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Abstract
We recall the general theory of Schottky groups over ℂ, and place it in con-

text within geometric group theory in order to make clear the analogies with
the theory over non-Archimedian fields.
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§1. Abstract CAT(0) theory
Let (𝑋, 𝑑) be a CAT(0)metric space [4, Chapter II.1]. This means that the following
conditions are satisfied:

1. geodesicity: for every pair of points 𝑥, 𝑦 ∈ 𝑋 there exists an isometric em-
bedding 𝑓 ∶ [0, 𝑑(𝑥, 𝑦)] → 𝑋 such that 𝑓(0) = 𝑥 and 𝑓(𝑑(𝑥, 𝑦)) = 𝑦.

2. CAT(0) inequality (Fig. 1): for every triangle Δ(𝑝, 𝑞, 𝑟) in 𝑋 , by the trian-
gle inequality there exists a triangle Δ̄ = Δ( ̄𝑝, ̄𝑞, ̄𝑟) in 𝔼2 with side lengths
𝑑( ̄𝑝, ̄𝑞) = 𝑑(𝑝, 𝑞), 𝑑( ̄𝑞, ̄𝑟) = 𝑑(𝑞, 𝑟), and 𝑑( ̄𝑟, ̄𝑝) = 𝑑(𝑟, 𝑝); the condition is
that if 𝑎 ∈ [𝑝, 𝑞] and 𝑏 ∈ [𝑝, 𝑠] are such that 𝑑(𝑝, 𝑎) = 𝑑(𝑝, 𝑏) and if ̄𝑎 and
̄𝑏 are chosen in [ ̄𝑝, ̄𝑞] and [ ̄𝑝, ̄𝑟] such that 𝑑( ̄𝑝, ̄𝑎) = 𝑑( ̄𝑝, ̄𝑏) then 𝑑(𝑎, 𝑏) ≤
𝑑( ̄𝑎), 𝑑( ̄𝑏).

We will also assume that (𝑋, 𝑑) is complete.
Two geodesic rays 𝑐, 𝑐′ ∶ [0,∞) → 𝑋 are called asymptotic if there exists 𝛿 such

that 𝑑(𝑐(𝑡), 𝑐′(𝑡)) < 𝛿 for all 𝑡. This is an equivalence class on rays, and the quotient
space (the set of rays up to asyptoticity) is called the visual boundary 𝜕(𝑋). Given
𝑥, 𝑦 ∈ 𝑋 and 𝜁, 𝜉 ∈ 𝜕𝑋 we may define angles ∠𝑥(𝜁, 𝜉) and ∠𝑥(𝑦, 𝜁) in natural ways
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Figure 1: The CAT(0) inequality.

(via comparison). More precisely, if 𝑐, 𝑐′ ∶ [0, 𝑇] → 𝑋 are geodesic rays then there
is a limit

∠(𝑐, 𝑐′) = lim
𝑡→0

2 arcsin 1
2𝑡𝑑(𝑐(𝑡), 𝑐

′(𝑡))

and this gives angles ∠𝑐(0)(𝑐(𝑡), 𝑐′(𝑡)) for all 𝑡 even when the domain is extended to
allow 𝑇 = ∞. We can now define the sextant metric on 𝜕𝑋 ; if 𝜁, 𝜉 ∈ 𝜕𝑋 then
∠(𝜁, 𝜉) = sup𝑥∈𝑋 ∠𝑥(𝜁, 𝜉). (Here on the right side we take appropriate represen-
tative rays for 𝜁 and 𝜉 based at each 𝑥.) This gives 𝜕𝑋 the structure of a complete
metric space, and in fact it is CAT(1) (we have not appropriately defined this but
one should think ‘flat or spherical’) [4, Chapter II.9].

Some examples:-

1.1 Example (Hyperbolic space). Hyperbolic space ℍ𝑛 is CAT(0) (in fact strictly
negatively curved) and 𝜕ℍ𝑛 = 𝑆𝑛−1 (as a set). However with the sextant metric
the boundary is discrete. This is because the angle between two points at infinity
depends on the position of the observer, and the observer can be positioned tomake
this angle always 𝜋 (Fig. 2).

