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Abstract
It has been known since at least the time of Poincaré that isometries of 3-dimensional hyperbolic
space ℍ3 can be represented by 2 × 2 matrices over the complex numbers: the matrices represent
fractional linear transformations on the sphere at infinity, and hyperbolic space is rigid enough that
every hyperbolic motion is determined by such an action at infinity. A discrete subgroup of PSL(2, ℂ)
is called a Kleinian group; the quotient of ℍ3 by the action of such a group is an orbifold, and its
boundary at infinity is a (possibly empty or disconnected) Riemann surface.

The Riley slice is the moduli space of Kleinian groups generated by a pair of parabolic elements
which are free on those generators and whose corresponding surface is supported on a 4-punctured
sphere; Robert Riley introduced this object in the 1970s while studying two-bridge knot groups. The
Riley slice is naturally embedded in ℂ and so is particularly amenable to study since one can draw
pictures of it. Linda Keen and Caroline Series studied this embedding in the early 1990s via a family
of polynomials which gave a foliation (local product decomposition) of the slice. We will discuss the
Keen–Series theory and extend it to allow torsion elements as generators. We also discuss some new
results of a combinatorial flavour and some applications. We aim for the exposition to be accessible
to beginning graduate students, despite the high bar for entry to this subject in terms of prerequisite
material.

Keywords: geodesic coding, hyperbolic orbifolds, Kleinian groups, quasi-Fuchsian groups, Riley
slice of Schottky space, Schottky groups, two-bridge knots and links.
MSC2020 classifications: 11B57, 20H10, 30F35, 30F40, 37F31, 57K10, 57K32, 57R18.
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Chapter 1

Introduction

Section 1.1 gives a non-technical précis sketch of the problem which we tackle in this thesis, hope-
fully accessible to the layperson. We then proceed in Section 1.2 to give a technical introduction
for an expert mathematical audience. An outline of the thesis, listing the main results, appears in
Section 1.3; and in Section 1.4 we give references to some introductory texts covering the fields of
mathematics that are required to read this thesis in full detail.

1.1 Non-technical précis
Broadly speaking, in this thesis we study the following problem:

1.1.1 Problem. Classify tangles made up of two pieces of string, with the four endpoints glued onto
a table.

In fact, to be more precise, we consider also the orientation of the table: that is, if we rotate the
table by 90∘ we consider the resulting tangle to be different than the one we started with. The more
correct problem is then the following:

1.1.2 Problem. Attach four pegs to a table in a square shape, such that the pegs are paired up by two
red lines on the table. What essentially different ways are there to tie two tangled-up pieces of blue
string to the pegs, where we count two such arrangments as being ’different’ if you cannot physically
deformone arrangement to the otherwhile keeping all the string above the table andwithout untying
the strings from the pegs?

One such tangle is shown in the top-left diagram of Figure 1.1 (subfigure (a)); the curve made up
of the two pieces of blue string together with the red lines drawn on the table is in fact the figure 8
knot (see Figure 4.4 below).

Let us make a further modification to the problem. To formalise the idea that we should not be
able to ‘cheat’ by moving a big loop of blue string entirely around the table (looping under all the
table legs and back up around), we replace the table with a sphere—we attach the pegs to the inside
of the sphere and we allow ourselves only to move the string around within the bounds of the sphere
(see (b) of Figure 1.1). Observe that the two red arcs now lie on the outside of the sphere, continuing
to keep track of the orientation of the entire system.

We would like to replace the complicated situation of this tangle sitting inside the sphere with
a pair of coordinates. To do this, draw a third line on the sphere (in green) which is parallel to the
two red arcs but goes the whole way around. This is drawn in (c) of Figure 1.1, where we have also

1
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Figure 1.1: Keeping track of untying a 2-tangle corresponding to the figure 8 knot.
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deformed the sphere a bit to make the structure of the tangles clearer (we have pushed and pulled
the sphere surface so that it is in a ‘pillowcase’ shape, with the pegged ends of the blue tangle at the
corners; we also pulled the red arcs off the sphere and into the surrounding space). We now proceed
to untangle the tangle by cutting and twisting the sphere and its interior, while keeping track of what
twists we have made using this green line.

Consider now diagram (d) of Figure 1.1. We cut along the horizontal diameter of the sphere,
hold the lower half steady and the upper two corners steady, and twist the bottom part of the top
hemisphere by 360∘. This untwists the lower twisted part of the tangle, and when we glue it back
together we have only one twist in the tangle left (that seen in the lower-left diagram of Figure 1.1).
Observe that when we cut, twist, and glue, the green curve gets spiralled around the equator of the
sphere: it is by looking at this that we keep track of the way that the tangle was tangled: as we
untwist the tangle, we twist up this green line, so when we are done the totality of the twists in the
green line represents all of the information that was present in the original tangle. The benefit of this
is that we have reduced all of the three-dimensional information down to a piece of two-dimensional
information, namely the way a single curve is draped on a sphere. (What we are doing here is aDehn
twist along the horizontal equator—this is the curve we will later in Chapter 4 call 𝛾(0/1).)

In order to untwist the final piece of the tangle, we do another two cuts and twists in this way.
We do not show the cut-open views this time, but we cut along a horozontal equator and twist 180∘
to unwind diagram (e) of Figure 1.1 to diagram (f); we then cut along a vertical equator for a second
time and again twist 180∘ to finally obtain the untwisted pair of arcs in diagram (g). Of course, these
twists make the green curve even more complicated.

It turns out that the green curve, in the end, twists 5 times horizontally and 3 times vertically (see
diagram (h) of Figure 1.1): for the reader who is coming back to this after having read Chapters 4
and 6 this corresponds to the fact that the figure 8 knot has Schubert normal form of 5/3 and the green
line has become 𝛾(3/5)—c.f. Example A.1.1).

The reader must now take on faith the following fact (Theorem 6.1.5): for every possible green
curve that you can obtain by untangling a tangle in this way, you can obtain a fraction 𝑝/𝑞; and for
every fraction 𝑝/𝑞 there exists a tangle which will give the 𝑝/𝑞 curve back after being untangled. It
is this number which is the first coordinate we associate to the tangle. It turns out that this fraction
naturally represents an angle: the tangle which is associated to 𝑝/𝑞 should appear 𝑝/𝑞 ⋅ 360∘ around,
and eventually you get back to where you started.

The second coordinate which we associate is the length of the green curve: different lengths
correspond to the same tangle, but scaled appropriately. To be honest, the real statement of the
problem which we are solving is the following:

1.1.3 Problem. Classify the possible geometries of tangles made up of two strands attached at four
points to a sphere, with those four points arranged in pairs like above.

With this formulation, it is clear that both the size and the shape of the tangle determine the
geometry: the shape gives an angle around a circle, and the size gives a distance away from the centre
of the circle, so the set of possible geometries is an annulus (ring-shape). This set is called the Riley
slice, and is the portion of Figure 1.2 which lies outside the shaded-in area in the middle; we have
indicated the two ‘axes’, namely length of the green curve (moving outwards, blue) and the position
of the green curve (moving around, red). In that figure we have called the green curve the pleating
locus of the geometry; this is because it turns out that the geometry will have a natural ‘pleat’ on the
sphere following the green curve. The radial coordinate lines corresponding to different lengths of
the same curve are called rational pleating rays. The precise definition of this coordinate system
(which is slightly more complicated than we have described here, for technical reasons: we need to
‘fill in the gaps’ between the rational pleating rays, and doing this with the definitions we outlined
above gives curves of infinite length, so we need to normalise our lengths to make them finite in this
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Figure 1.2: The coordinate system for the Riley slice.

case as well) is found as Theorem 7.4.15.
The reader should take some time to consider the (really quite complicated) geometry of the

Riley slice: one sees from Figure 1.2 that the boundary curve separating the slice interior (the white
unshaded region) from the exterior (the central region shaded with black dots) is very intricate; it
is, in fact, fractal. The patterns of dot density which are visible in the shaded exterior are also very
subtle and exhibit complicated behaviour, which we still do not fully understand.

Briefly, we explain the word ‘geometry’ which we have used in relation to our final formulation
of the problem. It turns out that if you take a 3-dimensional ball and drill out two arcs, the resulting
solid object has a natural way ofmeasuring distance within itself so that the spherical surface and the
two deleted arcs are ‘infinitely far away’ from all the interior points. This geometry is non-Euclidean:
parallel lines eventually get further and further apart from each other, rather than staying parallel.
More precisely, the geometry is hyperbolic. There is a way of associating to every such geometry a ‘sys-
tem of symmetries’, called a Kleinian group (formally, it is the ‘holonomy group’ of the geometry:
the geometry can be flattened out onto the largest-possible hyperbolic space and the groupmeasures
the way in which this flattening must take place). It is these Kleinian groups which we parameterise
by the Riley slice; and the Riley slice is a so-calledmoduli space for Kleinian groups. Formore inform-
ation on hyperbolic geometry and its relationship with knots, the non-technical reader is directed to
the excellent video Not Knot [53].

1.2 Technical introduction
AKleinian groupmay be equivalently defined as (a) a discrete subgroup of PSL(2, ℂ), or (b) a discrete
subgroup of Isom+(ℍ3). The relationship between these two definitions comes from the fact that iso-
metries of hyperbolic 3-space are uniquely characterised by their actions on the sphere at infinity:
namely, there is a natural bijection between Isom+(ℍ3) and the group of conformal automorph-
isms of 𝑆2. After identifying 𝑆2 with the Riemann sphere ℂ̂, we may characterise the conformal
automorphisms as none other than the Möbius transformations, those maps of the form 𝑧 ↦ 𝑎𝑧+𝑏

𝑐𝑧+𝑑
(𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ with 𝑎𝑑 − 𝑏𝑐 ≠ 0). Performing one final identification, of ℂ̂ with ℙℂ1, we see that the
Möbius transformations are in natural correspondence with PSL(2, ℂ) via the identification

(𝑧 ↦ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 ) ↔ (𝑎 𝑏

𝑐 𝑑) .
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The Riley sliceℛ (the exterior of the filled-in fractal ‘eye’ of Figure 1.2) is a moduli space paramet-
erising the hyperbolic structures on the 3-manifold with conformal boundary consisting of a four-
times punctured sphere 𝑆0,4 with the punctures joined by arcs at infinity. More precisely, define a
family (Γ𝜌)𝜌∈ℂ⧵{0} of subgroups of PSL(2, ℂ) by

Γ𝜌 ∶= ⟨𝑋 = (1 1
0 1) , 𝑌𝜌 = (1 0

𝜌 1)⟩ ;

The assumption 𝜌 ≠ 0 implies that Γ𝜌 is not elementary. The group Γ𝜌 acts on the Riemann sphere ℂ̂
and there is a largest open (possibly empty) set Ω(Γ𝜌) ⊂ ℂ on which this group acts discontinuously
(the ordinary set); the complement of this set in ℂ̂ is the limit set Λ(Γ𝜌) and is the closure of the
set of fixed points of elements of Γ𝜌 (so, since∞ is fixed by 𝑋 ,∞ ∈ Λ(Γ𝜌)).1

The quotientΩ(Γ𝜌)/Γ𝜌 is a Riemann surface. When Γ𝜌 is free and discrete, the Riemann surfaces
so obtained are supported on one of three homeomorphism classes of topological space: the empty
set; a disjoint union of two three-times punctured spheres; and a four-times punctured sphere. It
happens that the first two types of space may be viewed as geometric deformations of four-times
punctured spheres, and so it is natural to consider the set of all 𝜌 such that Γ𝜌 is free and discrete and
such that the quotient Riemann surface is supported on a four-times punctured sphere; the other two
kinds of space then form the boundary of this set (though this observation is highly non-trivial: we
study it in Chapter 5).

Thus, the Riley slice is defined by

ℛ = {𝜌 ∈ ℂ ∶ Ω(Γ𝜌)/Γ𝜌 is topologically a four-times punctured sphere}.

This set has been studied since themid-1900s; for a non-exhaustive list of literature, see the paragraph
following Definition 4.2.2.

The theory of Keen and Series [63] (with corrections by Komori and Series [66]) endows the
Riley slice with a foliation structure that measures the geometry of the surface and its underlying
hyperbolic 3-manifold. The structure consists of a set of curves parameterised by ℚ which radiate
out from the boundary of the slice and which are dense in the slice (the so-called rational pleating
rays) togetherwith a natural completion (in the sense that wemay add curves parameterised byℝ⧵ℚ
in order to fill out the entire slice). These curves are arcs in the deformation space corresponding to
pinching a particular simple closed geodesic represented by a loxodromic element (which we call the
𝑝/𝑞-Farey word2) down to a parabolic element, splitting the surface into two pieces joined by a new
pair of cusps.

The goal of this thesis is to describe in detail this foliation theory along with a generalisation to
the case of the 4-marked sphere (allowing cone points as well as punctures). We will also give some
extensions of the theory, for instance by constructing open neighbourhoods of cusp points in the slice;
as well as giving some additional combinatorial results.

