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Abstract
Riemann surfaces have approximately three definitions: (GEOMETRIC)

they are quotients of domains by group actions; (ANALYTIC) they are surfaces
with complex charts that allow the definition of multivalued functions; and
(ALGEBRAIC) they are complex varieties of dimension 1. The trifurcation of
the theory into these three mountains happened very early on in their history,
and often mathematicians tend to live on only one of the three peaks. We will
explain the geometric uniformisation theory of Riemann surfaces from a very
classical (pre-Thurston) viewpoint that requires minimal background (just ele-
mentary complex analysis and vague knowledge of what the hyperbolic plane
looks like) and in the process we will climb high enough up the mountain that
the other two summits are visible in the distance.

Ngauruhoe and Tongariro from Ruapehu (colourised). Whites Aviation (1947).
Peter Alsop, “Wonderland”, p. 70. Potton & Burton (2020).

1



Contents

List of Figures 2

0 Elliptic integrals 2

1 Fuchsian groups and uniformisation 4

2 Kleinian groups 10

3 Theta functions 17

4 Moduli 23

List of Figures
1 The lift of ℎ to the Riemann surface of 𝑓 and 𝑔. . . . . . . . . . . . . 4
2 One complex structure on the genus 𝑔. . . . . . . . . . . . . . . . . . 7
3 The (∞,∞,∞)-triangle group. . . . . . . . . . . . . . . . . . . . . . 9
4 A fundamental polygon for the modular group. . . . . . . . . . . . . 9
5 Poincaré extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 The conjugacy classes of Möbius transformations. . . . . . . . . . . 11
7 The limit set of a classical Schottky group on 4 circles. . . . . . . . . 13
8 An example Riley limit set. . . . . . . . . . . . . . . . . . . . . . . . 13
9 A Maskit group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
10 A circle packing limit set. . . . . . . . . . . . . . . . . . . . . . . . . 15
11 The limit set of a bead group. . . . . . . . . . . . . . . . . . . . . . . 16
12 The data for an atom group, and its fundamental polyhedron. . . . . 16
13 The canonical homology basis for a compact Riemann surface, here

of genus six. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
14 Frontispiece to [48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
15 Images of 𝐴 ⊂ ℂ under a holomorphic motion Φ. . . . . . . . . . . . 26
16 The Maskit embedding. . . . . . . . . . . . . . . . . . . . . . . . . . 27
17 The limit set of a punctured torus group. . . . . . . . . . . . . . . . . 27
18 The limit set of a punctured torus cusp group. . . . . . . . . . . . . . 28
19 The (parabolic) Riley slice. . . . . . . . . . . . . . . . . . . . . . . . 28

§0. Elliptic integrals
We will take a point of view that is ultra-classical, but we make no attempt to be
historically accurate. The history of early function theory is quite complicated, and
is the subject of the excellent textbook by Bottazzini and Gray [12]. As well as the
standard historical sources which you can look at by Poincaré [51] and Riemann
[54], there is a nice modern monograph by Prasolov and Solovyev [52].

Elliptic integrals are named after arc lengths of ellipses, but to make things easy
we look to an a priorimore complicated curve for our motivation.

0.1 Example. Fix two points 𝐴, 𝐵 in the plane, let 𝑎 = 𝑑(𝐴, 𝐵)/2. The lemniscate
of Bernoulli is the locus of points 𝑃 such that 𝑑(𝐴, 𝑃)𝑑(𝑃, 𝐵) = 𝑎2 [15, p. 18];
setting 𝑎 = 1, one can show that the arc length from (0, 0) to (𝑥(𝑟), 𝑦(𝑟)) is given by
the integral

𝛼(𝑟) = ∫
𝑟

0

𝑑𝑡
√1 − 𝑡4

.
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This is the simplest example of an elliptic integral. Observe that the equivalent
problem for the circle is to compute the length of the unit circle centred at (1, 0)
cut out by a chord of length 𝑟; this is in fact one way to define arcsin 𝑟 (hence why
there is an ‘arc’ in ‘arcsin’!) and motivates one to look at 𝛼−1 rather than 𝛼 since it
is plausible it might have quasi-trigonometric properties.

Consider the differential form

𝑑𝑧 = 𝑑𝑤
√(1 − 𝑤2)(1 − 𝑘2𝑤2)

;

this is double-valued on ℂ, with branch points at ±1 and ±1/𝑘. It corresponds to
the elliptic integral

𝜁(𝜉) = ∫
𝜉

0
𝑑𝑧 = ∫

𝜉

0

𝑑𝑤
√(1 − 𝑤2)(1 − 𝑘2𝑤2)

,

which of course depends on the choice of a path from 0 to 𝜉 ∈ ℂ.

0.2 Theorem (Abel; 1827–1828). The inverse function 𝜉(𝜁) is doubly periodic, with
periods 𝐾 and 𝐿 given by

𝐾 = 2∫
1

0
𝑑𝑧 and 𝐿 = ∫

1/𝑘

0
𝑑𝑧.

In other words, 𝜉 is determined by its values on the parallelogram with vertices
{0, 𝐾, 𝐿, 𝐾 + 𝐿}.

0.3 Definition. An elliptic function with periods 𝐾 and 𝐿 (two ℝ-independent
complex numbers) is a meromorphic function ℓ𝑒 ∶ ℂ → ℂ such that ℓ(𝑧) = ℓ(𝑧 +
𝑚𝐾 + 𝑛𝐿) for all𝑚, 𝑛 ∈ ℤ.

We now compute, by the fundamental theorem of calculus,

𝑑𝜉
𝑑𝜁 =

1
√(1 − 𝜉2)(1 − 𝑘2𝜉2)

;

hence 𝑥 = 𝜉 and 𝑦 = 𝑑𝜁/𝑑𝜉 (there is a lot of calculus justification needed here of
course, but we are living in the XIXth century and we don’t care) parameterise the
curve

(0.4) (1 − 𝑥2)(1 − 𝑘2𝑥2) = 𝑦2.

This is an elliptic curve, and its function field is generated over ℂ by 𝑥 and 𝑦 =
√(1 − 𝑥2)(1 − 𝑘2𝑥2). On the other hand, both 𝜉 and𝑑𝜁/𝑑𝜉 are periodicwith periods
𝐾 and 𝐿 and give well-defined functions on the torusℂ/⟨𝑧 ↦ 𝑧+𝐾, 𝑧 ↦ 𝑧+𝐿⟩. We
now have the following result of Poincaré:

0.5 Lemma. If 𝑓, 𝑔 are (sufficiently generic, i.e. the diagonal map 𝑧 ↦ (𝑓(𝑧), 𝑔(𝑧)) is
injective—this is true for 𝑥 and 𝑦 in Eq. (0.4)) elliptic functions with periods 𝐾, 𝐿 and
ℎ is a third such function, then ℎ is a rational function in 𝑓, 𝑔.
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Figure 1: The lift of ℎ to the Riemann surface of 𝑓 and 𝑔.

Proof. Let 𝑧 ∈ 𝑃 where 𝑃 is the parallelogram of definition and let 𝑔 = 𝜓(𝑓) be
the Riemann surface of 𝑓 and 𝑔 (the proof that there exists such an algebraic rela-
tion 𝜓 is entirely elementary but the proof is general to higher genus, we give it in
Proposition 3.10); by the condition on 𝑓 and 𝑔 the function ℎ is single-valued on
this Riemann surface, except for finitely many poles where either ℎ has a pole onℂ
or 𝑔′ vanishes (see Fig. 1). Now we use that on a Riemann surface, every meromor-
phic function is rational. This is an argument due to Riemann via what we would
call ‘modern’ methods; i.e. it is in this context that the Riemann-Roch theorem
appears. mAk

§1. Fuchsian groups and uniformisation
Motivated by the elliptic case, given a Riemann surface 𝑅 we ask for the following:

1. A planar domain Ω and a group Γ of holomorphic functions on Ω such that
Ω/Γ ≃ 𝑅;

2. Even better, a subset 𝑃 ⊆ Ω such that the images of 𝑃 under Γ tileΩ and such
that 𝑅 is exactly 𝑃 with the sides identified according to Γ;

3. A system of meromorphic functions 𝑅 → ℂ, equivalently functions 𝑓 ∶ Ω →
ℂ such that 𝛾𝑓 = 𝑓 for all 𝛾 ∈ Γ;

4. A moduli space of Riemann surfaces with the same topological type as 𝑅;
5. An equation for the algebraic curve associated to 𝑅;
6. etc.
In this section we discuss questions (1) and (2), in limited detail. The interested

readermightwant to look at (i) the original papers of Poincaré, which are translated
into Englishwith commentary by John Stillwell [51]; (ii) the classic textbooks of Ka-
tok on Fuchsian groups [29] and Beardon on Möbius transformations [7]; (iii) the
sections on uniformisation in the textbook of Farkas and Kra [21]; (iv) the modern
undergraduate textbook by Bonahon [11].

