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§1. Surfaces
1. Let R be a parallelogram in R?. Let f and g be affine translations which map
edges to their opposite edges, and let G = (f, g) so that GR is a tiling of R
Prove directly (i.e. without appealing to the Poincaré polyhedron theorem or
ping pong lemma) that:

(a) there is a homeomorphism between T = R/~ and R?/G, where ~ is the
equivalence relation “x ~ y if and only if either x = y or x and y both
lie on the boundary of R and x = f(y) or x = g(y)".

(b) apresentation for Gis(f,g : [f,g] = 1).
2. We consider tilings.”

(a) Show that the only edge-to-edge tilings of R? by regular polygons (where
each tile is congruent to every other tile) are the obvious ones (by trian-
gles, hexagons, and squares).

(b) Show that in H? every regular n-gon with n > 4 tiles the plane, and com-
pute the internal angle sum of each n-gon.

(c) We return to the Euclidean plane, and we consider edge-to-edge tilings
with regular polygons where the congruence classes of the tiles are drawn
from some finite set (i.e. we allow tiles of possibly different shapes).

i. Let v be a vertex of the tiling of valence s. Suppose that the incident
tiles are an n;-gon, an n,-gon, ..., an n,-gon. Show that the equation
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holds, and that there are exactly 17 integer solutions for the n,, ..., n;
(here are three for free: {6,6,6}, {4,4,4,4} and {3, 3, 3,3, 3,3}). We
call the particular cyclic ordering of n,, ..., n, at v the type of v (de-
fined up to cyclic order of course), and there are 21 possible types
(some of the 17 integer solutions appear in nontrivially different or-
ders).

ii. AnArchimedian tiling is an edge-to-edge tilings with regular poly-
gons where the congruence classes of the tiles are drawn from some
finite set and where all vertices are the same species. Show that (i)
if you have a vertex drawn from ten of the 21 types then the result-
ing arrangement cannot be extended to an Archimedian tiling of the
plane; (ii) prove that all of the remaining eleven can be extended
(warning: it is not enough to draw a picture!).

Let Q € R? and consider the circle C in R? with centre P and radius R. The
reflection? Q' of Q in the circle is the unique point such that

IQ =PIl - [IQ" — P|l = R%.

(a) Show that the reflection is well-defined and gives a homeomorphism
from the plane minus P to itself.

(b) Show that the reflection of a circle D in C is either a circle (if D does not
pass through P) or a line (if D passes through P).

(c) Prove that if two circles D, D’ intersect at some angle 6 then their reflec-
tions in C also intersect at the angle 6.

(d) Show that any two non-intersecting circles lie in a family of disjoint cir-
cles which fill the plane and whose centres lie on the line joining the two
centres of the starting circles.

(e) Show that any two non-intersecting circles can be moved by reflection in
a suitable third circle to become a pair of concentric circles. [Hint: take a
circle centred at one of the limiting points of the pencil from the previous
part.]

(f) Prove Steiner’s porism: suppose you have two non-concentric circles C;, C,,
one inside the other, and suppose there exists a finite chain D, ..., D,, of
circles such that each D; is tangent to C; and C,, and to D;,, and D;_,;
(subscripts taken mod n, so D,,,, = D,. Then if D] is any circle tangent
to both C; and C, it can be extended to a circle chain which is mutually
tangent to both C, and C, and is cyclic.
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4. Let M € PSL(2, R).

(a) Show that M has at most two eigenvectors when acting on C? and that
w.l.o.g. we may assume that neither lies in the subspace {(x, 0)" : x € C}.

(b) Show that if M has a fixed point at z # oo then (z,1)" is an eigenvector.
(c) Show that M has a unique eigenvector (z, 1) if and only if (tr M)? = 4.
(d) Deduce also that if M has two eigenvectors (z,1)" and (w, 1)" then

« w,z € Rifand onlyiftr* M < 4
« w,z € C\ Rifand only if tr* M > 4.

(e) Show that every element of PSL(2,R) is conjugate to z —— z + 1 (if it
is parabolic), or z ~— Az for some 4 € R* (if it is hyperbolic), or an
element of O(2) (if it is elliptic).

(f) Show that if a subgroup of PSL(2,R) contains two parabolic elements
f,g with a shared fixed point then it is either indiscrete or there exists
some h such that h" = f and h"* = g.

5. Show that if G is a free group then G cannot be the holonomy group of a com-
pact surface.

6. Results used in the proof of the classification of surfaces:

(a) If X is the triangulated surface, T is a maximal tree in the edges of the
triangulation, and T' is the dual to T, then I is connected.

(b) If G is a connected graph, then y(G) < 1 and this is sharp if and only if
G is a tree.

(c) (Not used in the proof, but deduce it:) if T triangulates the compact sur-
face X then y(X) =2 — 2g.

7. Show that SL(2, Z) is generated by the linear transformations S(z) = z + 1,
T(z) = —1/z. Hint: use row and column operations and the Euclidean algo-
rithm. Hence observe that PSL(2, Z) tiles H? by the hyperbolic quadrilateral
with vertices oo, i, (1 + i\/g) /2,1 + i. By similar methods to the lecture (i.e.
considering cycles in the dual graph to the tiling) deduce that PSL(2,Z) =
(S,T : S =(ST)> =1).
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