1One may also define the ordinary set in the following way, if Γ𝜌 is discrete and non-elementary (true for every group in
ℛ): it is the largest domain in ℂ on which the transformations of Γ𝜌 are equicontinuous (Definition 7.4.9). In this way the
ordinary set is analogous to the Fatou set of a dynamical system.

2We name these words after John Farey Sr. as they are closely related to the so-called Farey sequences of rational numbers
which we will discuss briefly in Section 6.3 and Chapter 9; with regard to this attribution, we quote from the historical notes to
Chapter III of Hardy andWright [54, pp. 36–37]: “The history of ‘Farey series’ is very curious... [their properties] seem to have
been stated and proved first by Haros in 1802... Farey did not publish anything on the subject until 1816. [...] Mathematicians
generally have followed Cauchy’s example in attributing the results to Farey, and the series will no doubt continue to bear his
name. Farey has a notice of twenty lines in the Dictionary of national biography where he is described as a geologist. As a
geologist he is forgotten, and his biographer does not mention the one thing in his life which survives.”
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1.3 Outline of the thesis

This thesis is split, broadly, into three main parts.
The first part consists of Chapters 2 and 3, and is a brief review of specific results which we

will use—the vast majority of the definitions and results contained in this part are expected to be
known by the reader, and so it is recommended that these chapters be skimmed over and returned to
only to check notation and theorem statements. Below in Section 1.4 we list some books which give
detailed introductions to all of the mathematics which we describe in these chapters. These chapters
are intended only to fix notation, and the reader is strongly advised to consult the references below for
examples and motivation—for instance, the purpose of Section 3.1 is to define a Kleinian group and the
related notions as efficiently as posible, at the expense of pedagogical value for readers unfamiliar with
the concepts.

The second part consists of Chapters 4 to 7, and develops the theory of the parabolic and elliptic
Riley slices. Chapter 4 may be viewed as a secondary introduction to this part and the majority of the
results here are simple extensions of results found in the literature. Chapter 5 gives some analytical
results, primarily that the Riley slice, as a subset of ℂ, is biholomorphic to the quasiconformal de-
formation space of any particular group in the Riley slice; then we give some results on the topology
of the Riley slice boundary, though sincemost of these results are very deepwe only give references to
proofs. Chapter 6 studies the enumeration of simple closed non-boundary-parallel geodesics, needed
for the Riley slice theory. Chapter 7 extends the Keen–Series theory of the parabolic Riley slice de-
veloped in [63, 66] to allow the two group generators to be elliptic rather than parabolic. Throughout
this part of the thesis, we emphasise intuitive understanding of the results as well as mathematical
correctness.

The final part consists of Chapters 8 to 10; these chapters are more significant extensions to the
Riley slice theory and the majority of these are due to the author and his two supervisors. Chapter 8
gives a detailed description of some open neighbourhoods of cusp points in the parabolic Riley slice,
following our preprint [39]. Chapter 9 describes some properties of the so-called Farey polynomials
(the trace polynomials of the Farey words), including a recursion formula in both elliptic and para-
bolic situations, and some closed-form formulae in special cases. Finally, in Chapter 10 we list some
conjectures and open problems.

1.4 Assumed background

The reader is assumed to have prior knowledge of the theory of Kleinian groups and hyperbolic geo-
metry. Unfortunately the amount of background we require is voluminous and so in this section
we give a concrete list of references (primarily textbooks) which are sufficient to read this thesis in
full detail. It is our hope that this thesis will be of some use to other students who are attempting to
understand the theory of deformations of Kleinian groups (as much of this theory is found scattered
among a diverse range of different papers and books); we will give copious references and will give
some preference to references which are geared towards students rather than researchers for basic
results.

Three modern books which will be very helpful to the beginning graduate student are those by
Thurston [124], Marden [79], and Purcell [99]; these three books do not always contain sufficient
detail for every subject, but give an idea of the landscape. The reader may also be interested in our
survey of the background material and the history of the Riley slice written for beginning graduate
students and only assuming basic topology and complex analysis [40].
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Classical theory of Kleinian groups. We will make significant use of the material in Chapters
I to VII of Maskit’s textbook [83] (though we will often pause to refresh ourselves on definitions).
An alternative elementary reference is the book by Beardon [13] (the early chapters do discuss the 3-
dimensional case, though this book deals almost exclusively with the geometry of Fuchsian groups).

Complex analysis and Riemann surfaces. Wealso assume some basic knowledge of the theory
of Riemann surfaces: to give a concrete reference, the book by Farkas and Kra [47] is most relevant in
flavour. Note that the proof techniques used for theorems like the Riemann mapping theorem/uni-
formisation are not so relevant for applying these results, which is what we are primarily interested
in. The reader must have a passing understanding of mapping class groups and Teichmüller theory;
two good references are the textbooks by Farb and Margalit [46] (more geometric) and by Imayoshi
and Taniguchi [56] (more analytic and explicitly dealing with the relationships to Kleinian groups).

We will also need some of the quasiconformal deformation theory of Kleinian groups; this is
very seldom found in textbooks, but one self-contained introduction is the monograph by Matsuzaki
and Taniguchi [88] (particularly Sections 4.3 and 5.3, and Chapter 7). Since this subject is less well-
known than the standard mapping class theory, we will spend some time in this thesis motivating
and discussing it. We would also like to make the reader aware of the triplet of papers [91, 120, 121]
which actually provide much of the motivation for the study of deformations of Kleinian groups in
this way.

Geometric manifolds. We will also need to make use of the modern (that is, post-Thurston)
theory of geometric manifolds. The reader should be comfortable with the basic theory of (𝑋, 𝐺)-
manifolds; these are motivated and then studied in Chapter 3 of the book by Thurston [126], though
the reader will find it helpful to have a deeper knowledge of the relationship with Kleinian groups as
discussed in Chapters 3, 4, and 8 of Thurston’s famous lecture notes [124]. An alternative reference
here is the book by Ratcliffe [100] which develops Thurston’s theory in much greater depth than the
lecture notes and in greater generality, though this book is perhaps not as useful as an initial intro-
duction. Three more books which discuss the theory developed by Thurston and which the author
found particularly useful are the textbook by Benedetti and Petronio [14] (which comes at the theory
from a Riemannian viewpoint), the monograph by Kapovich [57] (which comes at the theory from
geometric group theory), and the monograph [88]. A very nice modern introductory book from the
geometric point of view is [79].

Because we are generalising the Keen-Series theory from cusps to cone points, we will also need
the theory of orbifolds; in particular, we will need to be able to compute with orbifold fundamental
groups and coverings. For the reader unfamiliar with orbifold theory we recommend starting with
Chapter 13 of Thurston’s notes [124] and Chapter 13 of Ratcliffe [100]: the former studies the funda-
mental group from the viewpoint of deck transformations, and the latter studies them from the view-
point of loops. Also useful is Chapter 6 of Kapovich [57], in particular the ‘glossary’ on pp.148–149.
Also useful for us is Chapter III.𝒢 of [24] which covers almost exactly what we need (but unfortu-
nately in a slightly more general setting, that of étale groupoids, which may be easier to grasp if the
reader first studies Thurston’s treatment of geometric manifolds via pseudogroups in [126]).

Finally, we will need some of the theory of measured laminations and foliations. The classical
references are Chapter 8 of Thurston’s notes [124] and Thurston’s FLP [45], as well as the pair of
expository papers [28, 43]. See also Section 3.9 of [79].
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1.5 Miscellaneous conventions
We will occasionally use a Halmos ▮ at the end of the statement of a proposition without giving an
explicit proof. This means one of two things: either the proof should be immediately obvious to the
reader (in which case we will always state this), or the proof is to be found in a reference (which will
usually be given either immediately prior to or immediately subsequent to the theorem statement).

Often, if 𝑋 ⊆ ℂ, we write ̂𝑋 for the set 𝑋 ∪ {∞} ⊆ ℂ̂ ≔ ℂ ∪ {∞}. In the rational case, when we
write ‘𝑝/𝑞 ∈ ℚ̂’ we implicitly assume that (𝑝, 𝑞) = 1 (unless of course 𝑝 = 0 or 𝑞 = 0, in which case
we require the non-zero integer to be 1).

We write 𝐵(𝑥, 𝜀) for the open ball of radius 𝜀 about the point 𝑥. It will be clear from context which
space this ball is taken with respect to (usually, ℂwith the Euclidean metric). Similarly, 𝑆(𝑥, 𝜀) is the
sphere 𝜕𝐵(𝑥, 𝜀). The unit ball in ℝ𝑛 about 0 is denoted by 𝔹𝑛 (and 𝔹2 is also taken as a subset of ℂ).

For clarity of typography, we sometimes swap between subscript notation and function applica-
tion notation: that is, sometimes we will write 𝛾𝑝/𝑞 and sometimes 𝛾(𝑝/𝑞), where both typographical
entities represent the same mathematical object. Similarly, if we hold some parameters in an object
fixed in a section, we often drop these parameters from the notation: if 𝑎, 𝑏 are fixed, then we write
ℛ forℛ𝑎,𝑏 et cetera.

1.6 Papers based on this thesis
Much of the content in this thesis has appeared (or will soon appear) in preprint form, jointly au-
thored with Gaven Martin and Jeroen Schillewaert: chapter 8 has appeared as [39]; parts of chapters
6 and 9, together with some extensions and major updates, have appeared as [41]; and chapters 4
to 7 will soon appear as [42] together with their application to the study of arithmetic subgroups of
PSL(2, ℂ). We have also prepared an elementary introduction to the theory of Kleinian groups and
their deformation spaces which gives a historical overview of many of the subjects which we touch
upon in this thesis [40].
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Chapter 2

Geometric spaces

The theme of the subject which we are studying is the interplay between group theory and geometry.
The geometry will come frommanifolds with hyperbolic or complex structure, and in this chapter we
formalise what this means and give a quick overview of some of the major theorems of a geometric
flavour. Most of the material in this chapter may be found in [100, 126] and the reader is expected to
be familiar with it already; we discuss it here only for context and to fix notation and terminology.

2.1 Hyperbolic space
We primarily make use of two models of hyperbolic space: the ball model and the half-space model.
The material we discuss in this section is very standard, and may be found (for example) in chapter
IV of [83] or the first few chapters of [100].
2.1.1 Definition (The ball model). The ball model of hyperbolic space is the open set

𝔹𝑛 = {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ < 1}
equipped with the Riemann metric

𝑑𝑠2 = 2|𝑥|2

(1 − |𝑥|2)2
.

The boundary of the ball model is the sphere 𝑆𝑛−1; we refer to it as the sphere at infinity 𝑆𝑛−1∞ . The
union 𝑆𝑛−1∞ ∪ 𝔹𝑛 is the closure of the ball model, denoted 𝔹𝑛.
2.1.2 Proposition. For arbitrary 𝑥, 𝑦 ∈ 𝔹𝑛 there exists a unique geodesic joining 𝑥 to 𝑦; this geodesic
is a (Euclidean) circle arc or line segment such that the extension of the arc or segment is orthogonal to
𝑆𝑛−1. ▮
2.1.3 Definition (The half-space model). The half-spacemodel of hyperbolic space is the open set

ℍ𝑛 = {(𝑥1, ..., 𝑥𝑛−1, 𝑡) ∈ ℝ𝑛 ∶ 𝑡 > 0}
equipped with the Riemann metric

𝑑𝑠2 = 2|𝑥|2

(1 − |𝑥|2)2
.

The boundary of the ball model is the space ℝ̂𝑛−1 = ℝ𝑛−1 ∪ {∞}, where ℝ𝑛−1 is injected into ℝ𝑛 as
the set {(𝑥, 𝑡) ∈ ℝ𝑛 ∶ 𝑡 = 0}. As with the ball model, we refer to it as the sphere at infinity 𝑆𝑛−1∞ .
The union ℝ̂𝑛−1 ∪ ℍ𝑛 is the closure of the half-space model, denoted ℍ𝑛.

9
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2.1.4 Proposition. For arbitrary 𝑥, 𝑦 ∈ ℍ𝑛 there exists a unique geodesic joining 𝑥 to 𝑦; this geodesic
is a (Euclidean) circle arc or line segment such that the extension of the arc or segment is orthogonal to
ℝ𝑛−1.

The isometry group of ℍ𝑛 is the group generated by motions of ℝ𝑛 of the following forms (which
clearly all preserve ℍ𝑛):

1. Translations: (𝑧, 𝑡) ↦ (𝑧 + 𝑎, 𝑡) for 𝑎 ∈ ℝ𝑛−1;

2. Rotations: (𝑧, 𝑡) ↦ (𝑧𝑥, 𝑡) for 𝑟 ∈ 𝑂(𝑛 − 1);

3. Dilations: 𝑧 ↦ 𝜆𝑧 for 𝜆 ∈ ℝ;

4. Inversion in the unit sphere: 𝑧 ↦ 𝑧/|𝑧|2.

Isometries ofℍ𝑛 have natural continuous extensions to the sphere ℝ̂𝑛−1, on which they act as conformal
maps. Conversely, every conformal map of ℝ̂𝑛−1 extends uniquely to a hyperbolic isometry on ℍ𝑛 (the
Poincaré extension of the conformal map). ▮

The twomodels 𝔹𝑛 andℍ𝑛 of hyperbolic space are naturally isometric via a sphere inversion: see
[83, IV.B.1]. We will not use the hyperboloid model of hyperbolic space in this thesis.