Let’s pause to state some basic definitions for convenience.
1.1 Definition. 1. Amap𝑓 ∶ 𝑈 → ℝ𝑛 (where𝑈 ⊆ ℝ𝑛 is open) is differentiable

at 𝑥 if there is an 𝑛×𝑛matrix𝐴 and amap 𝜀 ∶ 𝑈 → ℝwith 𝜀(𝑦) → 0 as 𝑦 → 𝑥
such that

𝑓(𝑦) = 𝑓(𝑥) + 𝐴(𝑦 − 𝑥) + 𝜀(𝑦)|𝑦 − 𝑥|;
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and such a differentiable map 𝑓 is conformal at 𝑥 if𝐴 is some positive scalar
multiple of an orthogonal matrix. (By the Cauchy-Riemann equations, holo-
morphic functions are conformal.) Write Conf(𝑈) for the group of conformal
functions on𝑈 , and Conf+(𝑈) for the orientation-preserving (det𝐴 > 0) half.

2. Might as well define a Riemann surface too: a Riemann surface is a Haus-
dorff topological space 𝑅 with countably many connected components and
which admits a chart (𝑈𝛼, 𝑓𝛼 ∶ 𝑈𝛼 → 𝐶)𝛼∈𝐴 with the usual axioms: (i) the
𝑈𝛼 cover 𝑅; (ii) the 𝑓𝛼 are homeomorphisms onto their images; (iii) for every
𝛼, 𝛽 ∈ 𝐴, 𝑓𝛽𝑓−1𝛼 is holomorphic on its domain of definition.
In particular, we allow the following things: (a) 𝑅might be disconnected; (b)
𝑅 might have punctures or disc boundary components; (c) 𝑅 might have in-
finitely many boundary components; (d) 𝑅 might not be of finite genus... A
Riemann surface is called analytically finite if it has finitely many compo-
nents, finite genus, finitely many punctures, and no other boundary compo-
nents. We will meet natural situations where the pathological cases occur,
but there are various saneness theorems (with uniformly hard proofs) which
guarantee that pathological Riemann surfaces occur only in pathologically
natural situations. For the remainder of this section, assume every Rie-
mann surface is analytically finite.

The fundamental result in the study of uniformisation by groups is the famous

1.2 Theorem (Riemann mapping theorem). If 𝑅 is a simply connected Riemann
surface, then 𝑅 is biholomorphic to exactly one of the following:

1. The Riemann sphere ℂ̂ ≔ ℂ ∪ {∞}, if 𝜒(𝑅) = 2;

2. The plane ℂ, if 𝜒(𝑅) = 0;

3. The disc Δ = {𝑧 ∈ ℂ ∶ |𝑧| < 1}, if 𝜒(𝑅) < 0.

(For a proof, see the theorem of Paragraph IV.6.1 of [21] or Chapter 6 of [2].)
Here, the Euler characteristic of a Riemann surface 𝑅 of genus 𝑔 with 𝑛 punc-

tures and deleted discs is
𝜒(𝑅) = 2 − 2𝑔 − 2𝑛.

Note that each of the three cases corresponds to the three surface geometries:
spherical, Euclidean, and hyperbolic. (We recall that the unit disc Δ is conformally
equivalent to the upper half-planeℍ2 and both are models for the hyperbolic plane
[7, Chapter 7].)

We now state a weak version of the Klein-Koebe-Poincaré uniformisation theo-
rem (we exclude the torsion case, for simplicity; the more general theorem in the
connected case can for example be found as Theorem IV.9.12 of [21]).

1.3 Theorem (Klein-Koebe-Poincaré uniformisation). Let 𝑅 be a connected Rie-
mann surface. Then:

1. If 𝜒(𝑅) = 2, then 𝑅 is the sphere (so admits a metric of constant sectional cur-
vature 1)

2. If 𝜒(𝑅) = 0 (so 𝑅 is either of genus 1 with no punctures, or is a sphere with one
puncture), then there is a group𝐺 of Euclideanmotions onℂ such that𝑅 = ℂ/𝐺
(so admits a metric of constant sectional curvature 0);
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3. If 𝜒(𝑅) < 0, then there exists a discrete group Γ of conformal mappings of ℍ2

which acts as a group of hyperbolic isometries, and 𝑅 = ℍ2/Γ.

1.4 Definition. A discrete group of isometries of ℍ2 is called a Fuchsian group.

‘Discrete’ here means with respect to the compact-open topology, but we will
see a more concrete topology in a moment.

1.5 Lemma. There are natural isomorphisms between the three groups Isom+(ℍ2),
PSL(2, ℝ), and the group Conf+(ℍ2) of conformal maps on ℂ̂ which preserve the up-
per half-plane.

Here is the more concrete definition: one can define discreteness of subgroups
of SL(2, ℂ) by identifying the latter with a subset of ℂ4 with the usual Euclidean
norm; this topology descends to PSL(2, ℂ), in fact the entire norm descends since
SL(2, ℂ)/PSL(2, ℂ) = {±1}. Anyway, this lemma in fact is more strong and we
get isomorphisms of topological groups. As a consequence, note that discrete sub-
groups of PSL(2, ℂ) are countable: given any radius 𝑅, the ball of radius 𝑅 about 𝐼2
contains only finitely many group elements. An alternative proof is found as [42,
Corollary II.B.4].

Proof of Lemma 1.5. Define an action of PSL(2, ℝ) on ℂ̂ by fractional linear trans-
formations, i.e.

[𝑎 𝑏
𝑐 𝑑] .𝑧 ≔

𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ;

then one can show by direct computation (use the determinant condition) that
PSL(2, ℝ) does indeed preserveℍ2. Fractional linear transformations with complex
coefficients 𝑎, 𝑏, 𝑐, 𝑑 which satisfy |𝑎𝑑 − 𝑏𝑐| = 1 are in natural bijection with con-
formal maps (this is a standard fact [2, Chapter 3] or [7, Chapter 4]), and fractional
linear transformationswhich preserveℝmust necessarily have real coefficients (an-
other computation). Getting that the conformal maps in fact give isometries of ℍ2

requires annoying computations with the metric [7, Theorem 7.4.1]. mAk

Oh, and we might as well state the converse to the uniformisation theorem
(again in the torsion free case):

1.6 Lemma. If Γ ≤ PSL(2, ℝ) is Fuchsian, then ℍ2/Γ is a Riemann surface which
admits a hyperbolic metric.

Proof. The proof goes (very) locally, that is you pick a small region around every
point 𝑧 ∈ ℍ2/Γ and lift it back up to ℍ2; in the torsion case you need to be careful
about ramification points too. The details are in Beardon [7, Chapter 6]. mAk

Let’s do some examples.

1.7 Example (Compact Riemann surfaces of genus 𝑔). One group 𝐺 which gives
the Riemann surface of genus 𝑔 is generated by the 2𝑔 transformations depicted in
Fig. 2. We need to check that the quotient is correct; let 𝑃 be the hyperbolic 4𝑛-
gon pictured. Each 𝜙𝑖 moves 𝑃 off itself, such that 𝜙𝑖𝑃 ∩ 𝑃 is exactly one side of 𝑃
(namely, 𝐶2𝑔+𝑖). Also, one can show by following the action of the 𝜙𝑖 on the edges
that

[𝜙1, 𝜙2][𝜙3, 𝜙4]⋯ [𝜙2𝑔−1, 𝜙2𝑔] = 1
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Figure 2: One complex structure on the genus 𝑔.

and no other combination of the𝜙𝑖 will transform 𝑃 back onto itself. Hence𝐺𝑃 tiles
ℍ2 and the quotientℍ2/𝐺 is equal to 𝑃/𝐺where𝐺 is viewed as an automorphism of
𝑃 which just permutes the edges; and the edge pairing set up by 𝐺 gives the gluing
depicted in the lower half of the figure.

(Of course, the space of all compact Riemann surfaces of genus 𝑔 should have
dimension 3𝑔 − 3, so where are all the other groups? They come from quasiconfor-
mal deformations of 𝐺, see the section on moduli below, but you can get at least
some of them by varying the relative lengths of the circular arcs in the hyperbolic
metric—this gives 2𝑔 dimensions a priori so you have to be more clever to get the
rest. This direction leads to the Fenchel-Nielsen coordinates [20, §10.6] for Te-
ichmüller space.)

This kind of ping-pong argument generalises, as was known to Poincaré:

1.8 Theorem (Poincaré (1883)). Let 𝑃 be an open convex polyhedron in ℍ𝑛 of full
dimension, and suppose we have the following data in addition:-

For every facet 𝑓 of 𝑃 (we include faces at infinity throughout), a facet 𝑓′
of 𝑃 and a group element 𝜙𝑓 ∈ Isom+(ℍ𝑛) such that (i) 𝜙𝑓(𝑓) = 𝑓′, (ii)
𝜙𝑓′ = 𝜙−1𝑓 , and (iii) 𝜙𝑓(𝑃) ∩ 𝑃 = 𝑓′ (this is the data of a facet-pairing
system).