1.2 Example (Euclidean space). Euclidean space 𝔼𝑛 is CAT(0) (zero curvature)
and 𝜕𝔼𝑛 = 𝑆𝑛−1. This time this is a homeomorphism, since the angle measured is
independent of the position of observation.

1.3 Example (Trees). Let𝑇 be an 𝑛-valent infinite tree. This is highly CAT(0) since
all triangles are tripods. The space 𝜕𝑇 is the set of ends of 𝑇 and the topology is a
Cantor set.

1.4 Example (Euclidean buildings). AEuclidean building is a buildingℬwhose
apartments are Euclidean Coxeter complexes. The global metric on ℬ comes from
the local Euclidean metric on each apartment, and it is CAT(0) [1, Theorem 11.16].
The boundary 𝜕ℬ can be given the structure of a spherical building, i.e. a building
all of whose apartments are finite Coxeter complexes. As the terminology suggests
these are CAT(1) spaces.
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Figure 2: The sextant metric for ℍ2 is discrete.

The differnce between 𝔼𝑛 andℍ𝑛manifests itself in a very concrete fashion. Let
𝑓 be a conformal map on 𝑆𝑛−1, and let 𝑥 ∈ 𝐵𝑛 (the interior of 𝑆𝑛−1). From 𝑥 we
may draw two distinct geodesic rays to 𝑆𝑛−1 and measure their angle 𝜃; suppose
their endpoints are 𝜁 and 𝜉. Consider the images 𝑓(𝜁) and 𝑓(𝜉). Now in ℍ𝑛 there
is a unique point 𝑥′ such that the rays [𝑥′, 𝑓(𝜁)] and [𝑥′, 𝑓(𝜉)] meet at an angle 𝜃.
On the other hand, in 𝔼𝑛 every point has this property. What we are saying is that
conformal maps extend naturally from 𝜕ℍ𝑛 into ℍ𝑛 (define 𝑓(𝑥) ≔ 𝑥′) but that
this property does not hold for 𝔼𝑛. Clearly non-negative curvature is not enough to
distinguish these cases, and Gromov gave a strengthening of the CAT(0) condition
which can be used to gurantee existence of such an extension.

Let 𝛿 > 0. A geodesic triangle is 𝛿-slim if each of its sides is contained within a
𝛿-neighbourhood of the union of the two other sides. If every geodesic triangle in
𝑋 is 𝛿-slim (for some UNIVERSAL 𝛿) then 𝑋 is called 𝛿-hyperbolic. One can now
show that if 𝜅 < 0 then every CAT(𝜅) space is 𝛿-hyperbolic (with 𝛿 depending only
on 𝜅). If there exists some 𝛿 such that 𝑋 is 𝛿-hyperbolic then we simply say that 𝑋
is a hyperbolic space.

The rough picture of the moduli theory comes from the following propiosition.

1.5 Proposition. If 𝑋 is a hyperbolic metric space, and 𝑋 is quasi-isometric to some
metric space𝑌 , then 𝜕𝑋 and 𝜕𝑌 are homeomorphic. The converse is not true [3]. mAk

The moduli space is usually the space of objects quasi-isometric to 𝑋 ; or the
space of all quasi-isometry conjugates of holonomy groups 𝜋1(𝑋); or the equivalent
quasi-conformal things when passing to the boundary.

Given an isometry 𝑓 of a hyperbolic space 𝑋 , wemay classify it into one of three
types [10, §8], see Fig. 3.

1. 𝑓 is elliptic if every orbit {𝑓𝑛(𝑥) ∶ 𝑛 ∈ ℤ} for 𝑥 ∈ 𝑋 is bounded.

2. 𝑓 is parabolic if every orbit {𝑓𝑛(𝑥) ∶ 𝑛 ∈ ℤ} is unbounded but there is a
unique limit point of the orbit in 𝜕𝑋 .

