
ALGEBRAIC GEOMETRY AND THE MODULI OF KLEINIAN
GROUPS

Abstract. here is the abstract

There are many analogies between the Riemann moduli space of curves and the
moduli of Kleinian groups; however, the latter is in some ways much richer. In this
section we provide basic definitions and a dictionary between the two languages.

We begin with the basic definitions, which can be motivated either by analogy
with the classical Teichmüller theory for Riemann surfaces or by analogy with the
deformation spaces of dynamical systems generated by rational maps. Either way,
if 𝐺 is a sufficiently nice1 Kleinian group then we can define the space of quasicon-
formal deformations of 𝐺: it is the set of representations 𝜌 ∶ 𝐺 → PSL(2, ℂ) such
that

(1) 𝜌 is faithful and 𝜌(𝐺) is discrete;
(2) 𝜌 is type-preserving (i.e. 𝜌(𝑔) is parabolic iff 𝑔 is parabolic); and
(3) there exists a quasiconformal map 𝜑 ∶ ℂ̂ → ℂ̂ such that 𝜑𝐺𝜑−1 = 𝜌(𝐺).

This space of deformations is denoted by QH(𝐺).
Recall that the Teichmüller space of 𝑆 = Ω(𝐺)/𝐺 is the set 𝑇 (𝑆) of quasiconfor-

mal deformations of 𝑆, modulo isotopies of the surface. By the ending lamination
theorem, one should expect that if Ω(𝐺) ≠ 0 then the moduli of 𝐺 should be given
by the moduli of Ω(𝐺)/𝐺. Indeed, one can show that QH(𝐺) is a quotient space
of 𝑇 (𝑆) by a subgroup of Mod(𝑆), namely the subgroup of mapping classes which
can be realised by the extensions of actions of isotopies of ℍ3/𝐺 to the conformal
boundary 𝑆. (For instance, if 𝑆 is a compact genus two surface then there is a
simple closed curve 𝛾∞ on the surface which splits the surface into two tori-with-
deleted-discs; the Dehn twist along this curve can be realised by taking the surface
and twisting it in ambient 3-space, so it is not detected in the hyperbolic mani-
fold and hence is not seen by the group.) In particular we see that QH(𝐺) is an
intermediate space between the Teichmüller space and the Riemann moduli space
ℳ(𝑆) = 𝑇 (𝑆)/ Mod(𝑆).

We restrict now to Schottky groups. Fix 𝐺 a rank 𝑟 Schottky group; then QH(𝐺)
parameterises all rank 𝑟 Schottky groups, and all such groups arise by holomorphic
deformations of the coefficients of generators of 𝐺: a choice of generators for 𝐺 is an
element 𝑍0 ∈ (PSL(2, ℂ))𝑟, and a holomorphic deformation of 𝑍0 is a holomorphic
map 𝜇 ∶ Δ → (PSL(2, ℂ))𝑟 such that 𝜇(0) = 𝑍0. By the 𝜆-lemma every holomor-
phic deformation of generators induces a quasiconformal deformation of the group
(though in general the space of deformations of generators is only a covering space
of QH(𝐺)). In particular:

Every algebraic curve 𝐶 of genus 𝑔 > 1 arises as the surface at
infinity uniformised by a Schottky group 𝐺 of rank 𝑔, and there
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1torsion free and geometrically finite with non-empty domain of discontinuity
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is an open neighbourhood 𝑈 ⊆ QH(𝐺) of 𝐺 with algebraic coor-
dinates (entries of matrices generating the group) which is locally
biconformal to the neighbourhood of that curve 𝐶 in 𝑀𝑔.

Thus one advantage of studying Schottky groups as models for algebraic curves
is the ease of construction: one can immediately write down curves of arbitrary
genus (at least numerically, as we studied in earlier sections of this paper) which is
a very hard thing to do with purely algebraic machinery [HM98, §6F].

Warning. The matrix entries do not provide a nice coordinate system in any geo-
metric sense: they are very local and do not represent any geometric quantities:
one natural choice of coordinates are the Fenchel–Nielsen coordinates, which can
be generalised to the Kleinian group setting, but the relationship between these
coordinates and the matrices generating the uniformisig groups are very subtle:
this was alluded to from the algebraic side by Mumford [Mum99, p. 233] but this
problem has a much longer history from the point of view of complex dynamics and
geometric group theory surveyed in [EMS23].