Let 𝐺 = ⟨𝜙𝑓 ∶ 𝑓 ∈ 𝑃(𝑛 − 1). The facet pairings induce an equivalence relation on 𝑃
such that each element of the interior 𝑃 has equivalence class a singleton. Write 𝑃∗ for
the quotient of 𝑃 by the relation, let𝜋 ∶ 𝑃 → 𝑃∗ be the standard topological projection.
The next assumption is that

(iv) For every 𝑧 ∈ 𝑃∗, ||𝜋−1(𝑧)|| < ∞.

For each codimension 2 face 𝑒, there is a sequence (𝑒 = 𝑒0, ..., 𝑒𝑚) of codimension 2
faces defined in the following way: pick a facet 𝑓0 containing 𝑒0; set 𝑒1 = 𝜙𝑓0(𝑒0); set
𝑓1 to be the facet containing 𝑒1 which is not 𝑓′0; look at the image of 𝑒1 under 𝜙𝑓1 ,...
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and so on...; by (iv), this sequence has finite period 𝑘; set ℎ(𝑒) = 𝜙𝑓𝑘 ⋯𝜙𝑓0 ; let 𝑡(𝑒) be
the order of ℎ(𝑒) (possibly 𝑡(𝑒) = ∞).

(v) Let 𝛼(𝑒) be the dihedral angle of 𝑃 around the codimension 2 face 𝑒; we require
∑𝛼(𝑒𝑖) to be a submultiple of 𝜋 (if there is a facet 𝑓 containing 𝑒 such that
𝑓 = 𝑓′ and 𝜙𝑓𝑒 = 𝑓) or 2𝜋 (otherwise).

(vi) Finally, we place a metric on 𝑃∗ by analytic continuation, i.e. 𝑃 has a natural
metric from 𝑋 , and if you walk along a path that crosses the edge of 𝑃 then it
continues to have a well-defined length after wrapping around to the other side;
we require this metric to be complete.

With all of these conditions, then (a) 𝐺 is discrete; (b) 𝐺 is generated by the 𝜙𝑓 and a
complete set of relations in 𝐺 is given by ℎ(𝑒)𝑡 = 1 for each 𝑒 and 𝜙𝑓′𝜙𝑓 = 1 for each
𝑓; (c) the quotient space 𝑃∗ is isometric to the quotient ℍ𝑛/𝐺.

For a complete discussion of this theorem, including the orbifold case, see Rat-
cliffe [53]. There is a natural combinatorial condition for condition (vii): the only
place that completeness can go wrong is at cusps, and the required condition is that
if you cut the polyhedron 𝑃 around a cusp with a sphere then the restriction of the
𝜙𝑓 to the intersection (which is a lower-dimensional polyhedron) should set up a
lower-dimensional facet pairing.

1.9 Definition. If 𝐺 ≤ Isom+(ℍ𝑛) is the group obtained from a facet-pairing of a
polyhedron 𝑃 ⊆ ℍ𝑛 as above, then 𝑃 is called a fundamental polyhedron for 𝐺;
if there exists a fundamental polyhedron for 𝐺 with finitely many facets, then 𝐺 is
called geometrically finite.

Remark. The Poincaré polyhedron theorem is essentially the only way to prove dis-
creteness of a group. Of course the discreteness problem is hard and so the problem
of finding a polyhedron which works is also hard.

Talking about hard group theoretic problems, one can read off all kinds of topo-
logical information about ℍ2/𝐺 from the group 𝐺, in theory. For instance, one has
the following standard result from covering theory.

1.10 Proposition. 1. If 𝑝 ∶ 𝑋 → 𝑌 is a regular covering map (i.e. Aut𝑝 acts
transitively on fibres), with 𝑥0 ∈ 𝑋 and 𝑦0 = 𝑝(𝑥0), then

Aut(𝑝) ≃ 𝜋1(𝑌, 𝑦0)/𝑝∗𝜋1(𝑋, 𝑥0).

2. If𝐺 acts freely discontinuously on a path connected and locally path connected
Hausdorff space 𝑋 , then 𝑝 ∶ 𝑋 → 𝑋/𝐺 is a regular covering map such that
Aut(𝑝) = 𝐺. mAk

Proof. See Bredon [13] (corollary III.6.9 and proposition III.7.2 resp.), or Lee [35]
(corollary 12.8 and theorem 12.14 resp.). mAk

The point is that if 𝐺 tiles ℍ2 with copies of some connected open set Ω, then
𝐺 ≃ 𝜋1(ℍ2/𝐺)/𝜋1(Ω). Thus if we find a simply connected domain for 𝐺 like those
in the examples above then we can recover the homology type. In addition, we see
that (in the simply connected domain case, again) every geodesic on the quotient
lifts to a group element in the fundamental group; more precisely, the geodesic
lifts to an arc in Ω preserved by the corresponding element of 𝜋1(ℍ2/𝐺) under the
isomorphism.
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Figure 3: The (∞,∞,∞)-triangle group.

Figure 4: A fundamental polygon for PSL(2, ℤ), image from Miyake [47, fig. 4.1.1].

1.11 Example (The (∞,∞,∞)-triangle group). Let 𝑃 be the polyhedron bounded
(inℍ2) by the two vertical linesℜ𝑧 = ±1/2 and the two circles of radius 1/4 through
±1/4 (Fig. 3). Define a group 𝐺 generated by the translations 𝑓(𝑧) = 𝑧 + 1 and
𝑔(𝑧) = 𝑧

4𝑧+1
; these transformations pair up the circles, as shown in the figure. By

Theorem 1.8, one can compute that the group is free on 𝑓 and 𝑔. (The only nontriv-
ial cycle relation is (𝑓𝑔−1)∞ = 1; the transformation 𝑓𝑔−1 is the hyperbolic trans-
lation which fixes 1/2.) Note, this group is the orientation-preserving half of the
group generated by the reflections across the sides of the triangle with vertices at
−1/2, 0, and∞. The quotient is a three-punctured sphere, which has trivial Teich-
müller space [20, p. 278], so one might expect that the group cannot be deformed:-
and indeed, deforming a triangle with three vertices at infinity just gives a projec-
tively equivalent triangle.

1.12 Example (PSL(2, ℤ)). The prototypical arithmetic group is the full modular
group, PSL(2, ℤ). Of course this group is discrete since ℤ4 is discrete in ℝ4, but we
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can also use the standard fact that PSL(2, ℤ) has presentation

PSL(2, ℤ) = ⟨𝑋 = [1 1
0 1] , 𝑄 = [0 −1

1 0 ] .⟩

The corresponding tessellation is given in Fig. 4, and the quotient is a Riemann
surface with one cusp, one cone point of angle 𝜋/2, and one of order 𝜋/3.

Any group of finite index in PSL(2, ℤ) is called a modular group. For exam-
ple, the (∞,∞,∞)-triangle group of Example 1.11 is such a group. Here are some
more—let 𝑁 ∈ ℕ, and define

Γ(𝑁) = {𝐴 ∈ PSL(2, ℤ) ∶ 𝐴 ≡ 𝐼2 (mod 𝑁)} .

A group 𝐺 ≤ PSL(2, ℤ) is a congruence subgroup if Γ(𝑁) ≤ 𝐺 for some 𝑁 ∈ ℕ.

§2. Kleinian groups
The best classical reference for Kleinian groups are Beardon [7] and Maskit [42].
For a more modern view from a post-Thurston point of view see Ratcliffe [53] (en-
cyclopaedic, but from a very geometric point of view), Kapovich [28] (particularly
from the point of view of ggt), and the very very modern and highly recommended
Marden [41]. Of course as well as these books there is Thurston’s famous paper
[59], and his notes [58] (now published as of August 2022 by the AMS).

Poincaré recognised at the time of his seminal papers that it is necessary to deal
with discrete subgroups of PSL(2, ℂ) rather than just PSL(2, ℝ). His motivation
came from solving certain PDEs like those in Section 0 above, where the coeffi-
cients were allowed to deform into the complex plane. Our motivation will be that
it would be nice to look at the full group of conformalmaps on the Riemann sphere,
rather than the subgroup of those which fix the upper half-plane. We have the fol-
lowing result from undergraduate complex analysis and classical geometry:-

2.1 Lemma. There are natural isomorphisms between the following groups:

1. The group of fractional linear transformations, maps ℂ → ℂ of the form
𝑧 ↦ 𝑎𝑧+𝑏

𝑐𝑧+𝑑
for |𝑎𝑑 − 𝑏𝑐| = 1;

2. The group 𝕄 ofMöbius transformations, the orientation-preserving half of
the group generated by all circle inversions on the Riemann sphere;

3. The group Conf+(ℂ̂ = Aut(ℂ̂) of conformal automorphisms of the Riemann
sphere;

4. The group PSL(2, ℂ).

For a proof, see the references in the proof of Lemma 1.5 above.
Poincaré also made the following observation:-

2.2 Proposition (Poincaré extension). There is a natural isomorphism between the
group of conformal automorphismsConf+(ℂ̂) and the group of hyperbolic isometries
Isom+(ℍ3).