We shall usually be interested in the case that 𝑛 = 3. In this case, the sphere at infinity of the
half-space model is ℝ̂2, which may be identified with the Riemann sphere, ℂ̂. In this case, a short
argument gives the following:

2.1.5 Proposition. Every conformal bijection ℂ̂ → ℂ̂ is of the form

(2.1.6) 𝑧 ↦ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ and 𝑎𝑑 − 𝑏𝑐 ≠ 0. ▮

Such maps are called fractional linear transformations; they preserve the property of “being
a circle” (viewing a Euclidean line as a ‘circle through ∞’), and the group of such maps, denoted
𝕄 (for Möbius), is transitive on triples of points of ℂ̂. One readily observes that there is a natural
isomorphism between this group and the group PSL(2, ℂ) acting on ℂ̂ = ℙℂ, which sends the map
of Equation (2.1.6) to the matrix

[𝑎 𝑏
𝑐 𝑑] ;

we will often use this isomorphism without comment. We place a norm structure and the associated
topology on PSL(2, ℂ) ≃ 𝕄 by defining

‖
‖‖[
𝑎 𝑏
𝑐 𝑑]

‖
‖‖
2
= |𝑎|2 + |𝑏|2 + |𝑐|2 + |𝑑|2

(where the representative matrix is chosen to have determinant 1)—so PSL(2, ℂ) has the induced
topology as a subset of ℂ4.

2.1.7 Example. Let 𝑓 ∈ 𝕄 be defined by 𝑓(𝑧) = 𝑧 + 1; then 𝑓 has matrix [1 1
0 1] so ‖𝑓‖ = √3 and

‖𝑓𝑛‖ = √2 + 𝑛2. This shows that PSL(2, ℂ) is not compact (it is not bounded in ℂ4).

The isometries of ℍ3 may be classified into the following types:
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Figure 2.1: The shapes of the orbits of the different types of fractional linear transformation.

1. loxodromic transformations: these transformations act as a translation along a geodesic axis
together with a possible twist about the axis. If the transformation acts solely as a translation
with no rotation, then the transformation is known as a hyperbolic transformation; a loxo-
dromic transformation which is not hyperbolic is known as strictly loxodromic. The action
of a loxodromic transformation on ℂ̂ has two fixed points, and every such transformation is
conjugate to one of the form

[𝜆 0
0 𝜆−1] , or in function notation 𝑧 ↦ 𝜆2𝑧

where 𝜆 ∈ ℂ is nonzero and |𝜆| ≠ 1. A transformation 𝑓 ∈ 𝕄 is loxodromic iff tr2 𝑓 ∉ [0, 4],
and is hyperbolic iff tr2 𝑓 ∈ (4,∞).

2. parabolic transformations: these transformations act as a translation on ℂ̂with a single fixed
point, and no fixed points in ℍ3. Every such transformation is conjugate to the transformation

[1 1
0 1] , or in function notation 𝑧 ↦ 𝑧 + 1

A transformation 𝑓 ∈ 𝕄 is parabolic iff tr2 𝑓 = 4.

3. elliptic transformations: these transformations act as a rotation along a geodesic axis in ℍ3,
and as a rotation in ℂ̂ with two fixed points. Every such transformation is conjugate to one of
the form

[𝜆 0
0 𝜆−1] , or in function notation 𝑧 ↦ 𝜆2𝑧

where 𝜆 ∈ ℂ is of unit norm and 𝜆 ≠ 1. A transformation 𝑓 ∈ 𝕄 is elliptic iff tr2 𝑓 ∈ [0, 4).

The typical shapes of the orbits of each type of element on ℂ̂ are depicted in Figure 2.1.

2.2 Geometric manifolds and orbifolds
In this sectionwe briefly recall the definitions of geometricmanifolds and orbifolds in order to refresh
the memory of the reader, following [57, 100, 124, 126].

2.2.1 Definition. Let 𝑋 be a metric space; a geodesic segment in 𝑋 is a distance-preserving map
𝛾 ∶ [𝑎, 𝑏] → 𝑋 (for some reals 𝑎 < 𝑏). As usual we often identify 𝛾 with its image 𝛾([0, 1]) and
say that 𝛾 joins 𝛾(0) to 𝛾(1). A geodesic line in 𝑋 is a continuous map 𝜆 ∶ ℝ → 𝑋 which is locally
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distance-preserving. (Thus restrictions of geodesic lines to segments inℝ are not necessarily geodesic
segments unless they are sufficiently short.)

The space 𝑋 is a geometric space of dimension 𝑛 if it satisfies suitable generalisations of the
Euclidean axioms. The following definition states Euclid’s axioms (which we take verbatim from
[33, section 1.2]) in italics together with the appropriate generalisation (described, for instance, in
chapter 8 of [100]).

1. A straight linemay be drawn from any point to any other point. For any pair 𝑥, 𝑦 ∈ 𝑋 there exists
a geodesic segment joining 𝑥 to 𝑦.

2. A finite straight line may be extended continuously in a straight line. Given a geodesic segment
𝛾 ∶ [0, 1] → 𝑋 there exists a unique geodesic line ̂𝛾 ∶ ℝ → 𝑋 with ̂𝛾↾[0,1] = 𝛾.

3. A circle may be described with any centre and any radius. There exists a continuous function
𝜎 ∶ ℝ𝑛 → 𝑋 and a real number 𝜀 > 0 such that 𝜎 is a homeomorphism of 𝐵(0, 𝜀) onto 𝐵(𝜎(0), 𝜀),
such that for any 𝑥 ∈ 𝑆𝑛−1 the map 𝛾 ∶ ℝ → 𝑋 defined by 𝛾(𝑡) = 𝜎(𝑡𝑥) is a geodesic line such
that 𝛾↾[−𝜀,𝜀] is a geodesic segment.

4. All right angles are equal to each other. 𝑋 is homogeneous (i.e. for all 𝑥, 𝑦 ∈ 𝑋 there exist
isometric neighbourhoods 𝑈 of 𝑥 and 𝑉 of 𝑦).

A bijection 𝜙 ∶ 𝑋 → 𝑌 between two metric spaces is a similarity of scale factor 𝜅 ≠ 0 if, for all
𝑥1, 𝑥2 ∈ 𝑋 , 𝑑𝑌 (𝜙(𝑥1), 𝜙(𝑥2)) = 𝜅𝑑𝑋(𝑥1, 𝑥2).

2.2.2 Definition. Let 𝐺 be a group of similarities of a geometric space 𝑋 , and let𝑀 be a topological
manifold. An (𝑋, 𝐺)-atlas on𝑀 is an open cover {𝑈𝛼}𝛼∈𝐴 of𝑀 together with a family of topological
embeddings (𝜙𝛼 ∶ 𝑈𝛼 → 𝑋)𝛼∈𝐴 such that, for every 𝛼, 𝛽 ∈ 𝐴, the composition 𝜙𝛼𝜙−1𝛽 (defined on
𝜙𝛼(𝑈𝛼) ∩ 𝜙𝛽(𝑈𝛽)) is a restriction of some element of 𝐺; if𝑀 admits such an atlas then it is called an
(𝑋, 𝐺)-manifold, or a geometric manifold modelled on 𝑋 .

The morphisms of this category are the (𝑋, 𝐺)-maps: if𝑀,𝑁 are (𝑋, 𝐺)-manifolds, such a map is
a map 𝑓 ∶ 𝑀 → 𝑁 such that for every pair of charts 𝜙 on𝑀 and 𝜓 on 𝑁, the composition 𝜓𝑓𝜙−1 is a
restriction of an element of𝐺 on its domain of definition. We say that𝑀 and𝑁 are (𝑋, 𝐺)-equivalent
if there is an invertible (𝑋, 𝐺)-map 𝑓 ∶ 𝑀 → 𝑁 such that 𝑓−1 is also an (𝑋, 𝐺)-map.

Wewill also be interested in allowing quotient singularities onmanifolds. The correct notion was
defined by Satake in 1957 [111] and was reintroduced by Thurston in the 1970s (see Chapter 13 of
[124]). We follow the treatment of Chapter III.𝒢 of [24].

2.2.3 Definition. Let 𝐺 be a group of similarities of some geometric space 𝑋 . An (𝑋, 𝐺)-orbifold 𝑂
is a Hausdorff topological space |𝑂| together with the following data (known as an orbifold atlas):

1. An open cover {𝑈𝛼}𝛼∈𝐴 of |𝑂|; and

2. For each 𝛼 ∈ 𝐴: a connected and simply connected (𝑋, 𝐺)-manifold 𝑋𝛼, a finite group Γ𝛼 of
diffeomorphisms of 𝑋𝛼, and a continuous map 𝑝𝛼 ∶ 𝑋𝛼 → 𝑈𝛼 inducing a homeomorphism
𝑋𝛼/Γ𝛼 → 𝑈𝛼

satisfing the condition that, if 𝑥𝛼 ∈ 𝑋𝛼 and 𝑥𝛽 ∈ 𝑋𝛽 have the property that 𝑝𝛼(𝑥𝛼) = 𝑝𝛽(𝑥𝛽), then
there are connected open neighbourhoods 𝑉𝛼 of 𝑥𝛼 and 𝑉 𝛽 of 𝑥𝛽 together with a (𝑋, 𝐺)-equivalence
ℎ ∶ 𝑉𝛼 → 𝑉 𝛽 such that 𝑝𝛽ℎ = 𝑝𝛼↾𝑉𝛼 .

A point 𝑥 of 𝑂 is said to be singular if there exists some chart 𝑝𝛼 containing 𝑋 such that the
stabiliser StabΓ𝛼(𝑥) is nontrivial. The set of singular points is the singular locus, denoted sing𝑂.
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Many clear geometric examples may be found in [124, Chapter 13], [100, Chapter 13], and [57,
Chapter 6].

We will need to know that the Euler characteristic and the Gauss-Bonnet theorem hold for orbi-
folds. This is studied in Proposition 13.3.4 of [124] and the surrounding discussion. We recall the
main points.

2.2.4 Definition. The Euler characteristic of a 2-orbifold 𝑂 is defined by

𝜒(𝑂) ≔ 𝜒(|𝑂|) − 1
2 ∑(1 − 1/𝑛𝑖) −∑(1 − 1/𝑚𝑖)

where the 𝑛𝑖 are the orders of the corner reflectors of 𝑂 and the𝑚𝑖 are the orders of the cone points.

2.2.5 Proposition (Covering formula for orbifold Euler characteristic, [124, Proposition 13.3.4]). If
𝑂̃ → 𝑂 is an orbifold covering map of degree 𝑘 (that is, the preimage of a nonsingular point is of cardin-
ality 𝑘) then 𝜒(𝑂̃) = 𝑘𝜒(𝑂). ▮

2.2.6 Theorem (Gauss-Bonnet for orbifolds, [124, Section 13.20]). If an orbifold 𝑂 is equipped with
a metric coming from invariant Riemann metrics on each chart 𝑋𝛼 then

∫
𝑂

𝐾𝑑𝐴 = 2𝜋𝜒(𝑂)

where 𝐾 is the curvature. ▮

As an easy corollary of the Gauss-Bonnet theorem, for a hyperbolic orbifold we obtain the follow-
ing area computation:

2.2.7 Corollary (Siegel area formula). Let 𝑆 be a hyperbolic Riemann surface of genus 𝑔with 𝑛marked
points of order 𝑎1, ..., 𝑎𝑛 (punctures being marked with order∞). Then the hyperbolic area of 𝑆 is

Area(𝑆) = 2𝜋(2𝑔 − 2 +
𝑛
∑
𝑖=1

(1 − 1
𝑎𝑖
)) . ▮

2.3 The Poincaré polyhedron theorem
In this section we introduce one of our primary tools which relates the geometry and topology of
geometric manifolds to combinatorial group theory: this tool is the Poincaré polyhedron theorem
(Theorem 2.3.5 below), which is a result guaranteeing that sufficiently regular face gluing structures
on polyhedra do induce hyperbolic quotient structures.
Notation. In this section, we restrict the geometric spaces of interest to be ℝ𝑛 and ℍ𝑛. Let 𝑋 denote
a fixed geometric space which is either one of these two.

2.3.1 Definition. A subset 𝐾 ⊆ 𝑋 is said to be convex if, for every pair 𝑥, 𝑦 ∈ 𝐾, the geodesic arc
[𝑥, 𝑦] lies in 𝐾.

The theory of convex sets fromℝ𝑛 (for instance, as described in [44]) carries over almost without
change to ℍ𝑛. We describe the relevant structures in the ball model.

A hyperbolic hyperplane in 𝔹𝑛 is the intersection with 𝔹𝑛 of a sphere in ℝ𝑛 orthogonal to
𝑆𝑛−1∞ . A hyperbolic halfspace is a component of the complement of a hyperbolic hyperplane in
𝔹𝑛 (we take the convention that ∅ and 𝔹𝑛 are hyperplanes); a hyperbolic polyhedron is a non-
empty intersection of a countable family of hyperbolic halfspaces. We will usually drop the qualifier
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‘hyperbolic’ when it is clear from context that we consider hyperbolic objects rather than classical
Euclidean objects.

