹, 𝐺)2 ⊴ (𝐹, 𝐺)/(𝐹, 𝐺)2 ⊴ 𝐴/𝔞.

§2. Gröbner bases
2.1 Theorem (Hilbert basis theorem). If 𝑅 is a Noetherian ring then 𝑅[𝑋] is Noethe-
rian.

Proof. Suppose 𝑅 is Noetherian, and let 𝔞 be an ideal in 𝑅[𝑋]; we will show that 𝔞
is finitely generated.

We consider the sets of all the leading coefficients of each degree of polynomial
in 𝔞. Form the sets 𝔟𝑛 ⊆ 𝑅 for 𝑛 ∈ ℤ≥0, defined as follows:

(2.2) 𝔟𝑛 ≔ {𝑟 ∈ 𝑅 ∶ ∃𝑓∈𝔞(𝑛) such that LC(𝑓) = 𝑟}

(here, 𝔞(𝑛) is the 𝑛th graded part of 𝔞 and LC(𝑓) is the leading coefficent of 𝑓).
Exercise. Each 𝔟𝑛 is an ideal of 𝑅.

We now use the Noetherian property of 𝑅 twice. First, we have ascending chain
of ideals 𝔟0 ⊆ 𝔟1 ⊆ ⋯ in 𝑅 and by the ascending chain condition there exists some
𝑁 ∈ ℤ≥0 such that for all 𝑛 ≥ 𝑁, 𝔟𝑛 = 𝔟𝑁 . Second, for each ideal 𝔟𝑛 such that
𝑛 ≤ 𝑁, by the Noetherian property there is a finite set of elements generating 𝔟𝑛.
Let 𝐵𝑛 be a finite set of generators for each 𝔟𝑛 (0 ≤ 𝑛 ≤ 𝑁). For each 𝑛 define a
choice function Ч𝑛 ∶ 𝐵𝑛 → 𝔞(𝑛) which sends a leading coefficient 𝑟 ∈ 𝔟𝑛 to some
degree 𝑛 polynomial with that leading coefficient. We can choose Ч0 ∶ 𝐵0 → 𝔞(0)
to be the identity map. Let 𝐵 = ⋃𝑁

𝑛=0 Ч𝑛. This set is finite.
We now show that the set 𝐵 is sufficient to generate the entirety of 𝔞. Let 𝑔 ∈ 𝔞

be arbitrary.
Firstly, note that if 𝑔 is constant then 𝑔 is generated by 𝐵. (Indeed, if 𝑔 = 0

this is trivial; and otherwise, 𝑔 ∈ 𝔞(0), which is equal to its own ideal of leading
coefficients 𝔟0, which is generated by Ч0(𝔟0) ⊆ 𝐵.)

Now we proceed by induction on the degree of 𝑔. Pick 𝑘 to the smallest integer
such that LC(𝑔) ∈ 𝔟𝑘; so 𝑘 ≤ 𝑁. There exist elements 𝑐1,… , 𝑐ℓ ∈ 𝐵𝑘 such that
LC(𝑔) = 𝑐1 +⋯+ 𝑐ℓ and so LC(𝑔) = LC(Ч𝑘(𝑐1) + ⋯ +Ч𝑘(𝑐ℓ)). Let ℎ = Ч𝑘(𝑐1) +
⋯+Ч𝑘(𝑐ℓ), so ℎ is a sum of elements of 𝐵. Further, 𝜕(𝑔−ℎ) < 𝜕𝑔 (since the leading
coefficients cancel) and so by the inductive hypothesis (𝑔−ℎ) is generated by 𝐵. We
therefore may conclude that 𝑔 = ℎ + (𝑔 − ℎ) is generated by 𝐵. mAk

In the proof, the important property of the generating set 𝐵 was that the set
LC(𝐵) = ⋃𝐵𝑛 generates the ideal generated by the 𝔟𝑛, which is in particular the
ideal generated by all leading coefficients of elements of 𝔞. We are lead to consider
the following definition in somewhat more generality.

2.3 Definition. Let 𝐴 = 𝑘[𝑥1,… , 𝑥𝑛] be a polynomial ring over a field 𝑘. Amono-
mial order > on 𝐴 is any well-ordering (i.e. total order with d.c.c.) on the set of
monomials of 𝐴which is compatible with multiplication, i.e. if 𝑓, 𝑔, ℎ are monomi-
als then 𝑓 > 𝑔 implies 𝑓ℎ > 𝑔ℎ. We write in>(𝑆) for the set of leading terms of the
elements of 𝑆 ⊆ 𝐴 with respect to the order >.

