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§1. Surfaces
1. Let ℛ be a parallelogram in ℝ2. Let 𝑓 and 𝑔 be affine translations which map

edges to their opposite edges, and let 𝐺 = ⟨𝑓, 𝑔⟩ so that 𝐺ℛ is a tiling of ℝ2.
Prove directly (i.e. without appealing to the Poincaré polyhedron theorem or
ping pong lemma) that:

(a) there is a homeomorphism between 𝕋 = ℛ∕∼ andℝ2∕𝐺, where ∼ is the
equivalence relation “𝑥 ∼ 𝑦 if and only if either 𝑥 = 𝑦 or 𝑥 and 𝑦 both
lie on the boundary of ℛ and 𝑥 = 𝑓(𝑦) or 𝑥 = 𝑔(𝑦)”.

(b) a presentation for 𝐺 is ⟨𝑓, 𝑔 ∶ [𝑓, 𝑔] = 1⟩.

2. We consider tilings.1

(a) Show that the only edge-to-edge tilings ofℝ2 by regular polygons (where
each tile is congruent to every other tile) are the obvious ones (by trian-
gles, hexagons, and squares).

(b) Show that inℍ2 every regular 𝑛-gon with 𝑛 > 4 tiles the plane, and com-
pute the internal angle sum of each 𝑛-gon.

(c) We return to the Euclidean plane, and we consider edge-to-edge tilings
with regular polygonswhere the congruence classes of the tiles are drawn
from some finite set (i.e. we allow tiles of possibly different shapes).
i. Let 𝑣 be a vertex of the tiling of valence 𝑠. Suppose that the incident
tiles are an 𝑛1-gon, an 𝑛2-gon, ..., an 𝑛𝑠-gon. Show that the equation

𝑛1 − 2
𝑛1

+⋯ +
𝑛𝑠 − 2
𝑛𝑠

= 2
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1See §2.1 of B. Grünbaum and G.C. Shephard, Tilings and Patterns. W.H. Freeman and Co., 1987.
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holds, and that there are exactly 17 integer solutions for the 𝑛1, ..., 𝑛𝑠
(here are three for free: {6, 6, 6}, {4, 4, 4, 4} and {3, 3, 3, 3, 3, 3}). We
call the particular cyclic ordering of 𝑛1, ..., 𝑛𝑠 at 𝑣 the type of 𝑣 (de-
fined up to cyclic order of course), and there are 21 possible types
(some of the 17 integer solutions appear in nontrivially different or-
ders).

ii. AnArchimedian tiling is an edge-to-edge tilingswith regular poly-
gons where the congruence classes of the tiles are drawn from some
finite set and where all vertices are the same species. Show that (i)
if you have a vertex drawn from ten of the 21 types then the result-
ing arrangement cannot be extended to an Archimedian tiling of the
plane; (ii) prove that all of the remaining eleven can be extended
(warning: it is not enough to draw a picture!).

3. Let 𝑄 ∈ ℝ2 and consider the circle 𝐶 in ℝ2 with centre 𝑃 and radius 𝑅. The
reflection2 𝑄′ of 𝑄 in the circle is the unique point such that

‖𝑄 − 𝑃‖ ⋅ ‖𝑄′ − 𝑃‖ = 𝑅2.

(a) Show that the reflection is well-defined and gives a homeomorphism
from the plane minus 𝑃 to itself.

(b) Show that the reflection of a circle 𝐷 in 𝐶 is either a circle (if 𝐷 does not
pass through 𝑃) or a line (if 𝐷 passes through 𝑃).

(c) Prove that if two circles 𝐷,𝐷′ intersect at some angle 𝜃 then their reflec-
tions in 𝐶 also intersect at the angle 𝜃.

(d) Show that any two non-intersecting circles lie in a family of disjoint cir-
cles which fill the plane and whose centres lie on the line joining the two
centres of the starting circles.

(e) Show that any two non-intersecting circles can bemoved by reflection in
a suitable third circle to become a pair of concentric circles. [Hint: take a
circle centred at one of the limiting points of the pencil from the previous
part.]

(f) ProveSteiner’s porism: suppose youhave twonon-concentric circles𝐶1, 𝐶2,
one inside the other, and suppose there exists a finite chain 𝐷1, ..., 𝐷𝑛 of
circles such that each 𝐷𝑖 is tangent to 𝐶1 and 𝐶2, and to 𝐷𝑖+1 and 𝐷𝑖−1
(subscripts taken mod 𝑛, so 𝐷𝑛+1 = 𝐷1. Then if 𝐷′

1 is any circle tangent
to both 𝐶1 and 𝐶2 it can be extended to a circle chain which is mutually
tangent to both 𝐶1 and 𝐶2 and is cyclic.

2See H.S.M. Coxeter and S.L. Greitzer,Geometry Revisited. Mathematical Association of America,
1967.
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4. Let𝑀 ∈ PSL(2,ℝ).

(a) Show that 𝑀 has at most two eigenvectors when acting on ℂ2 and that
w.l.o.g. wemay assume that neither lies in the subspace {(𝑥, 0)𝑡 ∶ 𝑥 ∈ ℂ}.

(b) Show that if𝑀 has a fixed point at 𝑧 ≠∞ then (𝑧, 1)𝑡 is an eigenvector.
(c) Show that𝑀 has a unique eigenvector (𝑧, 1)𝑡 if and only if (tr𝑀)2 = 4.
(d) Deduce also that if𝑀 has two eigenvectors (𝑧, 1)𝑡 and (𝑤, 1)𝑡 then

• 𝑤, 𝑧 ∈ ℝ if and only if tr2𝑀 < 4
• 𝑤, 𝑧 ∈ ℂ ⧵ℝ if and only if tr2𝑀 > 4.

(e) Show that every element of PSL(2,ℝ) is conjugate to 𝑧 ↦→ 𝑧 + 1 (if it
is parabolic), or 𝑧 ↦→ 𝜆𝑧 for some 𝜆 ∈ ℝ∗ (if it is hyperbolic), or an
element of 𝑂(2) (if it is elliptic).

(f) Show that if a subgroup of PSL(2,ℝ) contains two parabolic elements
𝑓, 𝑔 with a shared fixed point then it is either indiscrete or there exists
some ℎ such that ℎ𝑛 = 𝑓 and ℎ𝑚 = 𝑔.

5. Show that if 𝐺 is a free group then 𝐺 cannot be the holonomy group of a com-
pact surface.

6. Results used in the proof of the classification of surfaces:

(a) If 𝑋 is the triangulated surface, 𝑇 is a maximal tree in the edges of the
triangulation, and Γ is the dual to 𝑇, then Γ is connected.

(b) If 𝐺 is a connected graph, then 𝜒(𝐺) ≤ 1 and this is sharp if and only if
𝐺 is a tree.

(c) (Not used in the proof, but deduce it:) if 𝑇 triangulates the compact sur-
face 𝑋 then 𝜒(𝑋) = 2 − 2𝑔.

7. Show that SL(2,ℤ) is generated by the linear transformations 𝑆(𝑧) = 𝑧 + 1,
𝑇(𝑧) = −1∕𝑧. Hint: use row and column operations and the Euclidean algo-
rithm. Hence observe that PSL(2,ℤ) tiles ℍ2 by the hyperbolic quadrilateral
with vertices∞, 𝑖, (1 + 𝑖

√
3)∕2, 1 + 𝑖. By similar methods to the lecture (i.e.

considering cycles in the dual graph to the tiling) deduce that PSL(2,ℤ) =
⟨𝑆, 𝑇 ∶ 𝑆2 = (𝑆𝑇)3 = 1⟩.
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