Proof. Let 𝜙 be an (orientation-preserving) isometry of ℍ3. Then 𝜙 extends natu-
rally to a conformal homeomorphism (henceMöbius transformation) on the visual
boundary 𝜕ℍ3 = ℂ̂—this is a non-trivial observation but isn’t too hard to check,
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Figure 5: A conformal map 𝜙 ∶ ℂ̂ → ℂ̂ extends uniquely to an hyperbolic isometry
on ℍ3: the map 𝜙, in sending the points 𝑎, 𝑏, 𝑐, 𝑑 to their images, induces a map
on the hyperbolic segments [𝑎, 𝑐] and [𝑏, 𝑑]; if the original segments intersect at
some 𝑥 ∈ ℍ3, then their images intersect at some point which is defined to be 𝜙(𝑥).
The difficulty is in checking that, for any 𝑥 ∈ ℍ3, different choices of segments
intersecting at 𝑥 induce the same image 𝜙(𝑥).

Figure 6: The conjugacy classes of Möbius transformations.

see [42, IV.A]—and in fact this map Isom(ℍ3) → 𝕄 is invertible (which is not a
feature of all metric spaces of non-positive curvature). The inverse map is the so-
called Poincaré extension, where to define the action of a conformal map 𝜙 on
the boundary ℂ̂ on a point 𝑥 ∈ ℍ𝑛 one first finds a pair of intersecting geodesics
through 𝑥, computes the images of the endpoints at infinity of these geodesics un-
der 𝜙, and uses these to draw two new geodesics which will intersect at the image
of 𝑥 under the extension of 𝜙 to ℍ3; this process is depicted in Fig. 5 (see also the
final paragraph of [42, A.13], or for more detail [7, §3.3] and [53, §4.4]). mAk

In fact, the construction gives a natural geometry-respecting bijection between
𝕄 and the group of isometries of ℍ3 which is compatible with the compact-open
topology on the isometry group.
Remark. The construction of a conformal map on the visual boundary generalises
to all 𝐶𝐴𝑇(0) spaces—see [14, Chapters II.8 and II.9]—but the converse requires
strict negative curvature, more generally a 𝛿-hyperbolic space, see [14, Chapter
III.H].

We now give a dynamical classification of the elements of PSL(2, ℂ); see Fig. 6.

2.3 Proposition. Let 𝑔 ∈ PSL(2, ℂ) be a nontrivial element. Then 𝑔 falls into exactly
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one of the following cases:-

PARABOLIC. 𝑔 is conjugate to 𝑧 ↦ 𝑧 + 1. In this case, 𝑔 has exactly one fixed
point in ℍ3, preserves horoballs based at its fixed point, and has tr2 𝑔 = 4.

ELLIPTIC. 𝑔 is conjugate to 𝑧 ↦ 𝜆𝑧 for some 𝜆 ∈ ℂ with |𝜆| = 1. In this case, 𝑔
has exactly two fixed points in ℂ̂, fixes pointwise the hyperbolic line joining them
in ℍ3, and acts as a rotation around that line; tr2 𝑔 ∈ [0, 4).

LOXODROMIC. 𝑔 is conjugate to 𝑧 ↦ 𝜆𝑧 for some 𝜆 ∈ ℂ with |𝜆| ≠ 1. In this
case, 𝑔 has exactly two fixed points in ℂ̂, preserves the hyperbolic line joining them
inℍ3, and acts as the composition of a translation around that line and a rotation
around it; tr2 𝑔 ∈ ℂ ⧵ [0, 4].

A loxodromic element is called hyperbolic if it has real trace, equivalently it has no
rotational component. Otherwise it is called strictly loxodromic.

By similar arguments to the dimension two case, the quotient of ℍ3 by the ac-
tion of a discrete subgroup of PSL(2, ℂ) is a hyperbolic orbifold, and all hyperbolic
orbifolds are uniformised by such a group. On the other hand, the quotient of ℂ̂
by such a group is not necessarily even Hausdorff: for instance consider for any
parabolic element the projection of the fixed point to the quotient. The best we can
do is the following:

2.4 Proposition. Let 𝐺 ≤ PSL(2, ℂ) be discrete. Let Λ(𝐺) be the closure of the set
of fixed points of non-identity elements of 𝐺 in ℂ̂; this is the limit set of 𝐺. If the do-
main of regularity of𝐺, defined byΩ(𝐺) = ℂ̂ ⧵Λ(𝐺), is non-empty, thenΩ(𝐺)/𝐺 is
a (possibly disconnected, non-compact, orbifold) Riemann surface with the induced
complex metric. Further, if |Λ(𝐺)| ≥ 2 (in which case it is perfect and the group is
called non-elementary) then every component of the quotient has a hyperbolic met-
ric.

A discrete subgroup of PSL(2, ℂ) is called a Kleinian group. Historically, one
would also require the group to have non-empty domain of regularity, but in mod-
ern times (post-1970s) we no longer require this.

The elementary groups are fully classified (they are the holonomy groups of
Riemann surfaceswith non-negative Euler characteristic). There is a strengthening
of the uniformisation theorem for Kleinian groups, due to Bers:

2.5 Theorem (Bers’ simultaneous uniformisation theorem). Let 𝑆 = ∪∞𝑖=1𝑆 𝑖 be a
countable union of hyperbolic Riemann surfaces. Then there exists a Kleinian group
𝐺 such that 𝑆 = Ω(𝐺)/𝐺.

For a proof using combination theorems, see [42, §VIII.B].

2.6 Example (Schottky groups). Let 𝐶1, ..., 𝐶𝑛, 𝐶′
1, ..., 𝐶′

𝑛 be 2𝑛 circles, all mutually
disjoint and bounding a connected open subset𝐷 of ℂ̂. For each 𝑖 let 𝜙𝑖 ∈ PSL(2, ℂ)
be a transformation which sends 𝐶𝑖 to 𝐶′

𝑖 and which maps 𝐷 into the interior of
𝐶′
𝑖 . Then 𝐷 ⊆ Ω(𝐺) (see Fig. 7); by the Poincareé polyhedron theorem (where is

the polyhedron?!) the group ⟨𝜙𝑖 ∶ 𝑖 ∈ [𝑛]⟩ is free and discrete, and Ω(𝐺)/𝐺 is a
compact connected Riemann surface of genus 𝑛. The group 𝐺 is called a classical
Schottky group.
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Figure 7: The limit set of a classical Schottky group on 4 circles.

Figure 8: An example Riley limit set.
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Figure 9: Maskit groups uniformise punctured torii; they are elements of the corre-
sponding Bers slice.

2.7 Example (Riley group). The group

Γ1+2𝑖 = ⟨[1 1
0 1] , [

1 0
1 + 2𝑖 1]⟩

is free, discrete, and has quotient a 4-punctured sphere (not so trivial to see this). It
has limit set shown in Fig. 8.

2.8 Example (Punctured tori). Suppose 𝜇 = 𝑟 + 𝑡𝑖 ∈ ℂ and define

𝐺𝜇 ≔ ⟨𝑆 = [1 2
0 1] ,

̃𝑆 = [1 0
2 1] , 𝑇𝜇 = [−𝑖𝜇 𝑖

𝑖 0]⟩

See Fig. 9 for the fundamental polyhedron (left) and the images of the corre-
sponding circles under the group (right).

If 𝜇 ≫ 0 then the group glues the top region up to a punctured torus and the
bottom one up to a 3-times punctured sphere. The two regions respectively tile the
upper half-plane and the lower half-plane, leaving ℝ̂. Note the similarity to Fig. 3;
in fact, the Maskit groups can be obtained via surgery from the (∞,∞,∞)-triangle
groups. See the (highly recommended) book Indra’s Pearls [50], the monograph of
Akiyoshi, Sakuma,Wada, and Yamashita [5], the paper of Keen and Series [31], and
Series’ corresponding lecture notes [55]. Warning. These groups act separately on
the top and bottom halves of their regular domain, but are not Fuchsian: in general,
they do not preserveℝ. In fact, their limit set (which separates the two ‘half-planes’
onwhich they act) is a quasiconformal deformation of the real line. They are quasi-
Fuchsian groups.

2.9 Example (A circle-packing group). Consider the group

Γ5,∞2𝑖 = ⟨[𝑒
𝜋𝑖/5 1
0 𝑒−𝜋𝑖/5] , [

1 0
2𝑖 1]⟩ ;

it has limit set dense in the circle-packing of Fig. 10. See the paper by Keen, Maskit,
and Series [30] for a discussion of circle packings appearing on the boundary of
deformation spaces.
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Figure 10: A circle packing limit set.