One can compactify QH(𝐺) in a natural way, by taking the closure QH(𝐺) in
the character variety. This is a version of the usual Thurston compactification of
Teichmüller space. The relationship between this compactification and the Deligne-
Mumford compactification of 𝑀𝑔 is very nice, and provides another reason for
viewing Schottky groups as a natural model for algebraic curves. In order to explain
this we must first understand some geometry.

Lemma 0.1. For any sufficiently nice Kleinian group 𝐺, every point on the the
boundary of QH(𝐺) can be reached by a one-parameter holomorphic family of rep-
resentations 𝜌𝑡 (with 𝑡 ∈ [0, ∞)) such that there is some word 𝑊 ∈ 𝐺 with the
property that as 𝑡 → ∞, tr2 𝜌𝑡(𝑊) → 4 (i.e. the word 𝑊 goes parabolic). □

Let 𝐺 be a sufficiently nice Kleinian group and let 𝛾 ∈ 𝐺 be a parabolic element,
with fixed point 𝜁. Then there exists two open round discs 𝑈1, 𝑈2 in Ω(𝐺) whose
closures are tangent at 𝜁, and the quotients 𝑈1/𝐺 and 𝑈2/𝐺 are disjoint punctured
discs in the quotient surface. Even better, in the ambient space ℍ3/𝐺 one can
view these two punctured discs as ‘compactifiable’ in the sense that one can add a
single point 𝑝 to create a ‘pinched tube’ at infinity. The one-parameter family of
Lemma 0.1 can be viewed very concretely as the following procedure: pick a closed
geodesic wrapped around a tube on the surface 𝑆 = Ω(𝐺)/𝐺; this is represented
by a loxodromic element 𝛾 ∈ 𝐺 ≃ 𝜋1(𝑆); now the elements 𝛾𝑡 as 𝑡 → ∞ are ele-
ments representing geodesics on Ω(𝐺𝑡)/𝐺𝑡 becoming closer and closer to parabolic,
i.e. they represent geodesics of ever-shortening length, until in the limit the tube
wrapped by 𝛾𝑡 becomes pinched to a single point.

Let 𝐶 be an algebraic curve of genus 𝑔. Natural deformations from
𝐶 ∈ 𝑀𝑔 to curves ̃𝐶 ∈ 𝑀𝑔 with single nodes are obtained by taking
loxodromic elements of 𝐶 and deforming them to become parabolic
elements.

This can be practically achieved with classical Schottky groups in a very natural
way. Let 𝐶, 𝐶′ be two of the round circles used to define some classical Schottky
𝐺 and suppose that the loxodromic 𝑔 pairing them is, in fact, hyperbolic. Write
the matrix of 𝑔 in terms of the data of 𝐶 and 𝐶′ and suppose that there is some
holomorphic path in the parameter space of this data such that (i) at every point
on the path the deformed pairing ̃𝑔 is still hyperbolic and the deformed group ̃𝐺
is still a Schottky group (this is a hard condition to check in general unless you
deform 𝐶 and 𝐶′ in order to keep them far away from other defining curves, but
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this is not a particularly restricting thing to do) and (ii) in the limit, 𝐶 and 𝐶′

become tangent.
Example 0.2. Let 𝑋 and 𝑌 be transformations given by the matrices

𝑋 = [1/𝑡 1/𝑡 − 𝑡
1/𝑡 1/𝑡 ] and 𝑌 = [2 − 5𝑖 28𝑖

−𝑖 2 + 5𝑖] .

Here 𝑋 and 𝑌 have been chosen to be hyperbolics, 𝑋 with isometric circles at
±1 of radius 𝑡 and 𝑌 with isometric circles at 5 ± 2𝑖 of radius 1. The group ⟨𝑋, 𝑌 ⟩
is a classical Schottky group if the isometric circles of 𝑋 and 𝑌 don’t collide, and
one can check that this true for all 𝑡 ∈ (0, 1). When 𝑡 → 1, 𝑋 becomes parabolic,
and the quotient surface degenerates to a torus with two paired punctures: i.e. a
surface corresponding to a torus with a single node.
Warning. The numeric procedure for generating curves from surfaces given in pre-
vious sections breaks down for groups containing parabolics, since there are many
more meromorphic functions on the surface than just the rational ones and so
there is no longer a natural identification between the algebraic and meromorphic
function fields.