Let 𝑃 be a polyhedron; a supporting hyperplane of 𝑃 is a hyperplane 𝐻 such that 𝑃 ∩ 𝐻 is
nonempty and such that 𝑃 lies entirely in one of the halfspaces determined by 𝑃. A face of 𝑃 is an
interesection 𝑃 ∩ 𝐻 where 𝐻 is a supporting hyperplane; each face 𝑓 has a well-defined dimension,
namely the largest 𝑘 ∈ ℤ0≤𝑛−1 such that there exists a sphere 𝑆 of dimension 𝑘 orthogonal to 𝑆𝑛−1∞
with the property that 𝑓 is exactly 𝑃 ∩ 𝑆. The relative interior of the face 𝑓, denoted relint𝑓, is
the interior of 𝑓 as a subset of the sphere 𝑆. By convention we take the empty set to be a face of
every polyhedron (of dimension −1) and the closure 𝑃 itself to be a face (of dimension 𝑛). A face of
dimension 𝑛 − 1 is a facet or a side; a face of dimension 𝑛 − 2 is a ridge; a face of dimension 1 is an
edge; a face of dimension 0 is a vertex. We write 𝑃(𝑘) for the set of 𝑘-dimensional faces of 𝑃.

Given a polyhedron 𝑃, it is possible for the defining hyperplanes to intersect on the sphere 𝑆𝑛−1∞ ;
faces which are subsets of the sphere at infinity are called ideal faces. We also allow ourselves to
take convex hulls of points on the boundary, and other such things. (As a simple example, take two
diametrically opposite points on 𝜕𝔹2; then the convex hull of these points is the diameter joining
them.)

2.3.2 Definition. Let 𝒫 be a family of finitely many disjoint polyhedra in 𝑋 . For convenience, we
say ‘a facet of𝒫’ to mean ‘a facet of some polyhedron in𝒫’. (Of course this can easily bemade precise:
take the disjoint union of the relevant face complexes, this itself is a face complex and so everything
is well-defined.) A facet-pairing structure Φ on 𝒫 consists of the following data:

• A map (⋅)′ ∶ 𝒫(𝑛 − 1) → 𝒫(𝑛 − 1); and

• For each facet 𝐹 a similarity 𝜙𝐹 ∶ 𝑋 → 𝑋 (called a facet-pairing transformation)

such that for every facet 𝐹 ∈ 𝒫, (i) (𝐹′)′ = 𝐹, (ii) 𝜙𝐹(𝐹) = 𝐹′, and (iii) 𝜙−1𝐹 = 𝜙𝐹′ .

We say that two points 𝑥, 𝑦 ∈ 𝒫 are tiled adjacently by Φ if there exists a facet 𝐹 of 𝒫 such that
𝑥 ∈ 𝐹, 𝑦 ∈ 𝐹′, and 𝑦 = 𝜙𝐹(𝑥); in this case, we write 𝑥 ≃ 𝑦. Observe that ≃ is a symmetric relation.
We extend it to an equivalence relation in the following way: if 𝑥, 𝑦 ∈ 𝒫, we say that 𝑥 and 𝑦 are tiled
by Φ and write 𝑥 ∼ 𝑦 if either 𝑥 = 𝑦 or there is a finite sequence 𝑥1, ..., 𝑥𝑚 of points of 𝒫 such that

𝑥 = 𝑥1 ≃ ⋯ ≃ 𝑥𝑚 = 𝑦.

An equivalence class of related points is called a cycle of Φ; the cycle containing 𝑥 ∈ 𝒫 is denoted
[𝑥].

In order to understand the meaning of these definitions geometrically, consider the group Γ gen-
erated by the face-pairing transformations of Φ, and suppose that the images of 𝒫 under Γ tessellate
𝑋 . Two points of the boundary 𝜕𝒫 are tiled by Φ if they are glued onto each other at a tile boundary
of the tessellation, and they are adjacently tiled if, at the place where they are glued together, the two
copies of the tile are glued there facet-to-facet.
Remark. The adjectives ‘tiled’ and ‘tiled adjacently’ used here are not standard terminology; Maskit
does not introduce specific names for these relations (see paragraph IV.F.5 of [83]), and Ratcliffe uses
paired for ‘tiled adjacently’ and related for ‘tiled’ (see section 6.8 of [100]).

Suppose 𝑥 ∈ relint 𝑒 for some ridge 𝑒 of 𝒫; then every point of [𝑥] lies in the relative interior of
some ridge of 𝒫, and we call [𝑥] a ridge cycle of Φ. Let [𝑥] = {𝑥1, ..., 𝑥𝑚} be a finite ridge cycle of
Φ. For each 𝑖, the element 𝑥𝑖 is paired to at most two other elements of [𝑥] by Φ (since each ridge is
a subset of exactly two facets of 𝒫) and so we can reindex [𝑥] such that 𝑥1 ≃ 𝑥2 ≃ ⋯ ≃ 𝑥𝑚. Such a
cycle is said to be dihedral if there is a facet 𝐹 of 𝒫 containing 𝑥1 such that 𝐹 = 𝐹′ and 𝜙𝐹(𝑥1) = 𝑥1.
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A ridge cycle which is not dihedral is called cyclic. In either case, wemay define the dihedral angle
sum of [𝑥] to be

𝜃[𝑥] ≔ 𝜃(𝑥1) +⋯ + 𝜃(𝑥𝑚)
where, for each 𝑖, 𝜃(𝑥𝑖) is the dihedral angle between the two facets of 𝒫 which meet along the ridge
𝑥𝑖.

There are some easy-to-see local (at ridges) necessity conditions for facet-pairings to produce
tilings:

2.3.3 Definition. A facet-pairing transformationΦ for an polyhedron𝒫 in𝑋 is said to be subproper
if

• each cycle of Φ is finite,

• each dihedral edge cycle of Φ has dihedral angle sum a submultiple of 𝜋, and

• each cyclic edge cycle of Φ has dihedral angle sum a submultiple of 2𝜋.

It turns out that these conditions are also sufficient. For a proof of the following theorem, see
[100, Theorem 13.4.2].

2.3.4 Theorem. Let 𝑋 beℝ𝑛 orℍ𝑛, let 𝐺 be a discrete group of similarities of 𝑋 , and let𝑀 be the space
obtained by gluing a family of 𝑋-polyhedra 𝒫 according to a subproper facet-pairing structure Φ: that
is,𝑀 is the space 𝒫/ ∼ of cycles endowed with the quotient topology. Then𝑀 is an (𝑋, 𝐺)-orbifold such
that the natural injection 𝒫 ↪ 𝑀 is an (𝑋, 𝐺)-map. ▮

The content of the Poincaré polyhedron theorem is that, if one is given a family of polyhedra 𝒫
together with a facet pairing structure Φ which has sufficient regularity properties, then the group
Γ = ⟨Φ⟩ has a presentation determined exactly by the combinatorial properties of Φ and Γ𝒫 tiles
the quotient space 𝑋/Γ. Before giving the statement of the theorem, we explicitly state the relations
which are sufficient to determine the group:

• For every facet 𝐹, the side-pairing relation for 𝐹 is Φ𝐹Φ𝐹′ = 1;

• For every facet 𝐹, and every face 𝐺 ⪯ 𝐹, define sequences (𝐹𝑖)𝑖∈ℕ and (𝐺𝑖)𝑖∈ℕ of faces (with
𝐺𝑖 ⪯ 𝐹𝑖 for each 𝑖) and inductively by setting 𝐹1 ≔ 𝐹 and 𝐺1 ≔ 𝐺 and then defining 𝐹𝑖+1 to be
the face of 𝒫 adjacent to 𝐹′𝑖 such that 𝜙𝐹𝑖 (𝐹′𝑖 ∩ 𝐹𝑖+1) = 𝐺𝑖, and 𝐺𝑖+1 to be the side of 𝐹𝑖+1 given
by 𝐹′𝑖 ∩ 𝐹𝑖+1. The sequences are periodic (Theorem 6.8.7 of [100]), say (𝐹𝑖) is of period 𝑘; then
the cycle relation for 𝐺 ⪯ 𝐹 is 𝑔𝐹1 ⋯𝑔𝐹𝑘 = 1.

2.3.5 Theorem (Poincaré (1883)). Let Φ be a subproper facet pairing for a polyhedron 𝒫 in 𝑋 , such
that the glued orbifold𝑀 is complete.1 Then:

1. Γ ≔ ⟨Φ⟩ is a discrete group of 𝑋-similarities with𝑀 = 𝑋/Γ;

2. Γ𝒫 tiles the quotient space 𝑋/Γ, in the sense that 𝒫 satisfies the following:

FP1. For every nontrivial 𝛾 ∈ Γ, 𝛾𝒫 ∩ 𝒫 = ∅;
FP2. For every 𝑥 ∈ 𝑋 , there exists some 𝛾 ∈ Γ with 𝛾(𝑥) ∈ 𝒫;
FP3. Any compact subset of 𝑋 meets only finitely many translates of 𝑋 .

3. 𝒫 is exact, that is for each facet 𝑆 ∈ 𝒫(𝑛 − 1) there exists some 𝛾 ∈ Γ such that 𝑆 = 𝒫 ∩ 𝛾𝒫;
1See Theorem 13.3.7 of [100]: in all cases of interest to us, the orbifolds will have a hyperbolic metric and so we may take

‘complete’ to mean ‘complete as a metric space’.
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4. If 𝑅 is the set of words in the symbols 𝒫(𝑛 − 1) corresponding to all of the side-pairing and cycle
relations ofΦ, then ⟨𝒫(𝑛−1) ∶ 𝑅⟩ is a presentation for Γ under the isomorphism𝒫(𝑛−1) ∋ 𝑆 ↦
𝑓𝑆 ∈ Φ. ▮

2.3.6 Definition. If Γ is a discrete group of isometries of 𝑋 , then an 𝑋-polyhedron 𝒫 is said to be a
fundamental polyhedron for Γ if it satisfies FP1 – FP3 above, together with

FP4. 𝒫 admits a facet-pairing structure such that the facet-pairing transformations are elements of
the group Γ.

If Γ admits such a fundamental polyhedron with finitely many sides, then Γ is called geometrically
finite.

In order to apply this theorem, we need a criterion for completeness of hyperbolic orbifolds. Let
𝒫 ⊆ 𝔹3 be a polyhedron; a cusp point of 𝒫 is a point 𝑐 ∈ 𝒫 ∩ 𝑆2∞ which has a neighbourhood 𝑈 in
ℝ3 such that the intersection of the closures in 𝐵3 of all the facets of𝒫whichmeet𝑈 is {𝑐}. (Compare
the discussion below in Section 3.3.)

Suppose 𝑐 is such a cusp point, and let 𝑏 ∈ [𝑐]. The link of 𝑏 is the Euclidean polygon 𝐿(𝑏)
obtained by intersecting 𝒫 with a horosphere Σ𝑏 based at 𝑏 which meets only the sides of 𝒫 incident
with 𝑏. It is easy to see thatwemay choose the horospheresΣ𝑏 to be sufficiently small that the𝐿(𝑏) are
mutually disjoint (suppose not; then there must be a sequence (𝑏𝑛) of points of [𝑐] such that 𝑏𝑛 → 𝑐;
in particular, some subsequence of the 𝑏𝑛must lie on an edge incident with 𝑐; and the two facets of𝒫
incident with that edge intersect at infinitely many points in any neighbourhood in the sense above
of 𝑐). We now show that if Φ is a facet-pairing for 𝒫, then Φ induces a set Ψ of Euclidean similarities
which acts as a side-pairing for the disjoint union of the set of polygons {𝐿(𝑏) ∶ 𝑏 ∈ [𝑐]} after they
have been embedded intoℝ2. Suppose 𝑒 is an edge of 𝐿(𝑏); we define the side-pairing transformation
𝑔𝑒. The edge 𝑒 lies in some facet 𝑆 of 𝒫; now take 𝑓𝑆(𝑒), this lies on some facet 𝑆′ = 𝑓𝑆(𝑆) incident
with 𝑏′ = 𝑓𝑆(𝑏) ∈ [𝑐]; and take 𝑔𝑒 to be the Euclidean similarity in ℝ2 which sends 𝑒 to the edge
corresponding to the radial projection of 𝑓𝑆(𝑒) onto the horosphere Σ𝑏′ . Define 𝐿[𝑐] to be the space
obtained by taking the quotient of {𝐿(𝑏) ∶ 𝑏 ∈ [𝑐]} according toΨ; this space is called the link space
of the cusp point [𝑐]. By Theorem 2.3.4, the link 𝐿[𝑐] is a connected (ℝ2, 𝑆(ℝ2))-orbifold.

The following theorem is proved as Theorem 13.4.7 of Ratcliffe [100].