3. 𝑓 is hyperbolic if the map ℤ → 𝑋 given by 𝑛 ↦ 𝑓𝑛(𝑥) is a quasi-isometry for
every 𝑥 ∈ 𝑋 , hence every orbit has two limit points in 𝜕𝑋 .
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Figure 3: Isometries on the 3-valent tree (left) and ℍ2 (right).

One obtains an action of 𝑓 on 𝜕𝑋 by looking at the action on geodesic rays.
Remark. One can define a dual notion ofhyperbolic group, a group for which one
can choose a hyperbolic Cayley graph. This follows the general philosophy (known
as far back as Dehn, and Stillwell in his introduction to Dehn’s work [7] attributes it
to Dyke and Poincaré) that if a group 𝐺 acts properly on a space 𝑋 then in the large
scale𝐺 resembles 𝑋 . In this interpretation, Gromov’s ideal hyperbolic boundary
𝜕𝐺 is what is in modern language identified with the limit set of the group [10,
§0.3(B’)].

We claim that this action is somehow ‘conformal’, but the sextant metric as de-
fined clearly does not capture this notion (it is the discrete metric on 𝜕ℍ𝑛). To fix
this we just fix a basepoint 0 ∈ 𝐵𝑛−1; the isometry group now preserves angles at 0
and so clearly acts isometrically with respect to the sextant metric.

§2. Review of the theory over ℂ
Werecall that aKleiniangroup is a discrete subgroupof Isom+(ℍ3). The boundary
𝜕ℍ3 is the sphere 𝑆2, and ifℍ3 is modelled as the upper half-plane {(𝑧, 𝑡) ∈ ℂ×ℝ ∶
𝑡 > 0} then 𝜕ℍ3 = ℂ̂ = ℂ ∪ {∞} with the usual conformal structure. We list some
standard facts [2]:

1. Isom+(ℍ3) is naturally isomorphic to the group𝕄 of conformal motions of ℂ̂
and the two group actions on ℍ3 ∪ 𝜕ℍ3 coincide.

2. The notions of elliptic, parabolic, and hyperbolic isometries can be detected
in the conformal structure: a conformal map 𝑓 ∶ ℂ̂ → ℂ̂ is

(a) elliptic if it has two fixed points and all orbits form round circles or-
thogonal to the great circle joining them;

(b) parabolic if it has one fixed point and the orbits form a pencil of circles
through it;

(c) hyperbolic if it has two fixed points and the orbits form curves from
one to the other (with one attracting and one repelling).1

1In the usual terminology of Kleinian groups, e.g. as defined in [11, §I.B], these elements are called
loxodromic.
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Figure 4: The Klein combination theorem for two disjoint circle pairings.

3. There is a standard isomorphism 𝕄 ≃ PSL(2, ℂ) such that tr2 𝑓 ∈ [0, 4) for
elliptic elements 𝑓, tr2 𝑓 = 4 for parabolic elements 𝑓, and tr2 𝑓 ∉ [0, 4] for
hyperbolic elements.

We now study Schottky groups, which are the simplest kinds of Kleinian groups.
We will need some adjectives for group actions. Let 𝐺 act as a group of homeomor-
phisms on a topological space 𝑋 .

1. The action is freely discontinuous if for every point 𝑥 ∈ 𝑋 there exists a
neighbourhood 𝑉 of 𝑥 such that 𝐺𝑉 ∩ 𝑉 = ∅.

2. A set 𝐷 ⊆ 𝑋 is precisely invariant under 𝐺 if 𝐺𝐷 ∩ 𝐷 = ∅.

3. A fundamental set for the action of 𝐺 on 𝑋 is a subset 𝐷 ⊆ 𝑋 containing
exactly one representative from each𝐺-orbit in 𝑋 . (This is not to be confused
with a fundamental domain, for which see [11, §II.G.1])

The following theorem appears as [11, §VII.A.13].