So far, all the groups we have seen have been all of finitely generated, geomet-
rically finite, and analytically finite. Trivially, we have (geometrically finite) ⟹
(analytically finite) [42, VI.E.1], and (geometrically finite)⟹ (finitely generated)
[tautology!]. The following famous theorem gives another implication:

2.10 Theorem (Ahlfors’ finiteness theorem). If 𝐺 is a non-elementary finitely gen-
erated Kleinian group, then 𝐺 is analytically finite. mAk

Historical remark. This theorem was originally stated by Ahlfors in [4] with cor-
rections in [3], generalising similar results of Bers in the two-dimensional case;
the proof uses Beltrami differentials and quasiconformal techniques. A modern
account of Ahlfors’ proof together with copious references to other proofs may be
found in Section 8.14 of [28].

On the other hand, 𝐺 analytically finite does not imply 𝐺 finitely generated
(easy but can’t be bothered) [42, VIII.A.9] and finitely generated does not imply
geometrically finite (hard) [25].

We give now the author’s favourite examples of non-geometrically-finite groups.

2.11 Example (Bead groups). Klein and Fricke in 1897 [24, 23] studied groups
constructed in the following way, which we now call bead groups: pick a chain
of 𝑛 circles 𝐶1, ..., 𝐶𝑛 such that 𝐶𝑖 and 𝐶𝑖+1 are tangent for each 𝑖 (taken mod 𝑛)
and such that there are no other intersection points; now let 𝐺 be the orientation-
preserving half of the group generated by the reflections in the 𝐶𝑖. This has limit
set homeomorphic to a circle (but fractal, as shown in Fig. 11). These groups are
geometrically infinite since they are not analytically finite.

2.12 Example (Atom groups). Atom groups were studied by Accola in [1], see also
[42, VIII.F.7]. Let 𝐶1 and 𝐶2 be the circles of an annulus, and choose two spirals in
the annulus which wrap infinitely often around both circles; on each spiral pick a
chain of mutually tangent circles as in Example 2.11 such that the chains don’t
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Figure 11: The limit set of a bead group is a quasicircle [24, Fig. 156 of Vol. 1].

Figure 12: The data for an atom group, and its fundamental polyhedron.
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intersect (Fig. 12), and let 𝐺 again be the group generated by the reflections in
the chained circles. There is a fundamental polyhedron for the group which in-
tersects ℂ̂ in the exterior discs of the annulus (orange and pink in the figure) and
the two regions between the circle chains (red and green). Both orange and pink re-
gions aremapped off themselves by every element of the group, in other words they
have invariant stabilisers; thus in the quotient they carry their own metric, and the
group cannot be analytically finite since the quotient contains discs. (These discs
are called atoms.) This proves that the group does not have a finite generating set
by Theorem 2.10. See also example 18 of [34].

Remark. We neglect a lot of very interesting groups, including knot and link com-
plements [59], more complicated arithmetic groups [38], B-groups and degenerate
groups [42, Chapter IX], and the groups which arise in the dynamics programme
of Sullivan and McMullen (see e.g. [46]).

§3. Theta functions
There is no good reference explaining the relationship between theta functions (of
which there are several kinds) and Riemann surfaces from the different points of
view. Thus we have patched this section together from a variety of sources:- Farkas
and Kra [21, Chapters II, III, and VI]; Mumford’s Lectures on curves and their Ja-
cobians, reproduced in [49]; Prasolov and Solovyev [52]; Poincaré [51]; Mumford’s
Tata lectures [48]; and Igusa [26]. We also restrict to the compact case; one should
be able to extend some things to the boundary of the Deligne-Mumford compact-
ification of the moduli space of compact Riemann surfaces, see the appendices to
Imayoshi and Taniguchi [27]. This allows us to assume
Assumption. Every Fuchsian group which appears is geometrically finite.

We begin by stating this big theorem.

3.1 Theorem (Equivalence of algebra and conformal geometry). There is a bijective
correspondence between the set of conformal equivalence classes of compact Riemann
surfaces and the set of birational equivalence classes of algebraic function fields in one
variable.

Remark. This is not true in the non-compact case: exp(𝑧) is meromorphic onℂ, but
the function field of ℂ is ℂ(𝑧)...

Proof. [21, §IV.11] mAk

We shall give a stronger and more interesting point of view below, in Proposi-
tion 3.10 (which really should have been a theorem).

The canonical homology basis for the (topological) genus 𝑔 Riemann surface
is the one introduced in Example 1.7. We adopt the labelling of Fig. 13 (where we
have kept the colours consistent with the earlier drawing).

3.2 Lemma. Let 𝑅 be a compact Riemann surface of genus 𝑔; then the spaceℋ1(𝑅)
of holomorphic 1-forms on 𝑅 is of dimension 𝑔, and has a canonical basis (𝜔1, ..., 𝜔𝑔)
such that

∫
𝑎𝑖
𝜔𝑗 = 𝛿𝑖𝑗
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Figure 13: The canonical homology basis for a compact Riemann surface, here of
genus six.

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑔—in other words, the matrix of integrals between the 𝑎’s and the
𝜔’s is the identity matrix 𝐼). Let 𝐼𝐼 be the matrix of integrals on the 𝑏’s, that is

𝐼𝐼𝑖𝑗 = ∫
𝑏𝑖
𝜔𝑗 ;

this matrix is symmetric with positive definite imaginary part.

Proof. [21, §III.2] mAk

3.3 Definition. The period lattice 𝐿(𝑅) of a compact Riemann surface 𝑅 is the
column span of the 𝑔 × 2𝑔 matrix [𝐼, 𝐼𝐼]; it is a rank 𝑔 lattice. The Jacobian of 𝑅,
𝐽(𝑅), is the quotient torus ℂ𝑔/𝐿(𝑅). The Abel-Jacobi map is the map

𝜑 ∶ 𝑅 ∋ 𝑃 → (∫
𝑃

0
𝜔1,…∫

0

𝑃
𝜔𝑔) mod 𝐿 ∈ ℂ𝑑/𝐿.

Extend 𝜑 to non-prime divisors on 𝑅 by linearity.

We list several results [21, Section III.6].

1. (Abel) If 𝐷 is a divisor on 𝑅, then 𝐷 is principal iff 𝜑(𝐷) = 0 mod 𝐿 and
deg𝐷 = 0 (so ker𝜑 is the group of principal divisors).

2. 𝜑 is an injective holomorphic mapping such that 𝜑(𝑅) is a submanifold of
𝐽(𝑅); 𝜑(𝑅) = 𝐽(𝑅) iff 𝑔 = 1.

3. (Jacobi) Every point of 𝐽(𝐷) is the image of an integral divisor of degree 𝑔. (in
particular, 𝜑 is surjective).

Together, these imply the Abel-Jacobi theorem:

3.4 Theorem (Abel-Jacobi). Two divisors on 𝑅 are linearly equivalent iff they have
equal image under 𝜑. Even stronger, 𝐽(𝑅) is isomorphic to the group of divisors of
degree zero, modulo the subgroup of principal divisors.
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Figure 14: Frontispiece to [48].

Poincaré asked the following question:
3.5 Question. Do there exist functions 𝐹 ∶ ℍ2 → ℍ2 such that 𝐹 is automorphic
with respect to a Fuchsian group 𝐺 (that is, 𝐹(𝑔(𝑧)) = 𝐹(𝑧) for all 𝑔 ∈ 𝐺, 𝑧 ∈ ℍ2)?

He proved that the answer is yes, essentially proving that there global meromor-
phic functions on hyperbolic Riemann surfaces (this also follows from Riemann-
Roch, of course, and one can in fact prove Riemann-Roch itself via these methods).
We reproduce the following quote as translated in [51, pp. 2–4]:

For fifteen days I strove to prove that there could not be any functions
like those I have since called Fuchsian functions... one evening, con-
trary to my custom, I drank black coffee and could not sleep. Ideas
rose in crowds; I felt them collide until pairs interlocked, so to speak,
making a stable combination. Bu the next morning I had established
the existence of a class of Fuchsian functions... [He then describes fur-
ther ideas coming to him on a geological expedition and while walking
on a bluff.]

The construction goes via theta functions. Jacobi had already introduced such
functions in 1838 for the elliptic case:
3.6 Definition. Let 𝜏 ∈ ℍ2. The Jacobi theta function is the function

𝜗(𝑧; 𝜏) =
∞
∑

𝑛=−∞
exp(𝜋𝑖𝑛2𝜏 + 2𝜋𝑖𝑛𝑧).

See Fig. 14
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The Jacobi theta functions are entire functions which have the property that

(3.7) 𝜗(𝑧 + 𝑎 + 𝑏𝜏; 𝜏) = exp(−𝜋𝑖𝑏2𝜏 − 2𝜋𝑖𝑏𝑧)𝜗(𝑧; 𝜏).