2.3.7 Theorem. With the above notation, the link 𝐿[𝑐] for a cusp point [𝑐] of 𝒫 is complete iff each
𝐿(𝑏) for 𝑏 ∈ [𝑐] can be chosen such that Φ restricts to a side-pairing for {𝐿(𝑏) ∶ 𝑏 ∈ [𝑐]} (i.e. if the
radial projections in the definition are trivial). The orbifold𝑀 obtained by gluing 𝒫 is complete iff 𝐿[𝑐]
is complete for each cusp point [𝑐] of 𝒫. ▮

2.4 The topology of 3-manifolds
As well as the geometric theory above, we need some topological theory of 3-manifolds. This theory,
which predates Thurston’s study of 3-manifolds via the geometric structures which they accept, is
conceptually quite similar to the classical topological theory of surfaces.

The main theorem which we need is the ‘loop theorem’, Theorem 4.2 of [55]:

2.4.1 Theorem (The loop theorem). Let𝑀 be a 3-manifold and let 𝑆 ⊆ 𝜕𝑀 be a connected 2-manifold.
If 𝑁 ⊲ 𝜋1(𝑆) and if ker(𝜋1(𝑆) → 𝜋1(𝑀)) is not contained wholly within 𝑁, then there is a proper
embedding 𝑔 ∶ (𝐵, 𝜕𝐵) → (𝑀, 𝑆) (𝐵 the usual unit disc) such that the image of 𝜕𝐵 under 𝑔 (which is a
closed curve in 𝑆 so may be identified with an element of 𝜋1(𝑆)) does not lie in 𝑁. ▮
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Figure 2.2: A surface 𝑆 on the boundary of a 3-manifold which bounds an embedded disc, as in
Theorem 2.4.1.

Figure 2.3: Two examples of incompressible surfaces in 3-manifolds.

In Figure 2.2 we see an example of the theorem where 𝑁 = 1.
It is useful to rephrase this in terms of so-called compressible surfaces; for more context, see for

example p.63ff. of [88].

2.4.2 Definition. Let𝑀 be a 3-manifold and let 𝑆 be a surface such that either 𝑆 ⊆ 𝜕𝑀 or 𝑆 ∩ 𝜕𝑀 =
𝜕𝑆. If 𝑆 satisfies any of the following conditions, then it is incompressible; otherwise, we say it is
compressible.

1. 𝑆 is a smooth topological sphere which bounds no balls (in the sense that𝑀 ⧵ 𝑆 has two com-
ponents, neither of which is a topological ball);

2. 𝑆 is a topological disc with boundary 𝜕𝑆 a homotopically nontrivial simple closed curve in 𝜕𝑀;

3. 𝑆 is a surface other than a sphere or a disc such that ker(𝜋1(𝑆) → 𝜋1(𝑀)) = 1.

(See Figure 2.3 for examples of (1) and (2). The surface 𝑆 of Figure 2.2 is compressible, because of
the loop 𝛾.)
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2.4.3 Theorem (Dehn’s lemma). Let𝑀 be a 3-manifold and let 𝑆 be a compressible surface with non-
trivial fundamental group such that either 𝑆 ⊆ 𝜕𝑀 or 𝑆 is properly embedded and 2-sided in𝑀. Then
there exists an embedded disc 𝐵 in𝑀 such that 𝐵 ∩𝑆 = 𝜕𝐵 and 𝜕𝐵 is a homotopically non-trivial closed
curve in 𝑆. Moreover, if a simple closed curve 𝛾 ⊆ 𝑆 is trivial in 𝑀, then 𝐷 may be chosen such that
𝜕𝐷 = 𝛾.

Historical remark. Dehn gave a faulty proof of this lemma in 1910 [36]; the first correct proof was due
to Papakyriakopoulos [97], who also provided the first proof of the loop theorem [98]. For further
references, see the discussion in Chapter 4 of [55].

Proof of Theorem 2.4.3. We will apply Theorem 2.4.1. Suppose first that 𝑆 ⊆ 𝜕𝑀 and let 𝑁 = 1. We
must show that ker(𝜋1(𝑆) → 𝜋1(𝑀)) is nontrivial. Suppose that the kernel is trivial; then since option
(3) of Definition 2.4.2 does not hold, 𝑆 is either a disc or a sphere. If 𝑆 is a topological sphere, then it
must bound a ball in𝑀. Thus ker(𝜋1(𝑆) → 𝜋1(𝑀)) = 𝜋1(𝑆) (since everything contracts through the
interior of the ball), and by assumption 𝜋1(𝑆) is nontrivial; this contradicts that the kernel is trivial.
Similarly, if 𝑆 is a disc then its boundary must be homotopically trivial in 𝜕𝑀; but if the boundary of
the disc contracts to a point then any curve on the interior also contracts to a point and so again we
have ker(𝜋1(𝑆) → 𝜋1(𝑀)) = 𝜋1(𝑆) which is a contradiction.

For the case that 𝑆 is properly embedded, first use that 𝑆 is two-sided to cut the manifold along 𝑆
(see Chapter 2 of [55]); now 𝑆 remains compressible in one of the two halves and is contained in the
boundary of that half which reduces the problem to the first case. ▮

Similar definitions and results hold for orbifolds. Following the glossary given in Section 6.4 of
[57], we modify Definition 2.4.2 as follows:

2.4.4 Definition. Let 𝑂 be a 3-orbifold and let 𝑆 be a 2-orbifold such that either 𝑆 ⊆ 𝜕𝑂 or 𝑆 ∩ 𝜕𝑂 =
𝜕𝑆. If 𝑆 satisfies any of the following conditions, then it is incompressible; otherwise, we say it is
compressible.

1. 𝑆 is diffeomorphic to a 2-orbifold covered by 𝑆2 such that 𝑂 ⧵ 𝑆 has two components, neither
of which is of the form 𝔹3/Γ for some finite group Γ ≤ 𝑂(3);

2. 𝑆 is diffeomorphic to 𝔹2/Γ (where Γ is a finite subgroup of 𝑂(2)) with boundary 𝜕𝑆 a homotop-
ically nontrivial simple closed curve in 𝜕𝑂;

3. 𝑆 is a surface other than case (1) or (2) such that ker(𝜋1(𝑆) → 𝜋1(𝑂)) = 1.



Chapter 3

The geometry of Kleinian groups

In this chapter we recall the definition of a Kleinian group and then recall various standard results
which we refer to in the main body of the thesis. Most of the material in this chapter may be found in
[83, 100] and the reader is expected to be familiar with it with the exception of the final two sections
on the Teichmüller theory of Kleinian groups, as this material is a little less elementary.

3.1 Kleinian groups
A central idea in algebraic topology is the notion of a covering space: instead of studying a space
𝑋 , one studies a simpler space ̂𝑋 together with a projection map ̂𝑋 → 𝑋 such that inverse images of
objects in𝑋 behave in some predictableway in ̂𝑋 . In studying hyperbolicmanifolds, we are interested
primarily in covering spaces which are also hyperbolic. It will turn out that we can always find such
a covering, and that this covering in fact exhibits 𝑋 as a quotient of ℍ3 by some group of hyperbolic
isometries.

Let𝑋 be a topological space, and let 𝑝 ∶ ̂𝑋 → 𝑋 be a covering of𝑋 (wemake the standing assump-
tion that, whenever we have a covering, the upper space is connected and locally path connected).
Recall that a deck transformation of 𝑝 is a homeomorphism 𝑓 ∶ ̂𝑋 → ̂𝑋 such that 𝑝𝑓 = 𝑝; the set
of deck transformations forms a group under composition, which we denote Aut𝑝. We say that 𝑝
is regular if the action of Aut𝑝 on each fibre of 𝑝 is transitive. This is equivalent to asking that the
group 𝑝∗𝜋1( ̂𝑋, ̂𝑥) is normal in 𝜋1(𝑋, 𝑝( ̂𝑥)) for each ̂𝑥 ∈ ̂𝑋 . The reader should now remember that
the following holds [22, Corollary III.6.9]:

3.1.1 Proposition. If 𝑝 ∶ ̂𝑋 → 𝑋 is a regular covering map, with ̂𝑥 ∈ ̂𝑋 and 𝑥 = 𝑝( ̂𝑥), then Aut(𝑝) ≃
𝜋1(𝑋, 𝑥)/𝑝∗𝜋1( ̂𝑋, ̂𝑥). ▮

Suppose now that our covering comes from a group action. The notion of interest turns out to be
the following:

3.1.2 Definition. Let 𝑋 be a topological space, and let 𝐺 be a group with an action as a group of
homeomorphisms on𝑋 . The group action is said to be discontinuous at a point 𝑥 ∈ 𝑋 if there exists
a neighbourhood 𝑈 of 𝑥 such that 𝑔𝑈 ∩ 𝑈 ≠ ∅ for only finitely many 𝑔 ∈ 𝐺. If a neighbourhood of
some 𝑥 can be chosen such that the only 𝑔 ∈ 𝐺 with 𝑔𝑈 ∩𝑈 ≠ ∅ is the identity transformation, then
the action is said to be freely discontinuous at 𝑥.

Notation. If 𝐺 acts on 𝑋 as in the previous definition, then the set of all 𝑥 ∈ 𝑋 at which 𝐺 acts
discontinuously is called the regular set of the action and is denoted by Ω(𝐺). The set of all 𝑥 ∈ 𝑋

19
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at which 𝐺 acts freely discontinuously is called the free regular set of the action and is denoted by
∘Ω(𝐺). If we which to emphasise the space 𝑋 , we will write Ω(𝐺, 𝑋) or ∘Ω(𝐺, 𝑋).

3.1.3 Proposition. If a group 𝐺 acts freely discontinuously on a path connected and locally path con-
nected Hausdorff space 𝑋 , then 𝑝 ∶ 𝑋 → 𝑋/𝐺 is a regular covering map such that Aut(𝑝) = 𝐺. ▮

We now state precisely the existence of a hyperbolic covering space for hyperbolic manifolds (a
slightly more general statement is found as theorem 8.5.9 of [100]).

3.1.4 Proposition. Let Γ be a group of isometries of ℍ𝑛, and let 𝑀 be a complete connected (ℍ𝑛, Γ)-
manifold. Then𝑀 is (ℍ𝑛, Γ)-equivalent to a manifold of the formℍ𝑛/𝐺, for𝐺 a discrete group of hyper-
bolic isometries. ▮

Let us move to the case of orbifolds; really, the point is to replace ‘freely discontinuously‘ with
‘discontinuously’ in Proposition 3.1.3. The reader will recall that, given an orbifold𝑂, we may define
an orbifold fundamental group in two equivalent ways: first, as the group of loops on 𝑂 modulo
homotopies compatible with the local group quotients (for a precise definition, see Section 13.3 of
[100] or Section III.𝒢.3 of [24]); and second, as the group of deck transformations of the universal
orbifold cover (see Section 13.2 of [124]).
Notation. If𝑀 is amanifold, then𝑀 is naturally an orbifold (with all the groups Γ𝛼 of Definition 2.2.3
trivial) and the orbifold fundamental group of𝑀 is equal to the classical fundamental group. In the
remainder of this thesis, every topological space which appears will be a manifold or an orbifold, and
we make the convention that 𝜋1(𝑋) always denotes the orbifold fundamental group of the space 𝑋 .

In any case, we have the following pair of results:

3.1.5 Proposition (Analogue of Proposition 3.1.1). If 𝑝 ∶ 𝑂̂ → 𝑂 is a regular covering map, with
̂𝑜 ∈ 𝑂̂ and 𝑜 = 𝑝( ̂𝑜), then Aut(𝑝) ≃ 𝜋1(𝑂, 𝑜)/𝑝∗𝜋1(𝑂̂, ̂𝑜). ▮

3.1.6 Proposition (Analogue of Proposition 3.1.3). If a group 𝐺 acts discontinuously on a path con-
nected and locally path connected Hausdorff space 𝑋 , then 𝑝 ∶ 𝑋 → 𝑋/𝐺 is a regular covering map of
orbifolds such that Aut(𝑝) = 𝐺. ▮

These two propositions are proved exactly analogously to the standard topological ones: all the
necessary machinery is developed on pp.611–612 of [24] for the adaptation of the proofs of Proposi-
tions 3.1.1 and 3.1.3 in [22] cited above. The combination of the two,

𝐺 ≃ 𝜋1(𝑋/Γ, 𝑝(𝑥0))
𝑝∗𝜋1(𝑋, 𝑥0)

,

may also be found in [100] as Exercise 13.3.2. We also get a uniformisation result, Theorem 13.3.10
of [100]:

3.1.7 Proposition (Analogue of Proposition 3.1.4). Let Γ be a group of isometries of ℍ𝑛, and let 𝑂 be
a complete connected (ℍ𝑛, Γ)-orbifold. Then 𝑂 is (ℍ𝑛, Γ)-equivalent to a manifold of the form ℍ𝑛/𝐺,
for 𝐺 a discrete group of hyperbolic isometries (in fact, 𝐺 can be taken to be naturally isomorphic to
𝜋1(𝑂)). ▮

In the three-dimensional case, we make the following definition:

3.1.8 Definition. AKleinian group is a discrete group of isometries of ℍ3 (equivalently, a discrete
subgroup of PSL(2, ℂ); or a discrete group of conformal automorphisms of ℂ̂).
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Manu of the results on Kleinian groups which we will need have the hypothesis that the groups
are not elementary i.e. that they do not contain a finite-index abelian subgroup. Elementary Klein-
ian groups are completely classified and have very simple geometry (see chapter 5 of [13], chapter V
of [83], or section 5.5 of [100]).