2.1Theorem (Klein combination theorem). Let𝐺1 and𝐺2 be subgroups ofHomeo(𝑋)
that act freely and discontinuously on some open subset𝑈 ⊆ 𝑋 . Suppose that there is
a fundamental set 𝐷𝑚 for 𝐺𝑚 (𝑚 = 1, 2) where 𝐷1 ∪ 𝐷2 = 𝑋 and 𝐷 = 𝐷1 ∩ 𝐷2 ≠ ∅.
Then 𝐺 = ⟨𝐺1, 𝐺2⟩ is the free product 𝐺1 ∗ 𝐺2 and 𝐷 is precisely invariant under the
identity in 𝐺. mAk

2.2 Example. A Schottky group of rank 𝑟 is defined by the data of 𝑟 disjoint cir-
cles2 𝐶1, 𝐶′

1, ..., 𝐶𝑟, 𝐶′
𝑟 in ℂ̂ which bound a common exterior 𝐷, together with for

each 𝑖 a conformal map 𝑔𝑖 ∈ 𝕄 such that 𝑔𝑖(𝐶𝑖) = 𝐶′
𝑖 and 𝑔𝑖 maps the exterior of

𝐶𝑖 into the interior of 𝐶′
𝑖 ; see an example for 𝑟 = 2 in Fig. 4. By induction based

on Theorem 2.1, the group ⟨𝑔1, ..., 𝑔𝑟⟩ is free on those 𝑟 generators and maps the do-
main 𝐷 entirely off itself. We also see that 𝐺 is purely hyperbolic, since every word
in 𝐺 has two fixed points (do a ping pong argument).

2We mean topological circles, not round circles.
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Figure 5: A surface arising from a rank 4 Fuchsian Schottky group.

A classical Schottky group is a Schottky group defined by the data of round
circles. There exist Schottky groups which are not classical. A non-constructive
proof of this was first given by Marden, but an explicit example was found by Ya-
mamoto [16].

There are various alternative characterisations of Schottky groups, themain one
being the following which we take from [11, §X.H.6].

2.3 Proposition. Let𝐺 be a finitely generated, free, purely hyperbolic Kleinian group
is a Schottky group. mAk

Remark. Some fairly high-power machinery is needed to reduce the number of
adjectives here; for instance, Ahlfors’ finiteness theorem.

We have already alluded to the following definition.

2.4 Definition. Let 𝐺 be a Kleinian group. Then the set of accumulation points of
orbits of points of ℂ̂ under 𝐺 is the limit set Λ(𝐺) and the complement ℂ̂ ⧵Λ(𝐺) is
the domain of discontinuity.

2.5Proposition. Let𝐺 be a torsion-free3 Kleinian groupwhich is not virtually abelian.

1. Ω(𝐺) is the maximal subset of ℂ̂ on which 𝐺 acts freely discontinuously [11,
§II.E].

2. The quotientΩ(𝐺)/𝐺 is a (possibly empty) Riemann surface [11, §II.F].

3. The quotient ℍ3/𝐺 is a hyperbolic 3-manifold [15]. mAk

From considering the (closure of the) fundamental set of Example 2.2, we see
the following.

2.6 Proposition. If𝐺 is a Schottky group of rank 𝑟, thenΩ(𝐺)/𝐺 is a genus 𝑟 compact
surface and ℍ3/𝐺 is a genus 𝑟 handlebody. mAk

See Fig. 5 for the genus 4 case.
This gives us motivation for a second alternative definition for Schottky groups:

2.7 Theorem. A Kleinian group 𝐺 is a Schottky group iff ℍ3/𝐺 is a handlebody.
mAk

For the moduli theory (see [12, Example 5.28]):
3This assumption can be easily removed after slight modification to the conclusions.
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Figure 6: A surface arising from a rank 4 Fuchsian Schottky group.

2.8 Definition. The Schottky space of rank 𝑟 is the set 𝒮𝒸𝒽ℴ𝓉𝓉𝓀𝓎(𝑟) of all faithful
representations

𝜌 ∶ 𝐹(𝑟) → 𝕄
such that 𝜌(𝐹(𝑟)) is a Schottky group (where 𝐹(𝑟) is the free group on 𝑟 symbols),
modulo conjugacy in𝕄.