More generally, a theta function on ℂ𝑔 relative to a lattice 𝐿 is an entire function
satisfying

𝜗(𝑧 + 𝜔) = exp(𝑄𝜔𝑧 + 𝑐𝜔)𝜗(𝑧)
where 𝑄𝜔 (a ℂ-linear form on ℂ𝑔) and 𝑐𝜔 (a complex constant) are allowed vary
based on 𝜔 (not necessarily linearly). See [26, §II.2] for more details, but the point
is that the elliptic functions of periods 1 and 𝜏 are ratios of these functions relative
to the lattice 𝐿 = ℤ⟨1, 𝜏⟩ when 𝑔 = 1 (for instance, see Theorem 5 in §III.8 of [26],
but there will be a much better/more classical reference, perhaps it is found in [48]
but one has not checked).

Poincaré’s theta functions for an arbitrary Fuchsian group 𝐺 are defined in the
following way.

3.8 Definition. Let 𝐺 be Fuchsian; a theta-Fuchsian function of degree𝑚with
respect to 𝐺 is defined by a series

𝜗(𝑧) = ∑
𝑔∈𝐺

𝐻(𝑔𝑧) (𝑑𝑔(𝑧)𝑑𝑧 )
𝑚
= ∑

𝑔∈𝐺
𝐻(𝑔𝑧) (𝑐(𝑔)𝑧 + 𝑑(𝑔))−2𝑚

where 𝐻 is some rational function and where we write

[𝑎(𝑔) 𝑏(𝑔)
𝑐(𝑔) 𝑑(𝑔)]

for a matrix representing 𝑔 in PSL(2, ℂ).

Compare this with the modern definition of an automorphic form, for instance
as found in [47]:

3.9 Definition. Let 𝐺 be a Fuchsian group and let 𝑘 ∈ ℤ. A automorphic form
of weight 𝑘 with respect to 𝐺 is a meromorphic 𝑓 ∶ ℍ2 → ℂ such that

(𝑐(𝑔) + 𝑑(𝑔))−𝑘𝑓(𝑔𝑧) = 𝑓(𝑧)

Poincaré’s theta-Fuchsian functions are automorphic forms of weight 2𝑚 (this
is a short calculation), and so if𝜗1 and𝜗2 are two theta-Fuchsian functions of𝐺 then
𝜗1/𝜗2 is automorphic with respect to 𝐺 and hence gives a well-defined function
on the quotient surface ℍ2/𝐺; and every automorphic function (take care of the
terminological clash between automorphic forms and functions) is a quotient of
two functions 𝑓/𝑔where 𝑓 and 𝑔 are polynomials in theta-Fuchsian functions such
that in every monomial which appears in 𝑓 or 𝑔 the sum of the degrees of the theta
functions beingmultiplied is some fixed𝑚. Write ϝ(𝐺) (one is always looking for an
excuse to use digamma) for the set of Fuchsian functionswith respect to𝐺. Observe,
ϝ(𝐺) is a field since automorphic functions are clearly a field.

Given a Riemann surface ℍ2/𝐺, we therefore have two natural sets of theta
functions: the Poincaré theta functions ℍ2/𝐺 → ℂ, and the Jacobi theta functions
𝐽(ℍ2/𝐺) → ℂ. We would like to know how they relate to each other!

Classically what we will now discuss is called uniformisation (for instance by
Ford [22, §§90–91]), but is now more properly called parameterisation.
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3.10 Proposition. Fix a Fuchsian group 𝐺 and two distinct 𝑓, 𝑔 ∈ ϝ(𝐺).

1. If ℎ ∈ ϝ(𝐺), then ℎ is a rational function of 𝑓 and 𝑔.

2. There is an algebraic relation 𝜓(𝑓, 𝑔) = 0.

3. The curve in ℂ2 cut out by the polynomial 𝜓 is conformally equivalent to the
Riemann surface ℍ2/𝐺.

3.11 Example. There are many special cases which the reader will know.

• (Elliptic functions.) sin2 𝜃 + cos2 𝜃 = 1, and cos and sin parameterise the
circle—the ellipse from which they arise as elliptic functions.

• (Congruence modular groups.) Recall from Example 1.12 the definition of
Γ(2). Every elliptic curve can be put into the Legendre form 𝑦2 = 𝑥(𝑥 −
1)(𝑥 − 𝜆); recall that elliptic curves are parameterised by 𝜏 ∈ ℍ2, in which
case 𝜆 and the 𝑗-invariant are both functions of 𝜏; the mapping class group
of elliptic curves is PSL(2, ℤ) = Γ(1), 𝑗 is Γ(1)-automorphic as a function of 𝜏
and hence is Γ(2)-automorphic, also 𝜆 is Γ(2)-automorphic, and the two are
related by the famous formula

𝑗(𝜏) = 4
27

(1 − 𝜆 + 𝜆2)3
𝜆2(1 − 𝜆2) .

In any case, the quotient ℍ2/Γ(2) should be parameterised by 𝜏 ↦ (𝑗, 𝜆).
Considering this and other similar examples very deeply leads to two major
pieces of modern mathematics: monstrous moonshine and the Langlands
programme.

We borrow the proof from Lehner’s longer book [37, §6].

Sketch of proof of Proposition 3.10. Suppose 𝑓 has 𝑛 poles and 𝑔 has 𝑚 poles in a
fundamental region of 𝐺. Define

Φ(𝑧) =
𝑠
∑
𝑖=0

𝑡
∑
𝑗=0

𝑎𝑖𝑗(𝑓(𝑧))𝑖(𝑔(𝑧))𝑗

where 𝑠, 𝑡 ≫ 0 and where the 𝑎𝑖𝑗 are complex constants; Φ is automorphic on 𝐺.
Count the poles ofΦwithmultiplicity; there are at most 𝑛𝑠+𝑚𝑡 of them. There are
(𝑠 + 1)(𝑡 + 1) = 𝜈+ 1 constants 𝑎𝑖𝑗 ; choose 𝜈 points 𝑧1, ..., 𝑧𝜈 ∈ 𝑅 which are distinct
from each other and from the poles of 𝑓 and 𝑔, and write down the system of linear
equationsΦ(𝑧1) = ⋯ = Φ(𝑧𝜈) = 0. These are 𝜈 equations in 𝜈+1 variables so there
exists a solution for the 𝑎𝑖𝑗 such that Φ has at least 𝜈 zeros in 𝑅. We write 𝑠, 𝑡 ≫ 0;
in fact, choose them big enough that 𝜈 = (𝑠 + 1)(𝑡 + 1) − 1 > 𝑛𝑠 + 𝑚𝑡. Then Φ has
more zeros than poles in 𝑅; and hence (since automorphic functions have the same
number of zeros as poles) we have Φ ≡ 0.

Now we use that ϝ(𝐺) is isomorphic to a function field, which we stated as The-
orem 3.1 (so it seems it did deserve to be called a theorem), to see that the curve
𝜓(𝑥, 𝑦) = 0 in ℂ2 is indeed the Riemann surface we started with. mAk
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Aswell as [37] and Poincaré’s original paper, one can look atMumford [48, §I.4]
for the toroidal (genus 1) case, Lehner’s shorter book [36, Chapter 3] for a classical
point of viewvia Fuchsian groups, Ford’s book [22, Chapter IX] for anultra-classical
point of view via Riemann surfaces ofmultivalued functions, and (as wementioned
by Theorem 3.1) Farkas and Kra [21, Chapter III] for a synthetic analytic point of
view.

Before we talk about the Jacobi theta functions, we briefly go back to Section 0
and finish off the point of view of differentials. Define the Schwartzianderivative
of some automorphic 𝑓 ∈ ϝ(𝐺) by the rule

D(𝑓)𝑧 =
2𝑓′(𝑧)𝑓‴(𝑧) − 3(𝑓″(𝑧))2

2(𝑤′(𝑧))2 .

Then D(𝑓)𝑧/(𝑤′(𝑧))2 is also automorphic. In particular, with the awful notation of
Section 0, we have the following result.

3.12 Proposition. Let 𝑤(𝑧) ∈ ϝ(𝐺) be a nonconstant automorphic function, and let
𝑧 be the inverse function of 𝑤. Then

𝑧 = 𝜂1(𝑤)
𝜂2(𝑤)

where 𝜂1, 𝜂2 are functions which satisfy a linear differential equation

𝑑2𝜂
𝑑𝑤2 = 𝐴(𝑤)𝜂

where 𝐴 is an algebraic function of 𝑤.
Proof. For the details, see [37, §V.6E] (though the theorem is due to Poincaré, Still-
well writes that his proof is ‘extremely condensed and unmotivated’ [51, pp. 24–25]).
The point is that

𝜂1(𝑧) = 𝑧(𝑤′)1/2 and 𝜂2(𝑧) = (𝑤′)1/2

work: 𝑤′ = 𝜂21𝑧−1 = 𝜂22, then differentiate to compute D(𝑧)𝑤 and do some algebra.
mAk

Finally we return to the Jacobi theta functions. Recall that these are the theta
functions whose quotients are the automorphic functions on the Jacobian 𝐽(𝑅).
More generally, we define for 𝑧 ∈ ℂ𝑔 and 𝜏 ∈ 𝔖𝑔 (the space of complex 𝑔 × 𝑔
matrices with positive definite imaginary part)

𝜗(𝑧; 𝜏) =
∞
∑

𝑁∈ℤ𝑔
exp(𝜋𝑖𝑁𝑡𝜏𝑁 + 2𝜋𝑖𝑁𝑡𝑧).