A useful inequality for proving that a group is not discrete is that of Jørgensen:

3.1.9 Theorem (Jørgensen). If 𝐴, 𝐵 ∈ PSL(2, ℂ) generate a non-elementary discrete group, then

(3.1.10) ||tr2 𝐴 − 4|| + |tr[𝐴, 𝐵] − 2| ≥ 1

(where here and elsewhere the notation [𝐴, 𝐵] denotes the commutator 𝐴𝐵𝐴−1𝐵−1). ▮

For a proof of this inequality, see [13, Theorem 5.4.1]. As a consequence, we obtain the following
in the parabolic case:

3.1.11 Corollary (Shimizu-Leutbecher lemma). Suppose 𝐴, 𝐵 ∈ PSL(2, ℂ) are of the form

𝐴 = [1 1
0 1] , 𝐵 = [𝑎 𝑏

𝑐 𝑑] .

If ⟨𝐴, 𝐵⟩ is discrete, then either 𝑐 = 0 or |𝑐| ≥ 1.

Proof. One can check that ⟨𝐴, 𝐵⟩ is elementary iff 𝑐 = 0. Explicit computation with Equation (3.1.10)
shows that, if 𝑐 ≠ 0 and ⟨𝐴, 𝐵⟩ is discrete, then |𝑐| ≥ 1. ▮

Remark. Ahands-on proofwithout using the high-poweredmachinery of Jørgensen’s inequalitymay
be found as Proposition II.C.5 of [83].

If 𝐺 is a Lie group acting transitively on a manifold𝑀 with compact stabilisers, then any discrete
Γ ≤ 𝐺 acts discontinuously on 𝑀 (see, e.g. corollary 3.5.11 of [126]). One can show (theorem 4.2.2
of [13]) that if PSL(2, ℂ) acts as the group of hyperbolic isometries of ℍ3 then each point stabiliser
is a conjugate of SU(2, ℂ); and SU(2, ℂ) is compact in PSL(2, ℂ). Thus, in the cases of interest, we
always have that the group Γ of Proposition 3.1.4 acts discontinuously on ℍ3; in addition, by the
classification of hyperbolic isometries, the setΩ(ℍ3, Γ)⧵∘Ω(ℍ3, Γ) consists only of elliptic fixed points,
so Proposition 3.1.3 holds in this case if Γ does not contain any elliptic elements: the quotient map
ℍ3 → ℍ3/Γ is regular and has deck transformation group Γ. On the other hand, if Γ includes rotations
around some axis in ℍ3 then the quotient ℍ3/Γ is an orbifold with quotient singularities.

Consider next a Kleinian group 𝐺 acting on ℂ̂. The stabilisers of this group action are not neces-
sarily compact; we give a simple example.

3.1.12 Example. Consider the subgroup of𝕄 generated by the single element 𝑓 ∶ 𝑧 ↦ 𝑧 + 1. This
is clearly discrete. On the other hand, it is not compact (by Example 2.1.7).

Motivated by this, we recall some of the most fundamental results on the dynamics of Kleinian
groups. These results may be found in various guises in chapter 12 of [100], chapter 6 of [13], and
chapter II of [83].

3.1.13 Definition. The limit set of 𝐺, Λ(𝐺), is the set of accumulation points of the orbits of 𝐺 on
ℍ3; that is, Λ(𝐺) is the set of all 𝑥 ∈ ℍ3 such that there exists a point 𝑥0 ∈ ℍ3 and a sequence (𝛾𝑛) of
distinct elements of 𝐺 such that 𝑥 = lim𝑛→∞ 𝛾𝑛𝑥0.

3.1.14 Example. In Figure 3.1, we show four limit sets with pleasant appearance. The groups from
which they are generated are:
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• Figure 3.1a: ⟨[exp(2𝜋𝑖/3) 1
0 exp(−2𝜋𝑖/3)] , [

exp(2𝜋𝑖/7) 0
5 exp(−2𝜋𝑖/7)]⟩

• Figure 3.1b: ⟨[ 1 0
−2𝑖 1] , [

1 − 𝑖 1
1 1 + 𝑖]⟩

• Figure 3.1c: ⟨[1 1
0 1] , [

1 0
1.5 + 1.3𝑖 1]⟩

• Figure 3.1d: ⟨[1 1
0 1] , [

1 0
1 + 2𝑖 1]⟩

Our algorithm for drawing these is essentially a very simple depth-first walk of the tree ofwords in the
two generators of each group, based on that described in the book Indra’s Pearls [94] (in which can
be found many other nice computer-generated pictures related to this subject). Observe that most
of the pictures we have given consist of circle packings of various shapes, or at least contain obvious
‘chains’ of circles; the theory of Keen and Series which we shall study in a later chapter is essentially
based on the observation that we can continuously deform the coefficients of the generators of these
groups such that the bounding circles of the circle packing remain bounding circles.

3.1.15 Theorem (Dynamics of a Kleinian group). Let 𝐺 be a Kleinian group acting on ℍ3.

1. The limit set Λ(𝐺) is the set of accumulation points of the orbits of 𝐺 on ℂ̂.

2. Ω(𝐺, ℂ̂) = ℂ̂ ⧵ Λ(𝐺). ▮
This theorem exhibits every element of ℂ̂ ⧵ Ω(𝐺) as a point at which the quotient ℂ̂/𝐺 fails to be

Hausdorff. On the other hand, the quotient Ω(𝐺, ℂ̂)/𝐺 is a possibly disconnected Riemann sur-
face—that is a union of at most countablymany (connected) Riemann surfaces—with possible quo-
tient singularities (at projections of elliptic fixed points which are not limit points); and ∘Ω(𝐺, ℂ̂)/𝐺
is a possibly disconnected Riemann surface with these singularities deleted.

From this point, when a Kleinian group 𝐺 is given, the notationΩ(𝐺) (without topological space
indicated) refers to the action of 𝐺 on ℂ̂.
Remark. Note that it is not always the case thatΩ(𝐺) ⧵ ∘Ω(𝐺) contains all the elliptic fixed points of
𝐺; consider a group generated by an elliptic element with fixed points at 0 and∞, and a loxodromic
element with fixed points at 0 and 1.
3.1.16 Definition. Let 𝐺 be a Kleinian group. We have three quotient spaces of interest:

• The Riemann surface of 𝐺, the possibly disconnected Riemann surface

𝒮(𝐺) ≔ Ω(𝐺)/𝐺;

• The hyperbolic orbifold of 𝐺, the hyperbolic 3-orbifold

ℳ(𝐺) ≔ ℍ3/𝐺;

• TheKleinian orbifold of 𝐺, the hyperbolic 3-orbifold-with-boundary

𝒦(𝐺) ≔ (ℍ3 ∪ Ω(𝐺))/𝐺.

Occasionally, these objects will be manifolds (not just orbifolds).

Remark. Thurston refers toℳ(𝐺) and𝒦(𝐺) as 𝑁𝐺 and 𝑂𝐺 respectively [124, Definition 8.3.5].
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(a) A circle. (b) The Apollonian gasket.

(c) A ‘cusp group’. (d) A 4-punctured sphere group.

Figure 3.1: Various limit sets of Kleinian groups. Points are coloured according to the first letter in
the word (in the two generators of the group) which moves the generating point to the limit point.
(See Example A.2.1 for the computer code to draw these.)
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3.2 Marked Riemann surfaces
Let 𝐺 be Kleinian. We will usually consider the possibly disconnected Riemann surface 𝒮(𝐺) to be
marked. In order to explain what we mean by this, we must formally define the notion of a puncture
on a possibly disconnected Riemann surface 𝑆. Recall that a map 𝑓 ∶ 𝑅 → 𝑆 of Riemann surfaces
is said to be conformal if, for every pair of charts 𝜙 for 𝑅 and 𝜓 for 𝑆, the composition 𝜓𝑓𝜙−1 is
conformal. If𝐷 ⊆ 𝑆 is an open subset that is conformally equivalent via somemap 𝜙 to the punctured
disc Δ0 = {𝑧 ∈ ℂ ∶ 0 < |𝑧| < 1}, then we say that 𝐷 bounds a puncture and we may complete
𝑆 by extending 𝜙−1 to be defined at 0 and adjoining the image of 0 to 𝑆. We often abuse language
and notation and move back and forth between thinking of punctures as either deleted points on a
surface or points which are on the surface but have been painted in some way to indicate that they
are special.

Define on 𝒮(𝐺) a map 𝜇 ∶ 𝒮(𝐺) → ℕ ∪ {∞} such that:

1. If 𝑥 is a puncture, then 𝜇(𝑥) = ∞;

2. If the coveringΩ(𝐺) → 𝐺 is ramified at 𝑥with degree 𝛿 ∈ ℕ (i.e. is locally of the form 𝑧 ↦ 𝑧𝛿),
then 𝜇(𝑥) = 𝛿;

3. Otherwise, 𝜇(𝑥) = 1.

Then the map 𝜇 is called amarking on 𝒮(𝐺), and points 𝑥 ∈ 𝐺 with 𝜇(𝑥) ≥ 2 are calledmarked
points—they are either punctures, or cone points (in which case they have neighbourhoods which
are isometric to cones with cone angle 2𝜋/𝜇(𝑥) with 𝑥 at the cone vertex).

An abstract Riemann surface 𝑆 is said to be analytically finite if it has finitely many boundary
components, all of which are punctures (that is, there is a compact Riemann surface 𝑆′ such that
𝑆′ ⧵ 𝑆 consists of finitely many points); this is equivalent to the quotient being of finite area (this can
be proved, for example, using the Gauss-Bonnet theorem Theorem 2.2.6). We say that a Kleinian
group 𝐺 is of finite type if 𝒮(𝐺) is a finite union of analytically finite Riemann surfaces and the
covering Ω(𝐺) → 𝒮(𝐺) is ramified at only finitely many points (equivalently, 𝒮(𝐺) has only finitely
manymarked points and there are no deleted discs on the boundary). The famous finiteness theorem
of Ahlfors states that this happens often enough to be useful:

3.2.1 Theorem (Ahlfors’ finiteness theorem). If 𝐺 is a non-elementary finitely generated Kleinian
group, then 𝐺 is of finite type. ▮

Historical remark. This theoremwas originally stated by Ahlfors in [3] with corrections in [2], gener-
alising similar results of Bers in the two-dimensional case; the proof uses Beltrami differentials and
quasiconformal techniques. A modern account of Ahlfors’ proof together with copious references to
other proofs may be found in Section 8.14 of [57].

We now consider the converse problem: given a possibly disconnected Riemann surface 𝑆, does
there exist a Kleinian group 𝐺 such that 𝒮(𝐺) = 𝑆? The answer is almost always yes, but we can
be slightly more precise. The resulting theorem is the uniformisation theorem for Riemann surfaces,
which we state in two parts (Theorems 3.2.2 and 3.2.3).
Historical remark. The theorem was originally conjectured by Klein and Poincaré in the early 1880s;
Poincaré gave an incomplete proof, and a complete proof was asked for as part of Hilbert’s 22nd prob-
lem. The result was eventually proved by 1907, independently by Poincaré and Koebe. A very nice
history with full references may be found in Section 8.3 of Bottazzini and Gray’s history of complex
analysis [19].

First, we classify the universal coverings, in a generalisation of the Riemann mapping theorem:
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3.2.2 Theorem (Uniformisation I). If 𝐷 is a connected and simply connected Riemann surface, then
𝐷 is conformally equivalent to precisely one of 1. ℂ̂; 2. ℂ; 3. 𝔹2. ▮

(For a proof, see the theorem of Paragraph IV.6.1 of [47].)
Now, we may classify every marked Riemann surface.

3.2.3 Theorem (Uniformisation II). Let 𝑆 be a Riemann surface and let 𝜇 ∶ 𝑆 → ℕ ∪ {∞} be a map
such that the setℳ of points 𝑥 ∈ 𝑆 for which 𝜇(𝑥) ≠ 1 is discrete and such that if 𝑆 = ℂ̂, neither (a)
ℳ = {𝑥} with 𝜇(𝑥) = ∞, or (b)ℳ = {𝑥, 𝑦} and 𝜇(𝑥) ≠ 𝜇(𝑦).

Let 𝑆′ = 𝑆⧵𝜇−1(∞), 𝑆″ = 𝑆′⧵𝜇−1(ℤ≥2). There exists a simply connected Riemann surface ̃𝑆 (which
is assumed to be embedded in ℂ̂ by Theorem 3.2.2) and a Kleinian group𝐺 leaving ̃𝑆 invariant such that

1. ̃𝑆/𝐺 ≃conf. 𝑆′ and ̃𝑆∗/𝐺 ≃conf. 𝑆″ (where ̃𝑆∗ denotes ̃𝑆 with the elliptic fixed points of 𝐺 deleted);
and

2. The induced projection ̃𝑆 → 𝑆′ is unramified except over the points of 𝜇−1(ℤ≥2); if 2 ≤ 𝜇(𝑥) < ∞,
then the cover has ramification degree 𝜇(𝑥) over 𝑥.