This space admits a natural complex structure in two ways. Firstly, as a subset
of the representation variety of 𝐹(𝑟); and secondly, via the following result

2.9 Theorem. Let 𝐺 be an arbitrary Schottky group of rank 𝑟. Then 𝒮𝒸𝒽ℴ𝓉𝓉𝓀𝓎(𝑟) is
equal to the set of quasiconformal conjugates of 𝐺, and is a holomorphic image of the
genus 𝑟 Teichmuller space. mAk

It is not clear that the two metrics are equivalent, in fact we have conjectured
only that they are quasi-isometric.

§3. The theory over ℝ
Let us now consider the Fuchsian case. A group is Fuchsian if it is a discrete
subgroup of Isom+(ℍ2); the conformal action on 𝜕ℍ2 = 𝑆1 is again as fractional
linear transformations (with ℝ-coefficients) and so we can view a Fuchsian group
as a discrete subgroup of PSL(2, ℝ).
Warning. Just looking at matrix groups suggests that Fuchsian groups are natu-
rally Kleinian groups, but onemust remember that we are not working withmatrix
groups in isolation. Fuchsian groups act on ℍ2, and Kleinian groups act on ℍ3, so
there is some subtlety involved.

3.1 Definition. A Schottky group over ℍ2 of rank 𝑟 is a purely hyperbolic Fuch-
sian group which is free of rank 𝑟.

Since ℍ2 is simply connected, we can identify such a Schottky group 𝐺 with
𝜋1(ℍ2/𝐺). Thus the quotient surface is a Riemann surface which topologically has
𝑟 deleted discs. The moduli space 𝒮𝒸𝒽ℴ𝓉𝓉𝓀𝓎ℝ(𝑟) containing 𝐺 is equivalent to the
usual Teichmüller space of genus 0 surfaces with 𝑟 deleted discs.
Warning. In contrast to the complex case, Schottky groups do not uniformise com-
pact surfaces (since the fundamental group of a compact surface is not free). The
point is that they uniformise genus 𝑟 surfaces cut ‘in half’ (compare Fig. 6 with the
earlier Fig. 5).
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§4. The theory over ℚ𝑝
Let (𝐾, 𝑣) be a discrete valuation field, and let𝒪 be its valuation ring; we will define
Schottky groups in 𝐺 = PSL(2, ℚ𝑝) in analogy with the Archimedean cases in the
previous sections. First, wemust find a natural space onwhich𝐺 acts isometrically.
For this we follow the standard reference by Serre [14].

Fix a two-dimensional vector space𝑉 over𝐾. A lattice in𝑉 is a finitely-generated
𝒪-submodule of 𝑉 which spans 𝑉 as a 𝐾-vector space. If 𝑥 ∈ 𝐾∗ then 𝑥𝑉 is also a
lattice, and we denote by 𝑋 the set of lattices modulo this 𝐾∗-action.

Given two lattices 𝐿 and 𝑀, by the structure theorem for modules over a PID
we have that there exist compatible bases for 𝐿 and𝑀, i.e. a basis (𝑒1, 𝑒2) for 𝐿 and
𝑛1, 𝑛2 ∈ ℤ such that (𝜋𝑛1𝑒1, 𝜋𝑛2𝑒2) is a basis for 𝑀. The integer |𝑎 − 𝑏| does not
depend on the equivalence classes of 𝐿 and𝑀 in 𝑋 and so we define 𝑑([𝐿], [𝑀]) =
|𝑎 − 𝑏|.
4.1 Theorem ([14, Chapter II, Theorem 1]). The pair (𝑋, 𝑑) is (ℤ-valued) metric
space, and the incidence structure defined by [𝐿] ∼ [𝑀] ⟺ 𝑑([𝐿], [𝑀]) = 1 is a
tree, the Bruhat-Tits tree 𝑇𝐾 over (𝐾, 𝑣). (This boils down to asking for there to exist
representatives 𝐿,𝑀 such that 𝜋𝐿 < 𝑀 < 𝐿.) This tree is regular with valance equal
to one greater than the characteristic of the residue field. mAk

The tree has a natural 2-colouring, where we label vertices with the same colour
if they are of even distance. The groupGL(𝑉) acts isometrically on the tree by virtue
of acting on the lattices, and the group SL(𝑉) acts as the subgroup of GL(𝑉) which
preserves this colouring.