(We view 𝑁 as a column matrix, so for instance 𝑁𝑡𝑧 ∈ ℂ.) Similarly to the one-
dimensional case in Eq. (3.7), for 𝑎, 𝑏 ∈ ℤ𝑔 we have

𝜗(𝑧 + 𝐼𝑎 + 𝜏𝑏; 𝜏) = exp(−𝜋𝑖𝑏𝑡𝜏𝑏 − 2𝜋𝑖𝑏𝑡𝑧)𝜗(𝑧; 𝜏).

We define more theta functions, for 𝑎, 𝑏 ∈ ℤ𝑔, by

𝜗𝑎,𝑏(𝑧; 𝜏) = exp (𝜋𝑖𝑏𝑡𝜏𝑏 + 2𝜋𝑖𝑏𝑡𝑧 + 2𝜋𝑖𝑏𝑡𝑎) 𝜗(𝑧 + 𝐼𝑎 + 𝜏𝑏; 𝜏) = exp(2𝜋𝑖𝑏𝑡𝑎)𝜗(𝑧; 𝜏);

these functions are highly symmetric and admit a lot of relations; in fact,
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3.13 Lemma. Up to sign, there are exactly 22𝑔 different theta functions of the form
𝜗𝑎,𝑏(𝑧; 𝜏) for fixed 𝜏. Of these, 2𝑔−1(2𝑔 + 1) are even, and 2𝑔−1(2𝑔 − 1) are odd.

(see the corollary to the proposition of §VI.I.5 of [21]).
In analogy with the elliptic case, we want 𝜏 to be a period matrix. That is, set

𝜏 = 𝐼𝐼 where 𝐼𝐼 is the matrix defined in Lemma 3.2; the 2𝑔 columns of [𝐼, 𝐼𝐼] are
linearly independent overℝ, so every 𝑒 ∈ ℂ𝑔 can be writen in the form 𝐼𝑎+𝜏𝑏, and
we can ask about the function 𝜗𝑎,𝑏(𝑧; 𝜏), or the composition 𝜗𝑎,𝑏 ∘ 𝜑 with the map
𝜑 ∶ 𝑅 → 𝐽(𝑅). For instance:

3.14 Proposition. 1. If 𝜑𝑎,𝑏 ∘ 𝜑 is not identically zero on 𝑅, then it has exactly 𝑔
zeros.

2. Let 𝑃1⋯𝑃𝑔 be the divisor of zeros of 𝜗𝑎,𝑏 ∘ 𝜑; then 𝜑(𝑃1⋯𝑃𝑔) = −𝐼𝐼𝑏 − 𝐼𝑎 − 𝐾,
where and𝐾 is some vector depending only on the choice of canonical homology
basis and basepoint of 𝐽(𝑀).

(See [21, §VI.2.4] for detailed discussion and proof.)
This study naturally leads to the

3.15 Schottky problem. Which complex tori ℂ𝑔 arise as Jacobian varieties?

and the

3.16 Torelli theorem. The principal divisor of 𝜗 on 𝐽(𝑅) and the torus structure on
𝐽(𝑅) determine the conformal type of 𝑅.

See the appendix to [49] and Section III.12 of [21].

§4. Moduli
Remark. Much of the exposition here comes from the expository paper [18] because
I like theway I wrote it there. It takes amoremodern point of view than these notes,
which may be of interest.

We would like to construct a moduli space of Kleinian groups. Such a moduli
space should have the following properties:

1. The underlying hyperbolic manifolds should move in a continuous way (i.e.
should naturally have the geometric convergence topology).

2. The (complex structures of the) boundary Riemann surfaces should move
continuously (i.e. should have a Teichmüller structure).

3. The matrices of the group as a subgroup of the Lie group PSL(2, ℂ) should
move holomorphically in the entries.

4. The limit sets of the Kleinian group as subsets of ℂ̂ should move holomorphi-
cally.

The 𝜆-lemma, which we state below (Theorem 4.7), tells us that in order for (3) and
(4) to hold we need to allow quasiconformal deformation of the groups. We there-
fore pause to explain what this means; a good reference for this point of view is
the modern textbook of Astala, Iwaniec, and Martin [6]. The goal is to relate all of
this to the classical theory of Teichmüller space and Riemann moduli space, as de-
scribed in the textbook of Imayoshi and Taniguchi which takes the analytical view
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[27] or the popular modern book of Farb and Margalit which takes the geometric
group theory view [20].

We will be vague about differentiability requirements for quasiconformal maps;
though technically we should give a definition in the language of Sobolev spaces,
this would take us too far afield (but see [6, Theorem 2.5.4]).

4.1 Definition. Let Ω and Ω′ be planar domains, and let 𝑓 ∶ Ω → Ω′ be a suffi-
ciently nice homeomorphism. Then 𝑓 is called 𝐾-quasiconformal if there exists
a bounded measurable function 𝜇 satisfying

‖𝜇‖∞ ≤ 𝐾 − 1
𝐾 + 1 < 1

such that for almost every 𝑧 ∈ Ω,

𝜕𝑓
𝜕𝑧 (𝑧) = 𝜇(𝑧)𝜕𝑓𝜕𝑧 (𝑧).

The PDE displayed in the definition is the Beltrami equation, 𝜇 is called the
complex dilitation, and 𝑓 is conformal iff 𝐾 = 1. The idea is essentially that 𝜇(𝑧)
measures the distortion of circles under the action of the differential 𝑑𝑓𝑧, see the
nice motivation in §1.4 of [27].

We can now start to study moduli, beginning with the Fuchsian theory.

4.2 Definition. Fix a Riemann surface 𝑅 (not necessarily compact, but with only
punctures as boundary components for simplicity). Consider the set ̃𝑇 of pairs (𝑆, 𝑓)
where 𝑆 is a Riemann surface and 𝑓 ∶ 𝑅 → 𝑆 is a surjective quasiconformal map-
ping. The Teichmüller space of 𝑅, denoted Teich(𝑅), is the space of equivalence
classes of ̃𝑇 under the relation (𝑆1, 𝑓1) ∼ (𝑆2, 𝑓2) iff 𝑓2𝑓−11 is homotopic to a confor-
malmap on𝑅. There is a naturalmetric on the Teichmüller space, coming from the
identification of the space with a certain space of quadratic differentials, but that is
for another time.1

Themapping class group of𝑅, denotedMod(𝑅), is the group𝜋0(Homeo+(𝑅));
this is the group of orientation-preserving diffeomorphisms modulo isotopy. (Ob-
serve that these homeomorphisms are allowed to permute the punctures.) There is
a natural action of Mod(𝑅) on Teich(𝑅); if 𝜙 ∈ Mod(𝑅) and (𝑆, 𝑓) ∈ Teich(𝑅) then
define

𝜙 ⋅ (𝑆, 𝑓) ∶= (𝑆, 𝑓 ∘ 𝜙−1).
The mapping class group acts discontinuously as a group of isometries on the

Teichmüller space [27, Theorem 6.18], and the quotient Teich(𝑅)/Mod(𝑅) is called
the Riemann moduli space and denoted byℳ(𝑅).

As always, we should quote Thurston here [60, p. 259]:

Informally, in Teichmüller space, we pay attention not just to whatmet-
ric a surface is wearing, but also to how it is worn. In moduli space,
all surfaces wearing the same metric are equivalent. The importance
of the distinction will be clear to anybody who, after putting a pajama
suit on an infant, has found one leg to be twisted.

1The interested reader can find a very nice intuitive discussion of this in [20].
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4.3 Example. It is a standard result that the Teichmüller space of the punctured
torus is ℍ2 and the mapping class group is PSL(2, ℤ). It is somewhat harder to see
that the Teichmüller space of the four-punctured sphere is alsoℍ2 and themapping
class group is PSL(2, ℤ)⋉(ℤ/2ℤ⊕ℤ/2ℤ). (The factor of a Klein 4-group is generated
by the two hyperelliptic involutions on the torus. We survey the relation with
braid groups in [19].) In general the computation of mapping class groups is very
hard, even in the compact case.

We can now state the definition of the Teichmüller space of Fuchsian groups.

4.4 Definition. The (reduced) Teichmüller space of a Fuchsian group Γ is the
set Teich#(Γ) of quasiconformalmappings 𝑓 ∶ ℂ̂ → ℂ̂which fix {0, 1,∞} pointwise
and such that 𝑓Γ𝑓−1 is Fuchsian.

4.5 Lemma. If 𝑅 is compact and uniformised by the Fuchsian group 𝐺, then there is
a natural identification Teich(𝑅) = Teich#(𝐺).