A Gröbner basis with respect to > for an ideal 𝔞 ⊴ 𝐴 is a finite subset 𝐵 ⊂ 𝔞
such that (i) 𝔞 is generated by 𝐵 and (ii) in>(𝔞) is generated by in>(𝐵).
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Remark. Observe that an adaptation of the final part of the above proof of the
Hilbert basis theorem shows that condition (i) in the definition of a Gröbner ba-
sis is redundant (c.f. [1, §1.3, Exercise 3]).
2.4 Example (Lexicographic order). Wewill usually work with the lexicographic
order: if 𝛼, 𝛽 ∈ ℤ𝑛≥0 are the exponent vectors of two monomials 𝑋𝛼, 𝑋𝛽 ∈ 𝐴 then
we say 𝑋𝛼 > 𝑋𝛽 iff the left-most non-zero component of 𝛼 − 𝛽 is positive. (Note
this depends on having an order on the variables of 𝐴. We will usually choose the
order 𝑋 > 𝑌 > 𝑍 or 𝑋1 > 𝑋2 > ⋯.)
2.5 Example. Let 𝐶 be the twisted cubic in 𝔸3𝑘 that is the intersection of the three
quadric surfaces defined by the vanishing of

𝑓 = 𝑌 − 𝑋2, 𝑔 = 𝑍 − 𝑋𝑌, ℎ = 𝑋𝑍 − 𝑌 2 ∈ 𝐴 = 𝑘[𝑋, 𝑌, 𝑍].
The leading coefficients under the lexicographic order are−𝑋2, 𝑋𝑌 , and 𝑋𝑍 respec-
tively. In particular we see that every element of the ideal generated by the leading
coefficients of 𝑓, 𝑔, and ℎ is divisible by 𝑋 . But 𝑘 ≔ 𝑍𝑔 + 𝑌ℎ = 𝑍2 − 𝑌 3 has lead-
ing coefficient 𝑌3, i.e. 𝑌2 ∈ in(𝑓, 𝑔, ℎ) is not in (in(𝑓), in(𝑔), in(ℎ)). In particular
{𝑓, 𝑔, ℎ} is not a Gröbner basis for (𝑓, 𝑔, ℎ). However, 𝑘 is in some sense the only
obstruction: one can show that {𝑓, 𝑔, ℎ, 𝑘} is a Gröbner basis using Buchberger’s cri-
terion. (Roughly speaking Buchberger’s algorithm for constructing a Gröbner basis
goes via constructing obstructions in this way—here 𝑘 is the so-called 𝑆-polynomial
𝑆(𝑔, ℎ).)

Given 𝐴 = 𝑘[𝑥1,… , 𝑥𝑛] as above and a vector𝑤 ∈ ℤ𝑛 (called aweight) we can
define a partial order >𝑤 on the monomials of 𝐴 by 𝑥𝑎 >𝑤 𝑥𝑏 iff 𝑤 ⋅ 𝑎 > 𝑤 ⋅ 𝑏;
this is called a weight order. The lexicographic product order of a sequence
𝑤1,… ,𝑤𝑘 of weights is the monomial order defined by 𝑥𝑎 > 𝑥𝑏 if 𝑥𝑎 >𝑤𝑖 𝑥𝑏 for
the first 𝑖 such that 𝑥𝑎 and 𝑥𝑏 are comparable with respect to>𝑤𝑖 . In particular the
lexicographic order is the product of 𝑒1,… , 𝑒𝑛. We extend the notation in to weight
orders: given a weight𝑤 define in𝑤(𝑓) to be the sum of all terms of 𝑓maximal with
respect to >𝑤.

§3. Connectedness of the Hilbert scheme
From now onwe always use the same lexicographic order we introduced at the end
of the previous section. We also fix a global polynomial algebra 𝐴 = 𝑘[𝑥0,… , 𝑥𝑛]
(with the usual grading).
3.1 Definition. A lexicographic ideal is a monomial ideal 𝔞 such that the 𝑑th
graded part 𝔞(𝑑) is spanned by the first dim𝑘 𝔞(𝑑) monomials in the lexicographic
order.
3.2 Theorem (Macaulay (1927), [6]). For every graded ideal 𝔞 ⊴ 𝐴, there exists a
unique lexicographic ideal 𝔞lex. with the same Hilbert polynomial. mAk

We will, in this section, prove the following theorem of Hartshorne [5]:
3.3 Theorem. For any 𝑝 and 𝑟, the Hilbert schemeℋ𝑝