Alternatively, we can throw the valuation 𝑣 away and just look at the group
PSL(2, 𝐾). The building of PSL(𝑛, 𝐾) is equal to the complex of flags of proper non-
zero subspaces of 𝐾𝑛; that is, in the case 𝑛 = 2, the building is the projective space
ℙ1𝐾 [1, §6.5]. In fact the action is the usual action of PSL(2, 𝐾) on ℙ1𝐾.
4.2 Proposition ([1, Exercise 6.114]). The building ℙ1𝐾 is the spherical building at
infinity associated to 𝑇𝐾 . mAk

Remark. In the cases of hyperbolic groups Isom+(ℍ𝑛) ≃ PSL(2, 𝐹), we have the
most ‘computable’ action given by the action on the conformal boundary, and the
action on the interior given by some kind of extension 𝐹′/𝐹 (either ℂ/ℝ or 𝐻/ℂ—
this latter we have not discussed but see [2, §4.1]). One should ask now how to re-
alise the natural action which one has on the interior in the non-Archimedian case
to the Archimedian case, for instance by looking at lattices of rank 2 in ℝ2. One
is tempted to reverse the non-Archimedian process and ask the following question:
let 𝐵 be the structure supported on⋃𝜁,𝜉∈Λ(𝐺)[𝜁, 𝜉]; does the group action as a frac-
tional linear map extend naturally to an action on this subset of ℍ𝑛, in such a way
that the ‘intersections’ are in bijection with lattices in ℝ2?

We quickly describe the rest of the theory. Let 𝛾 be an isometry of the 𝑛-valent
tree𝑇; its translation length is defined to be trlen 𝛾 = inf𝑥∈𝑇 𝑑(𝑥, 𝛾𝑥) and the axis
is {𝑥 ∈ 𝑇 ∶ 𝑑(𝑥, 𝛾𝑥) = trlen 𝛾}. If the axis is non-empty then 𝛾 is called semisimple.
In this case, if trlen 𝛾 = 0 then 𝛾 is called elliptic, otherwise it is called hyperbolic.
4.3 Proposition. Every isometry of a tree is semisimple. If an isometry 𝛾 is hyperbolic
then it acts as a translation by trlen 𝛾 along its axis. Every elliptic isometry is finite
order. mAk

Of course this implies that free groups are all purely hyperbolic. The converse
is found as Theorem II.5 of Serre [14]:
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Figure 7: Long crossings of hyperbolic axes introduce relations.

Figure 8: A fundamental domain for a non-Archimedian Schottky group.

4.4 Proposition. Let (𝐾, 𝑣) be locally compact (e.g. 𝐾 = ℚ𝑝). Let 𝐺 be a discrete,
torsion-free (so purely hyperbolic), subgroup of PSL(2, 𝐾) acting on the tree 𝑇. Then
𝐺 is automatically free. mAk

Remark. In the case of 𝐺 two-generated, all discrete subgroups of PSL(2, 𝐾) can be
classified using the Maskit combination theorems [6].

We define a Schottky group of rank 𝑟 overℚ𝑝 to be a discrete, torsion-free sub-
group 𝐺 of PSL(2, ℚ𝑝). We observe that this gives us conditions on the axiss (axes)
of the hyperbolic elements in the generating set: either they do not intersect, or the
piece of the tree containing all of the intersectionsmust be small. If the intersection
is larger than either of the translation lengths then one can take products to obtain
a transformation with a fixed point, as shown in Fig. 7. One can generalise this to
the case of 𝐺 a group of isometries of a possibly incomplete CAT(0) space, see [5].