Proof. [27, §5.1] mAk

This definition does not give very much insight. The key ideas in this direction
are primarily due to Sullivan and his collaborators, who made a clear analogy be-
tween moduli spaces of Kleinian groups and moduli spaces of dynamical systems.
More precisely, we need the 𝜆-lemma, which states that holomorphic deformations
of the matrices in a group will give quasiconformal deformations of the quotient
surface. We first make clear the kinds of deformations needed.

4.6 Definition. Let 𝐴 ⊆ ℂ̂. A holomorphicmotion of 𝐴 is a mapΦ ∶ Δ×𝐴 → ℂ̂
(where Δ is the unit disc in ℂ) such that

1. For each 𝑎 ∈ 𝐴, the map Δ ∋ 𝜆 ↦ Φ(𝜆, 𝑎) ∈ ℂ̂ is holomorphic;

2. For each 𝜆 ∈ Δ, the map 𝐴 ∋ 𝑎 ↦ Φ(𝜆, 𝑎) ∈ ℂ̂ is injective;

3. The mapping 𝐴 ∋ 𝑎 ↦ Φ(0, 𝑎) ∈ ℂ̂ is the identity on 𝐴.

See the schematic in Fig. 15.

The original version of the following result was due to Mañé, Sad, and Sullivan
[39], but we need an extended version due to Słodkowski [56, 57] which was made
equivariant by Earle, Kra, and Krushkal’ [17]:

4.7 Theorem (Equivariant extended 𝜆-lemma). Let𝐴 ⊆ ℂ̂ have at least three points,
and let Γ be a group of conformal motions preserving 𝐴. Let Φ ∶ Δ × 𝐴 → ℂ̂ be a
holomorphic motion on 𝐴, and suppose that for each 𝛾 ∈ Γ and each 𝜆 ∈ Δ there is a
conformal map 𝜃𝜆(𝛾) such that

(4.8) Φ(𝜆, 𝛾(𝑧)) = 𝜃𝜆(𝛾)(Φ(𝜆, 𝑧))

for all 𝑧 ∈ 𝐴. ThenΦ can be extended to a holomorphic motionΦ ∶ ℂ̂ → ℂ̂ such that
(4.8) holds for all 𝑧 ∈ ℂ̂, and such that

1. For each 𝜆 ∈ Δ, the map Φ̃𝜆 defined by ℂ̂ ∋ 𝑎 ↦ Φ̃(𝜆, 𝑎) ∈ ℂ̂ is a quasiconfor-
mal homeomorphism with maximal dilatation satisfying

𝐾(Φ̃𝜆) ≤
1 + |𝜆|
1 − |𝜆| ;
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Figure 15: Images of 𝐴 ⊂ ℂ under a holomorphic motion Φ.

2. Φ̃ is jointly continuous in Δ × ℂ̂; and

3. For all 𝜆1, 𝜆2 ∈ Δ, Φ̃𝜆1Φ̃−1
𝜆2 is quasiconformal with

log𝐾(Φ̃𝜆1Φ̃−1
𝜆2 ) ≤ 𝜌(𝜆1, 𝜆2)

(where 𝜌 is the hyperbolic metric on Δ). mAk

A holomorphic motion of the coefficients of a matrix in a Kleinian group will
give a holomorphic motion of the limit set as long as the fixed points of the group
don’t collide (since the latter is the closure of a set of points depending algebraically
on thematrix) By the 𝜆-lemmas, a holomorphicmotion of the limit set of a Kleinian
group (induced by a holomorphic motion of the matrix coefficients) extends qua-
siconformally to the entire Riemann sphere; in particular, the ordinary set. This
motivates:

4.9 Definition. The quasiconformal deformation space of a Kleinian group
Γ, denoted by QH(Γ), is the space of representations 𝜃 ∶ Γ → PSL(2, ℂ) (up to
conjugacy) such that

1. 𝜃 is faithful and 𝜃Γ is discrete;

2. 𝜃 is type-preserving, that is if 𝛾 ∈ Γ is parabolic (resp. elliptic of order 𝑛) then
𝜃𝛾 is parabolic (resp. elliptic of order 𝑛); and

3. the groups 𝜃Γ are all quasiconformally conjugate (i.e. there exists some quasi-
conformal 𝑓 ∶ ℂ̂ → ℂ̂ depending on 𝜃 such that, as functions, 𝜃Γ = 𝑓Γ𝑓−1).

The space is equipped with a natural metric defined in roughly the same way as the
classical Teichmüller metric (the distance between two deformations is defined to
be the log of the maximal dilatation of the composition of the two quasiconformal
homeomorphisms). In the special case that Γ is Fuchsian, we call QH(Γ) a quasi-
Fuchsian moduli space.
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Figure 16: The Maskit embedding of punctured tori groups, from [50, p. 288].

Figure 17: The limit set of a punctured torus group, from [50, p. 264].

This definition was studied first by Bers [8, 9], Kra [33, 32] and Maskit [43, 44];
modern textbooks and monographs which discuss this theory include [45] (essen-
tially the whole book), [41, Chapter 5], and [28, Chapter 8]

The exact relationship between QH(Γ) and Teich(Ω(Γ)/Γ) is subtle to define
(see the references following the theorem), so we give only a rough version here.
This result is attibuted by Bers [9, §2.4] to Bers and Greenberg [10] and Marden
[40].

4.10 Theorem. Let Γ be a finitely generated non-elementary Kleinian group with
non-empty domain of regularity and let 𝑆 = Ω(Γ)/Γ. Then there is a well-defined
holomorphic surjection 𝑝 ∶ Teich(𝑆) → QH(Γ) together with a discrete subgroup
M̂od(𝑆) ≤ Mod(𝑆) and a natural bijection QH(Γ) ≃ Teich(𝑆)/M̂od(𝑆) such that the
two projection maps agree. mAk

In the case that Γ is geometrically finite, the group M̂od(𝑆) is the subgroup gen-
erated by Dehn twists along simple closed curves which bound compression discs.
The point is that we are now allowing conjugacy by hyperbolic isometries; so the
moduli space can no longer detect deformations that are trivial on the interior of
the hyperbolic manifold.

4.11 Example (Maskit groups). Recall the groups 𝐺𝜇 of Example 2.8 which gave

27



Figure 18: The limit set of a cusp group on the boundary of the Maskit embedding
of punctured torus groups, from [31, Fig. 2].
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Figure 19: The (parabolic) Riley slice.

punctured tori for some values of 𝜇. TheMaskit embedding is the set of all 𝜇 ∈ ℂ
such that 𝐺𝜇 glues the upper half-plane up to a punctured torus and the lower half-
plane up to a 3-times punctured sphere; this is pictured in Fig. 16, and forms the
easiest example of a quasiconformal deformation space. See the references in the
earlier example for a detailed discussion of the moduli structure. We give examples
of limit sets, one on the interior of the deformation space Fig. 17 and one on the
boundary Fig. 18. The idea is that continuous deformation in the moduli space
results from and results in continuous deformation of the limit sets.

4.12 Example (Riley groups). A more complicated example is the Riley slice of
Schottky space (Fig. 19), which is the quasiconformal deformation space of four-
times punctured spheres. (It is more complicated because the corresponding sur-
face is not in two halves, more precisely it is a quasi-Fuchsian group whose limit
set does not fill the entire topological circle that it is contained in and so there are
additional phenomena that occur which come from hyperbolic geometry and knot
theory. For a full discussion see [18].)

4.13 Example (Schottky space). More generally, a Schottky group (on 𝑛 circles) is
an element of the quasiconformal deformation space of a classical Schottky group
on 𝑛 circles; by the theory above, this deformation space is a lift of the usual moduli
spaceℳ𝑔,0. The boundary contains various cusp groups, these are groups where
loxodromic elements which represent non-boundary-parallel simple closed curves
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on the surface are pinched to become parabolic. (A group is called maximally
cusped if this process cannot be continued, in which case it represents a disjoint
union of three-times punctured spheres.) There are other groups on the boundary,
including B-groups and groups with dense limit set; these correspond to ‘ideal’
surfaces on the boundary of the Riemann moduli space, or virtual ends of the
hyperbolic 3-manifold which is really being degenerated.

The boundaries of deformation spaces are very intricate and not very well un-
derstood in general. For a survey of some results see [41, Chapter 5]; suffice it to
say that most modern techniques for their study are based on Thurston’s theory of
the geometry of hyperbolic 3-manifolds via objects like foliations and laminations.
(This is not surprising, since we have already seen quadratic differentials appear
and these are somehow dual to foliations.) For the classical study of the boundary,
which is complicated even in the Fuchsian case, see the seminal papers of Bers [8]
andMaskit [43]; some of the conjectures contained in there have been resolved, but
many have not.

We end with some references to algebraic points of view; primarily, see [28]
but there is also a nice discussion of the ‘algebraicity’ of the various conditions of
Definition 4.9 in [27], and we should also mention the original work of Culler and
Shallen [16] which is particularly worth a read for algebraic geometers.
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