𝑟 is connected.
The basic scheme(!) for showing connectedness is to give a path in the Hilbert

scheme from any ideal to the unique lexicographic ideal. This can be done in dif-
ferent ways, but we will follow the proof of Peeva and Stillman [9, 7]. This proof
goes via showing that for each 𝑋 there is a chain of curves onℋ𝑝

𝑟 , 𝐶1,… , 𝐶𝑝, such
that (i) 𝑋 ∈ 𝐶1, (ii) each 𝐶𝑖 ∩ 𝐶𝑖+1 ≠ ∅, and (iii) 𝑋lex. ∈ 𝐶𝑝 (i.e. 𝑋lex. the scheme
corresponding to the unique lexicographic ideal).
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§3.1. Gröbner deformations
The point is to define for every homogeneous ideal 𝔞 a natural 1-parameter family
over 𝔸1 such that the generic fibre of the family is 𝔞 but the special fibre is in𝑤(𝔞),
for some weight vector 𝑤 ∈ ℤ≥0. In order to do this we construct the ideal

𝔞̃ ≔ ( ̃𝑓 ∶ 𝑓 ∈ 𝔞) ⊴ 𝐴[𝑡]

where
∑̃
𝑢
𝑓𝑢𝑥𝑢 ≔ 𝑡max𝑢𝑤⋅𝑢∑

𝑢
𝑓𝑢𝑡−𝑤⋅𝑢𝑥𝑢

(this is cooked up so that in𝑤 𝑓 is exactly ̃(𝑓)|𝑡=0).

3.4 Lemma ([2, Exercise 15.25]). If {𝑓1, ..., 𝑓𝑟} is a Groebner basis for 𝔞, then 𝔞̃ =
( ̃𝑓1, ..., ̃𝑓𝑟). In fact this is even a Gröbner basis with respect to≫ defined by 𝑥𝑖 ≫ 𝑡 for
all 𝑖 and > in the 𝑥𝑖’s. mAk

The ideal 𝔞̃ defines a subscheme of ℙ𝑛 × 𝔸1, and we get a diagram

Proj𝐴[𝑡]/𝔞̃ ℙ𝑛 × 𝔸1

𝔸1

(where the grading on 𝐴[𝑡] is the same as the grading on 𝐴 but with deg 𝑡 ≔ 0)
induced by the inclusion 𝑘[𝑡] ⊆ 𝐴[𝑡] (note that this is indeed an inclusion since no
polynomial in 𝑡 alone is killed by the quotient). This is a flat family with generic
fibre over 𝑡 ≠ 0 equal to Proj𝐴/𝔞 and special fibre over 𝑡 = 0 equal to Proj𝐴/ in𝑤(𝔞)
[2, Theorem 15.17].

3.5 Example. Let 𝐹 = 𝑋𝑍 − 𝑌 2 be the conic tangent to 𝑋 = 0 and 𝑍 = 0 with
axis 𝑌 = 0. The initial term is 𝑋𝑍. Pick the weight 𝑤 = (1, 0, 0), and then ̃𝐹 =
𝑡(𝑡−1𝑋𝑍 − 𝑡−0𝑌2) = 𝑋𝑍, so the limit is Z(𝑋) ∪ Z(𝑍).

One should think of (1, 0, 0) as encoding the repulsion of Z(𝐹) from the point
𝑌 = 𝑍 = 0.

3.6 Example. Take again the twisted cubic defined by the vanishing of

𝑓 = 𝑊𝑌 − 𝑋2, 𝑔 = 𝑊𝑍 − 𝑋𝑌, ℎ = 𝑋𝑍 −𝑊𝑌 2 ∈ 𝐴 = 𝑘[𝑋, 𝑌, 𝑍].

We saw that a Gröbner basis for this ideal is

{𝑓 = 𝑊𝑌 − 𝑋2, 𝑔 = 𝑊𝑍 − 𝑋𝑌, ℎ = 𝑋𝑍 − 𝑌 2, 𝑘 = 𝑊𝑍2 − 𝑌 3}.

Pick the weight (0, 1, 2, 10). Then we have

̃𝑓 = 𝑊𝑌 − 𝑋2, ̃𝑔 = 𝑊𝑍 − 𝑡7𝑋𝑌, ̃ℎ = 𝑋𝑍 − 𝑡7𝑌 2, ̃𝑘 = 𝑊𝑍2 − 𝑡14𝑌3.