We can apply (again) Theorem2.1 to seewhat the quotient𝑇ℚ𝑝/𝐺 is. The picture
is very similar to the case overℝ, as one should expect from the philosophy thatℍ2

is a ‘thickened’ tree. We show a fundamental domain for the genus two case in
Fig. 8: one cuts out subtrees which cover the limit set of the full group (similar to
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Figure 9: A quotient building(?) obtained from a non-Archimedian Schottky group
of rank 2. The projections of the two axes are labelled following Fig. 8.

the construction of a Schottky domain by cutting out discs around components of
the limit set) and the quotient looks like a complex which has cycles localised in
a small piece with ends going off towards a circle at infinity, such that when it is
thickened it looks like half of a genus two surface (Fig. 9). One can even generalise
the point of view that a Schottky group is a group generated by transformations
which pair circles; the quotient space at infinity ℙ1ℚ𝑝 is called aMumford curve
[9, 13].

4.5 Conjecture. The moduli space 𝒮𝒸𝒽ℴ𝓉𝓉𝓀𝓎ℚ𝑝(𝑟) should look like a 𝑝-adic ver-
sion of the Teichmüller space 𝒮𝒸𝒽ℴ𝓉𝓉𝓀𝓎ℝ(𝑟); it will be the space of complexes quasi-
isometric to the complex obtained from a single quotient.

Remark. One might recall that the deformation theory of Schottky groups over
ℂ (more generally Kleinian groups) gives a natural diagram Teich(Ω(𝐺)/𝐺) →
QH(𝐺) → ℳ(Ω(𝐺)/𝐺) where the full covering from the Teichmüller space to the
Riemannmoduli space is given by the mapping class group action and the interme-
diate covering comes from a natural subgroup of the mapping class group (this is
surveyed in the expository article [8]). One is therefore tempted to ask for a similar
picture in the 𝑝-adic case.

§5. Upper half-planes and Clifford algebras
Notation. We use 𝕐 (for Cayley) to denote the usual quaternion algebra (−1, −1|ℝ),
since we use the standard notation ℍ for hyperbolic spaces.

We have already seen that PSL(2, ℝ) is isomorphic to the group of isometries of
the hyperbolic plane, since it acts by fractional linear transformations (i.e. in the
normal way as a group of projective transformations) on ℝ̂ = ℙ1ℝ and therefore
extends uniquely toℍ2 which has ℝ̂ as its boundary. One can also obtain this action
directly: if we model ℍ2 as the upper half-plane 𝐻2 = {𝑥 + 𝑡𝑖 ∈ ℂ ∶ 𝑡 > 0} then
PSL(2, ℝ) acts directly on it by fractional linear transformations as the hyperbolic
isometry group. (We already saw this earlier when we remarked that isometries of
ℍ2 are just conformal maps preserving the disc.)

Similarly, PSL(2, ℂ) can be made to act onℍ3 directly via fractional linear trans-
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formations: we model ℍ3 as

𝐻3 = {𝑥 + 𝑦𝑖 + 𝑡𝑗 ∈ 𝕐 ∶ 𝑡 > 0}

and set [ 𝑎 𝑏
𝑐 𝑑 ] .𝑞 ≔ (𝑎𝑞 + 𝑏)(𝑐𝑞 + 𝑑)−1 for 𝑞 ∈ 𝐻3. Again this preserves the set 𝐻3

and acts as the group of hyperbolic isometries [2, §4.1].
One should immediately askwhy, in this second example, wehave distinguished

the unit vector 𝑘: it does not seem like a particularly natural embedding ofℝ3 ↪ 𝕐.
The answer comes from the following pair of matrix representations,

2ℝ = ℝ⊕ℝ ∋ (𝑥, 𝑦) ↦ [ 𝑥 𝑦
−𝑦 𝑧] ∈ ℂ

2ℂ = ℂ⊕ ℂ ∋ (𝑤, 𝑧) ↦ [ 𝑤 𝑧
−�̄� ̄𝑧] ∈ 𝕐

which exhibit 𝐻2 and 𝐻3 as ℝ>0 ⊕ℝ and ℝ>0 ⊕ℂ respectively.
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