Further,𝐺 is uniquely defined up to conjugation in the full group of conformalmaps leaving ̃𝑆 invariant.
▮

(For a proof, see Theorem IV.9.12 of [47]. The theorem extends to possibly disconnected Riemann
surfaces, as the so-called simultaneous uniformisation theorem, [83, Section VIII.B].)

If 𝑆 is covered by ̃𝑆 = 𝔹2 and uniformised by the Kleinian group 𝐺 leaving the disc invariant
(using the notation of Theorem 3.2.3), then the hyperbolic metric on 𝔹2 descends via the projection
map to 𝑆. Such groups 𝐺 are called Fuchsian groups; they will be important later on.
Warning. Suppose 𝒮(Γ) admits a Fuchsian uniformisation in this way, so 𝒮(Γ) ≃ 𝔹2/𝐺 for some
group 𝐺—there is usually no relationship at all between Γ and 𝐺, and the Euclidean metric on the
surface (coming from the Riemann surface structure) is different to the hyperbolic metric.

A general Kleinian group 𝐹 is Fuchsian if one of the following equivalent properties holds:

1. There is an open Euclidean disc Δ ⊆ Ω(𝐹) left invariant by 𝐹;

2. 𝐹 is conjugate in PSL(2, ℂ) to a subgroup of PSL(2, ℝ).

In either case, the limit set Λ(𝐹) is a subset of a Euclidean circle, and the two discs bounded by
this circle are left invariant by 𝐹. Let Δ be either of these invariant discs; then there is a conformal
map 𝜙 sending Δ to ℍ2, and 𝜙𝐹𝜙−1 acts on ℍ2 as a discrete group of isometries of the hyperbolic
plane. Standard references for the theory of Fuchsian groups which may be useful are [13] and [58].
Primarily we will be interested in certain polygons related to Fuchsian groups.

3.2.4 Definition. Let 𝐹 be a non-elementary Fuchsian group acting on a disc Δ such that Λ(𝐹) ≠
𝜕Δ. Then 𝜕Δ is the disjoint union of Λ(Δ) with a countable set of open arcs 𝜎𝑖 (the intervals of
discontinuity). For each 𝜎𝑗 let 𝑆𝑗 be the hyperbolic line which meets the circle at infinity 𝜕Δ at
the endpoints of 𝜎𝑗 and let 𝐻𝑗 be the hyperbolic halfplane bounded by 𝐿𝑗 away from 𝜎𝑗 . Then the
intersection

𝑁(𝐹) ≔⋂
𝑗
𝐻𝑗

is called theNielsen region for 𝐹.
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The Nielsen region is the minimal non-empty open convex 𝐹-invariant subset of Δ [13, Theorem
8.5.2], it is precisely the hyperbolic convex hull of its limit set takenwithin the disc it acts on as a group
of hyperbolic plane isometries (so it is the 2-analogue of the convex core for Kleinian groups defined
in Section 3.4), and in the situation we will study in Chapter 7 it will be a fundamental polygon (see
Lemma 7.2.9).

We say that 𝑓 ∈ 𝐹 is a boundary hyperbolic element if it leaves invariant one of the intervals
𝜎𝑖. These are studied in Sections 10.3 and 10.4 of [13]; we recall themain results here. For the sake of
language, if 𝑆 is a hyperbolic surface then a cylinder on 𝑆 is a boundary component corresponding
to a deleted disc.

3.2.5 Proposition. A finitely generated Fuchsian group 𝐹 has finitely many conjugacy classes of max-
imal hyperbolic boundary elements1; and these conjugacy classes are in bijective correspondence with
the cylinders of Δ/𝐹. ▮

Another polygon of interest is the canonical Fricke polygon. We will not need too much (we
will use it exactly once, in the proof of Lemma 7.2.2), just the following:

3.2.6 Lemma ([59, Theorem 6]). Let 𝐹 be a finitely generated Fuchsian group with Λ(𝐹) ≠ Δ. There
exists a finite-sided fundamental polygon 𝑅 for the action of 𝐹 as a group of hyperbolic isometries on Δ
such that 𝑅 ∩ 𝜕Δ consists only of parabolic fixed points of 𝐹 and subintervals of the intervals of discon-
tinuity of 𝐹. ▮

3.3 Geometry of the 3-manifold near infinity
In the previous section, we studied how the structure of aKleinian group induces covering data on the
Riemann surface. In this section we give more precise geometric information about the behaviour of
the Riemann surface, and how this is reflected in the geometry of the interior hyperbolic 3-manifold.
The discussion is based on Chapter VI of [83].

3.3.1 Lemma. Let 𝐺 be a Kleinian group. If 𝑗 ∈ 𝐺 is parabolic with fixed point 𝑤 ∈ ℂ̂, then there is a
horoball based at 𝑤 left precisely invariant2 by a maximal parabolic group (namely, Stab𝐺 𝑤).

Proof. Note that the stabiliser of 𝑤 in 𝐺 is a subgroup of 𝐺 with a global fixed point (𝑤) and which
contains a parabolic element. Therefore by the classification of elementary Kleinian groups, Stab𝐺 𝑤
is a parabolic group andmust be amaximal such group (if a parabolic group strictly contains Stab𝐺 𝑤
then it contains a parabolic 𝑘 not fixing 𝑤 and so [𝑗, 𝑘] is loxodromic).

Without loss of generality, the parabolic element may be chosen to be 𝑗 ∶ 𝑧 ↦ 𝑧 + 1 and so
𝑤 = ∞. Let 𝐽 = Stab𝐺(∞); this group contains no loxodromic elements (suppose it contained such
an element 𝑓, then 𝑓 would share a fixed point with 𝑗; we can therefore conjugate 𝑓 to 𝑧 ↦ 𝜆𝑧; if
|𝜆| > 1 then 𝑓−𝑘𝑗𝑓𝑘 = 𝜆−𝑘(𝜆𝑘𝑧 + 1) = 𝑧 + 𝜆−𝑘 → 𝑧, and similarly if |𝜆| < 1 then 𝑓𝑘𝑗𝑓−𝑘 → 1, either
way contradicting discreteness). Thus every element of 𝐽 is an elliptic or parabolic element with fixed
point at infinity, so is a Euclidean transformation on ℂ and leaves every horoball based at∞ fixed.

Suppose now that 𝑔 = [𝑎 𝑏
𝑐 𝑑] ∈ 𝐺 is arbitrary. By the Shimizu-Leutbecher lemma (Corol-

lary 3.1.11), either 𝑐 = 0 (in which case 𝑔 ∈ 𝐽) or |𝑐| > 1; in this latter case the radius of the isometric
circle of 𝑔 is strictly less than 1, and so the action of 𝑔 onℍ3maps thehoroball𝐻 = {(𝑧, 𝑡) ∈ ℍ3 ∶ 𝑡 > 1}
below a dome of radius 1 centred on ℂ̂. In any case, 𝐻 is mapped strictly off itself by 𝑔. ▮

1In a group𝐺 an element 𝑔 ismaximal if, whenever there is some ℎ ∈ 𝐺 and 𝑛 ∈ ℤwith ℎ𝑛 = 𝑔, the element ℎ actually
is 𝑔.

2A subset 𝑇 ⊆ 𝑋 is left precisely invariant by𝐻 ≤ 𝐺 if𝐻𝑇 ⊆ 𝑇 and (𝐺 ⧵ 𝐻)𝑇 ⊆ 𝑋 ⧵ 𝑇 .
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Wemay generalise Lemma 3.3.1 to the case that we have finitelymany punctures. We give a proof
following Proposition A.11 of [83] (which gives the proof for a pair of punctures):

3.3.2 Lemma. Let𝐺 be aKleinian group and let 𝐽1, ..., 𝐽𝑘 be pairwise non-conjugatemaximal parabolic
subgroups of𝐺, such that the fixed point of 𝐽𝑚 is 𝑥𝑚 for each𝑚. Then there are horoballs𝑇1, ..., 𝑇𝑘, based
at 𝑥1, ..., 𝑥𝑘 respectively, such that each 𝑇𝑚 is precisely invariant under 𝐽𝑚 and such that if 𝑛 ≠ 𝑚 and
𝑔 ∈ 𝐺 is arbitrary then 𝑔𝑇𝑛 ∩ 𝑇𝑚 = ∅. (In particular, the 𝑇𝑖 are mutually disjoint.)
Proof. The proof is by induction on 𝑘; the base case is Lemma 3.3.1 (see the discussion immediately
following the statement of that lemma). Suppose that we have found horoballs 𝑇1, ..., 𝑇𝑘−1 based
respectively at 𝑥1, ..., 𝑥𝑘−1, satisfying the precise invariance conditions of the lemma statement.

Let 𝑇𝑘 be a horoball disjoint from 𝑇1, ..., 𝑇𝑘−1 which is precisely invariant under 𝐽𝑚. We can con-
struct such a horoball in the following way: let 𝐻 be the horoball constructed for 𝐽𝑘 in Lemma 3.3.1;
let 𝑇𝑘 be a horoball based at 𝑥𝑘 which is contained in𝐻 andwhich is disjoint from 𝑇1, ..., 𝑇𝑘−1. Clearly
every element of 𝐺 ⧵ 𝐽𝑘 moves 𝑇𝑘 off itself (indeed, every such element moves 𝑇𝑘 out of 𝐻 entirely);
we also see easily that every element of 𝐽𝑘 preserves the smaller horoball 𝑇𝑘 (a priori, 𝐽𝑘 might move
elements of 𝑇𝑘 into𝐻 ⧵ 𝑇𝑘) by conjugating 𝑥𝑘 to∞; then the group 𝐽𝑘 becomes a group of Euclidean
transformations preserving each horizontal plane aboveℂ inℍ3 (as in the proof of Lemma 3.3.1) and
thus preserves every horoball based at 𝑥𝑘.

We now show that the horoball 𝑇𝑘 satisfies the precise invariance condition of the lemma state-
ment; by the inductive hypothesis we need only check that whenever 𝑚 ≠ 𝑘, 𝑇𝑚 ∩ 𝑔𝑇𝑘 = ∅ for all
𝑔 ∈ 𝐺. We will do this by replacing 𝑇𝑘, if necessary, with a smaller horoball which does satisfy this
condition (which we need to do at most finitely many times). To this end, fix some 𝑚 ≠ 𝑘; we may
normalise so that 𝑥𝑚 = ∞ and 𝑥𝑘 = 0, and hence 𝑇𝑚 = {(𝑧, 𝑡) ∈ ℍ3 ∶ 𝑡 > 𝑟} for some 𝑟 > 0. To save
ink, we write 𝑇𝑚,𝑠 for the set {(𝑧, 𝑡) ∈ ℍ3 ∶ 𝑡 > 𝑠} (𝑠 > 0).

Suppose, for contradiction, that there is no 𝑠 ≥ 𝑟with the property that for all 𝑔 ∈ 𝐺, 𝑔𝑇𝑚,𝑠∩𝑇𝑘 =
∅. Then there exists, for each 𝑛 ∈ ℕ, a group element 𝑔𝑛 ∈ 𝐺 with 𝑇𝑚,𝑛 ∩ 𝑔𝑛𝑇𝑘 ≠ ∅. For each
𝑛 ∈ ℕ let (𝜌𝑛, 𝑧𝑛) be the Euclidean radius and centre of 𝑔𝑛(𝑇𝑘) in ℍ3, and define 𝑎𝑛 ∈ 𝕄 to be a
transformation of the form 𝑎𝑛(𝑧) = 𝜆2𝑛𝑧with 𝜆2𝑛 chosen such that 𝑎𝑛(𝑇𝑘) is a horosphere of Euclidean
radius 𝜌𝑛. Let 𝑏𝑛 be the transformation 𝑏𝑛(𝑧) = 𝑧 + 𝑧𝑛; then 𝑏𝑛𝑎𝑛(𝑇𝑘) and 𝑔𝑛(𝑇𝑘) are horospheres
with the same radius and centre. Since both 𝑏𝑛𝑎𝑛 and 𝑔𝑛 map the Euclidean sphere 𝑇𝑘 to the same
Euclidean sphere, by Euclidean geometry the two transformations differ only by a rotation about the
axis (𝑧𝑛,∞). More precisely, there exists an elliptic element 𝑐𝑛 with fixed point set {𝑧𝑛,∞} such that
𝑔𝑛 = 𝑐𝑛𝑏𝑛𝑎𝑛. Observe now that 𝜆2𝑛 →∞ (since the 𝜌𝑛 →∞ in order for the spheres 𝑔𝑛𝑇𝑘 to continue
to hit the ceilings 𝑇𝑚,𝑛); if 𝑗𝑘 ∈ 𝐽𝑘 then 𝑗𝑘 is represented by a matrix of the form [1 0

𝑤 1], so for each
𝑛

𝑎𝑛𝑗𝑘𝑎−1𝑛 = [𝜆𝑛 0
0 𝜆−1𝑛

] [1 0
𝑤 1] [

𝜆−1𝑛 0
0 𝜆𝑛

] = [ 1 0
𝜆−2𝑛 𝑤 1]

and the lower-left entry of thismatrix tends to 0 as 𝑛 → ∞; thus the isometric circle radius of 𝑎𝑛𝑗𝑘𝑎−1𝑛
goes to infinity. We have seen that 𝑔𝑛 and 𝑎𝑛 differ only by Euclidean motion factors, and Euclidean
motion factors do not change the isometric circle radius. Hence the lower-left entry of 𝑔𝑛 also must
tend to 0 as 𝑛 → ∞; in particular for sufficiently large 𝑛, this entry is strictly less than 1 and is non-
zero since 𝑎𝑛 and hence 𝑔𝑛 have finite-radii isometric circles for each 𝑛. But this contradicts the
Shimizu-Leutbecher lemma (Corollary 3.1.11). ▮

Lemma 3.3.1 and Lemma 3.3.2 give neighbourhoods of points on the boundary corresponding to
punctures. We can get a similar result in the surface case:

3.3.3 Lemma. Let 𝐹 be a Fuchsian group acting on ℍ2 and containing a primitive parabolic element
𝑗. Then there is a horoball𝐻 ⊆ ℍ2 based at the fixed point of 𝑗 such that
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Figure 3.2: A doubly cusped region for a Kleinian group; observe that the solid regions are mapped
onto each other by the indicated action and so form a pair of ‘funnels’ which wrap up to form two
cusps.