One can iterate this process, pinching down different curves on the surface to
obtain more and more nodes. The only condition is that curves which are pinched
must not be isotopic to a puncture, or (equivalently) every component which arises
must be hyperbolic. This is the same as the stability condition for 𝑀𝑔. The
maximally deformed surface is a surface formed as a union of thrice-punctured
spheres (i.e. obtained from a compact surface by pinching a system of 3𝑔 − 3 non-
intersecting and mutually non-isotopic closed curves). The corresponding groups
are called maximally cusped groups [Ber70; Mas70] and correspond to graph curves
[BE91].

Let 𝑔 > 2; then the boundary strata of 𝑀𝑔 can be obtained by ge-
ometrically natural deformations of Schottky groups, and can be
modelled by cusp groups (that is, groups which are obtained from
Schottky groups by sending a sequence of cyclic loxodromic sub-
groups to cyclic parabolic subgroups without changing the type of
elements outside those subgroups).

Example 0.3. We will give a one-parameter family of rank 𝑛 classical Kleinian
groups (for all 𝑛 > 2) whose algebraic limit lies on the boundary of rank 𝑛 Schottky
space. The group will be generated by 𝑛 elements, pairing the isometric circles
shown in Figure 1. Define the three matrices

𝑌 = [ −𝑡−1 −𝑖(𝑡 + 1)𝑡−1

𝑖(1 − 𝑡)𝑡−1 −𝑡−1 ]

𝑋 = [−𝑡−1 𝑖(𝑡 − 1)(2𝑡)−1

2𝑡−1 −𝑡−1 ]

𝑍 = [1 1
0 1]

and for each 𝑘 ∈ ℤ set 𝑋𝑘 ≔ 𝑍𝑘𝑋𝑍−𝑘. The group 𝐺𝑡 is then defined by
𝐺𝑡 ≔ ⟨𝑌 , 𝑋0, … , 𝑋𝑛−2⟩.

The generators of 𝐺𝑡 have been carefully chosen to not only have the correct iso-
metric circles, but also to be hyperbolic for all 𝑡.

When 𝑡 = 1, the generators all become parabolic and the quotient surface degen-
erates to a union of thrice-punctured spheres. This follows from a careful applica-
tion of the full statement of the Poincaré polyhedron theorem, but the point is that
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Figure 1. The isometric circles of the one-parameter family of
groups described in Example 0.3 for 𝑛 = 5; as 𝑡 → 1, the radius of
the circles increases until in the limit they are tangent.

because the degeneration is highly symmetric2 the meridian curves of the surface
are pinched to cusps.

Warning. The boundary of QH(𝐺) is in general much more complicated (even
locally) than the boundaries of either the Teichmüller space or the Deligne-Mumford
compactification of the Riemann moduli space. The cusp groups obtained on the
boundaries of Schottky space by pinching closed geodesics are dense in the boundary
by a famous result of McMullen [McM91] but are only first category in the boundary:
most groups are not cusp groups, for instance they might not be geometrically finite;
they will be free, but will have limit set of positive measure in ℂ̂. These groups
correspond to pinching curves which are dense in the entire surface, and so are not
so interesting from the algebraic point of view.

It is not immediately clear how to deal with marked points which are not nodal.
It is a fundamental result in the geometric theory of Kleinian groups that for suf-
ficiently nice groups every rank 1 cusp (i.e. puncture) is paired with another in
the manner discussed above. One can either keep track of markings directly as
extra data, or keep additional components of the surface around in order to con-
nect to punctures corresponding to marked points. Masaaki [Yos97] takes this
latter approach by using Fuchsian uniformisations and only keeping track of the
algebraic data carried by one of the two components; in general one could add
thrice-punctured spheres off any additional wanted marked points since these will
not affect moduli.

Let us finally discuss the main downside of the study of algebraic moduli via
Schottky groups: the boundary of Schottky space is very very complicated (it is
cut out by infinite families of polynomials) and the construction of groups on the
boundary with certain combinatorial properties is fairly difficult; given a sufficiently
general Schottky group it is hard to actually write down a path to the boundary at

2More precisely, we reach the boundary upon deforming such that the points of tangency of the
circles are mapped onto each other in cycles by the circle-pairing transformations [Mas87, p. IV.I.6];
if the circles become tangent in a non-symmetric way—i.e. the axes of the transformations which
pair the circles are not parallel—then it is possible to deform the fundamental domain slightly
such as to remove the tangency.
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all (and even checking that a group is Schottky is hard as it is essentially equivalent
to the discreteness problem for groups). One plausible method for doing this which
is known to work in low-dimensional cases is via the work of Birman on braid groups,
described in detail in [EMS22]. This line of thought is also followed to some extent
by some numerical algebraic geometers [Bog12, Chapter 3].
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