In the limit we have 𝑊𝑌 = 𝑋2,𝑊𝑍 = 0, 𝑋𝑍 = 0, and 𝑊𝑍2 = 0. If 𝑊 = 1 then
𝑌 = 𝑋2 and 𝑍 = 0 (so a union of a conic and a line). If𝑊 = 0 then we have 𝑋2 = 0
and 𝑋𝑍 = 0 (so around 𝑍 = 0 we have an infinitesimal point).
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§3.2. First degenerating to a Borel-fixed point
3.7 Proposition. Let 𝔞 ⊴ 𝐴 be a fixed homogenous ideal and let 𝑤 ∈ ℤ𝑛+1 be a
general weight. Then there is an open set 𝑈 ⊆ GL(𝑛 + 1, 𝑘) such that in𝑤(𝑔𝔞) is
constant for 𝑔 ∈ 𝑈 , and this initial ideal is fixed by the action of 𝐺 if 𝑤0 > ⋯ > 𝑤𝑛.
Proof. This is the combination of [2, Theorems 15.18 and 15.20]. The ideal gin𝑤 ≔
(in𝑤(𝑔𝔞)) is called the generic initial ideal of 𝔞 with respect to 𝑤. mAk

For any 𝔞 cutting out a scheme [𝔞] ∈ ℋ𝑝
𝑟 there exists a path in𝑈 ⊆ GL(𝑛+1, 𝑘)

from 1 to 𝑔 and hence a path in ℋ𝑝
𝑟 from [𝔞] to the scheme [𝑔𝔞]. More precisely

we have a one-parameter family 𝔸1 → 𝑈 → ℋ𝑝
𝑟 and in particular we have that

[𝑔𝔞] is in the same connected component as [𝔞]. Now we can take the Gröbner
degeneration from 𝑔𝔞 to in𝑤(𝑔𝔞) for weight 𝑤, and this is Borel-fixed. In total then
we have a path from [𝔞] to a Borel-fixed point.

§3.3. Then degenerating to the lexicographic ideal
Let us suposewe sit at a Borel fixed ideal 𝔞which is not lexicographic. We recall that
the lexicographic ideal has the property that the list of monomials of degree 𝑑 in
lexicographic order starts at the maximal monomial and then heads down without
gaps. We will write an ideal 𝔟 which is ‘closer’ to this than 𝔞, in the sense of ??.

To do this, let 𝑑 be the smallest degree in which 𝔞(𝑑) is not the top segment of
monomials in the lexicographic order. Let𝑚 ∈ 𝔞lex.(𝑑) ⧵ 𝔞(𝑑) be the largest mono-
mial in lexicographic order which is ‘missing’, and let 𝑓 be the largest monomial in
𝔞(𝑑) whch is below𝑚. (This is the setup of Definition 4.1 of [9].)
3.8 Lemma. Every monomial ideal 𝔞 has a unique minimal (finite) set of monomial
generators mg(𝔞) [8, Lemma 1.2]. If 𝑓 is below 𝑚 in a graded piece of a Borel-fixed
ideal as above, then 𝑓 is a minimal generator [9, Lemma 2.3]. mAk

We now replace 𝑓 in the generating set of 𝔞 by 𝑓 − 𝑚. We also need to replace
certain other generators by some modifications of 𝑓 − 𝑚 to ensure that 𝑓 is gone
from 𝔞; the actual ideal 𝔟 which we end up with is the ideal

𝔟 = gin(in(𝑁))
where 𝑁 is the binomial ideal

({𝑔𝑢 − 𝑛𝑢},mg 𝔞 ⧵ {𝑔𝑢}) ;
here the 𝑔𝑢 range over certain modifications of 𝑓 and 𝑛𝑢 are certain modifications
of𝑚, defined combinatorially in [9, Construction 4.3].
3.9 Lemma. Recall that if 𝔞 ⊴ 𝐴 then its saturation is

𝑎 ≔ {𝑓 ∈ 𝐴 ∶ ∃𝑢∈ℤ∀𝑖𝑥𝑢𝑖 𝑓 ∈ 𝔞}.
1. The saturation of a Borel-fixed ideal is Borel-fixed.

2. There are only finitely many saturated Borel-fixed ideals with a given Hilbert
polynomial. mAk

Replace 𝔟 with the saturation of its generic initial ideal. This is Borel-fixed by
(1) of Lemma 3.9 and is closer to 𝔞lex. then 𝔞. This process can be iterated and ter-
minates after finitely many steps by (2) of Lemma 3.9; each step is also a Groebner
deformation, which gives us the desired connectedness [9, Proposition 4.13].
3.10 Example. The lexicographic ideal inℋ3𝑡+1

3 defines a planar triple line with
coplanar embedded point.
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