1. Stab𝐹 𝐻 = ⟨𝑗⟩;

2. 𝐻 is precisely invariant in 𝐹 under ⟨𝑗⟩; and

3. the image of 𝐻 under the canonical projection ℍ2 → ℍ2/𝐹 is a punctured disc conformally em-
bedded in ℍ2/𝐹 such that under the natural homomorphism 𝜋1(ℍ2 ∩ ∘Ω(𝐹)/𝐹) → 𝐹 3 of Propos-
itions 3.1.1 and 3.1.3, 𝑗 corresponds to a small loop about the puncture. ▮

The proof is essentially the same argument as in the 3-dimensional case; see Propositions VI.A.6
and VI.A.7 of [83] for the details.

Let 𝐺 be a Kleinian group, and let 𝐽 be a rank 1 parabolic subgroup of 𝐺. If 𝐵1, 𝐵2 are two disjoint
open discs such that 𝐵 = 𝐵1 ∪ 𝐵2 is precisely invariant under 𝐽 in 𝐺, then 𝐵 is called a doubly
cusped region. In the case of a geometrically finite group, all cusps are doubly cusped (see [83,
Proposition VI.A.10] or [80]):

3.3.4 Lemma. If 𝐺 is a geometrically finite Kleinian group with finite-sided fundamental polyhedron
𝐷, 𝑥 ∈ 𝐷 ∩ ℂ̂, and 𝐽 is a rank 1 parabolic subgroup of 𝐺 with fixed point 𝑥, then 𝐽 is doubly cusped. ▮

3.4 The convex core of a hyperbolic 3-manifold and meas-
ured laminations

It is well-known that the basic theory of convexity in ℝ3 carries over almost without change to ℍ3

and hyperbolic manifolds in general (c.f. [124, Section 8.3], [28], and [43]; more specifically geared
towards the topic of this thesis is [61]). The hyperbolic theory is made richer by the existence of a
geometric compactification ℍ3, in that we may take convex hulls of sets at infinity. If 𝐶 is a circle on
ℂ̂ = 𝜕ℍ3, then the hyperbolic convex hull h.conv𝐶 is the hyperbolic plane spanned by 𝐶. We often
will say that h.conv𝐶 is obtained by ‘erecting a dome’ above 𝐶. Of particular interest to us are hyper-
bolic convex hulls of limit sets of Kleinian groups; various people have made excellent visualisations
of these objects, for instance the image Bug on Notes of Thurston by Jeffrey Brock and David Dumas
[26].

The convex core of a hyperbolic 3-manifold is a convex subset which captures all of the geometric
information about𝑀 while being combinatorial.

3The intersection with ∘Ω(𝐹) is taken so as only to deal with the nonsingular part of the surface.
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Figure 3.3: A pleated surface: the map 𝜙 embeds 𝑆 into 𝑀, possibly with some bends along 𝑆-
geodesics.

3.4.1 Definition. Let 𝐺 be a Kleinian group; the convex core of 𝐺 (which we denote by 𝒞(𝐺) in
harmony with the notation of Definition 3.1.16) is the quotient space (h.conv𝐺 ∩ ℍ𝑛)/𝐺.

3.4.2 Lemma. The convex core 𝒞(𝐺) is a strong deformation retract of the hyperbolic manifoldℳ(𝐺)
and is homeomorphic to the Kleinian manifold𝒦(𝐺). ▮

For a proof of this lemma, see Proposition 3.1 of [88]. The proof given there extends withminimal
change to the orbifold case, where 𝐺 is allowed to contain elliptics.

The boundary of 𝒞(𝐺) is a pleated surface with some additional data.

3.4.3 Definition. A pleated surface in a hyperbolic 3-manifold 𝑀 is a complete (abstract) hyper-
bolic surface 𝑆 together with a smooth embedding 𝜙 ∶ 𝑆 → 𝑀 such that every 𝑠 ∈ 𝑆 is contained in
the interior of some geodesic arc which is mapped to a geodesic arc in 𝜙(𝑆) (where 𝜙(𝑆) is given the
induced metric from𝑀). The pleating locus of the pleated surface is the set of points contained in
precisely one such arc. A connected component of the complement of the pleating locus in 𝜙(𝑀) is
called a flat piece, and a complete arc in the pleating locus is called a bending line.

3.4.4 Example. An example of a pleated surface is shown in Figure 3.3: the two geodesics of 𝑆 drawn
in black become the two pleats of 𝜙(𝑆) ⊂ 𝑀, while their complements become smooth hyperbolic
surfaces in 𝑀. Two of the three geodesics in 𝑆 drawn in red remain so in 𝑀; the other, which is
transverse to the pleating locus, is only piecewise geodesic in the image surface.

A geodesic lamination on a hyperbolic surface 𝑆 is a union of disjoint complete geodesic arcs,
called leaves. In this thesis, we will shorten ‘geodesic lamination’ to simply ‘lamination’. The pleat-
ing locus of a pleated surface is a geodesic lamination [28, Lemma 5.1.4].

We draw heavily from [62, §6.2], [61], and [57, Chapter 11] for the theory of laminations that now
follows.

Let 𝐿 be a lamination on a surface 𝑆; a transverse measure on 𝐿 is a regular Borel measure4 𝜈
defined on the set of embedded intervals in 𝑆 which are transverse to every bending line that they
meet. The pair (𝐿, 𝜈) is said to be ameasured lamination (and by usual abuses of notation we refer
to the single object 𝐿 or 𝜈 as the measured lamination; often we write |𝜈|) for the set of leaves of the
measured lamination).

The point is that given a pleated surface 𝑆, there is a natural transverse measure 𝛽, the bending
measure, on the pleating locus which measures the bending angle across a particular pleat. The
technical parts of such a definition are worked out in [43] (see for instance Definition 1.11.2 for
the formal definition of the measure); roughly speaking, a roof above some portion of 𝑆 is a finite
hyperbolic polyhedral approximation to 𝑆; on a polyhedron, bending angles (that is, dihedral angles
between planes in ℍ3) may be define since all the bends are ‘far apart’, so if 𝐼 is an open subset of an

4We are not interested in the technicalities of analysis; one may refer to Definition 2.15 of [108] and the surrounding
discussion.



30 CHAPTER 3. THE GEOMETRY OF KLEINIAN GROUPS

interval in 𝑆 then we may define 𝛽(𝐼) to be inf𝑅{sum of bending angles of 𝐼 along 𝑅} where 𝑅 ranges
over all the roofs above 𝑆 around 𝐼.

Denote by ℳℒ(𝑆) the set of measured laminations on 𝑆, and let ℳℒ0(𝑆) denote the subset
of ℳℒ(𝑆) consisting of those laminations which do not have leaves which tend asymptotically to
marked points (i.e. 𝜈 ∈ ℳℒ0(𝑆) iff |𝜈| is compact and lies in the nonsingular set of 𝑆).5 There is
a natural topology onℳℒ(𝑆) given by the weak topology on measures [108, Exercise 18 of Chapter
11]: declare a sequence (𝜈𝑛) to converge to some 𝜈∞ ∈ ℳℒ(𝑆) if

∫
𝐼

𝑓𝑑𝜈𝑛 → ∫
𝐼

𝑓𝑑𝜈

for every open interval 𝐼 transverse to all the |𝜈𝑘| (𝑘 ∈ ℕ̂) and for all 𝑓 ∶ 𝑆 → ℝ compactly supported
on 𝑆.

We now define two functionals onℳℒ(𝑆), one which will measure ‘length’ and one which will
measure ‘transversality’.

3.4.5 Definition. For 𝜈 ∈ ℳℒ(𝑆), define

• the lamination length, 𝑙(𝜈), to be the total mass of themeasure on 𝑆 that is locally the product
of 𝜈 on intervals transverse to |𝜈| and the usual hyperbolic length measure on intervals parallel
to |𝜈|; and

• for any simple closed geodesic 𝛾 on 𝑆, the intersection number of 𝜈 with 𝛾, 𝑖(𝜈, 𝛾), to be

inf
⎧
⎨
⎩
∫
𝛾′

𝑑𝜈 ∶ 𝛾′ a curve isotopic to 𝛾
⎫
⎬
⎭
.

If 𝜈 is the measured lamination with the single leaf 𝜂 for some simple closed geodesic 𝜂 and with
transverse measure given by the Dirac measure on transversals to 𝜂, then 𝑙(𝜈) is the usual hyperbolic
length of 𝜂 and 𝑖(𝜈, 𝛾) is the usual intersection number of 𝜂 with 𝛾.

The following continuity result is actually a special case of a pair of uniform continuity results
for measured laminations in quasiconformal deformation spaces, Theorems 3.6.14 and 3.6.16 below.

3.4.6 Lemma. Both 𝑙 ∶ ℳℒ0(𝑆) → ℝ and 𝑖(⋅, 𝛾) ∶ ℳℒ0(𝑆) → ℝ are continuous with respect to the
weak topology. ▮

3.5 Schottky groups and deformations
The group-theoretic definitions of the previous sections are hard to visualise in general; in this section,
we discuss a special class of groups for which the geometry is easy to see and which will be critical
in what follows.

3.5.1 Definition. A classical Schottky group of rank 𝑛 is defined by the following data:

• 2𝑛 pairwise disjoint circles in ℂ, labelled 𝐴1, ..., 𝐴𝑛 and 𝐴′
1, ..., 𝐴′

𝑛, which bound a common
region 𝐷; and

5Kapovich [57] uses the term ‘measured laminations’ to denote only the laminations in ℳℒ0(𝑆), and terms the more
general laminations inℳℒ(𝑆) ‘measured quasilaminations’.
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• 𝑛 elements of𝕄, 𝑔1, ..., 𝑔𝑛, such that for all 𝑖, 𝑔𝑖(𝐴𝑖) = 𝐴′
𝑖 and 𝑔𝑖(𝐷) ∩ 𝐷 = ∅ .

The Schottky group is then the group 𝐺 = ⟨𝑔1, ..., 𝑔𝑛⟩.
Let 𝒜 be the polyhedron in ℍ3 with faces consisting of the hyperbolic planes erected over the 2𝑛

circles 𝐴1, ..., 𝐴𝑛 and 𝐴′
1, ..., 𝐴′

𝑛, and consider the system of side-pairings of 𝒜 induced by the maps
𝑔1, ..., 𝑔𝑛. Observe that every point of 𝑆2 ∩𝒜 is contained in exactly one facet, and so the intersection
of the facets containing a given boundary point is an entire circle: thus there are no cusp points and
the completeness condition of Theorem 2.3.7 is vacuous. We may therefore apply Theorem 2.3.5 to
glue the sides of𝒜; considering the boundary at infinity of the resulting manifold, we conclude that:
3.5.2 Proposition. With 𝐺 defined by means of a side-pairing as just described:

1. 𝐺 is a discrete group, free on the generators 𝑔1, ..., 𝑔𝑛 (since the family of relations in the presenta-
tion for 𝐺 given by Theorem 2.3.5 are all trivial);

2. 𝐷 is a fundamental domain for the action of 𝐺 onΩ(𝐺);

3. 𝒮(𝐺) is obtained by taking the surface𝐷 (a sphere with 𝑛 deleted discs) and gluing the boundaries
together according to the 𝑔𝑖, so 𝒮(𝐺) is topologically a genus 𝑛 handlebody.

4. Every element of 𝐺 is loxodromic.

Proof. Conclusions (1) to (3) follow from the preceeding discussion. Conclusion (4) requires a small
amount of work, and our argument is adapted from paragraph VII.C.5 of [83]. The idea is to show
that every non-identity element of𝐺 has an attractive fixed point. We proceed by induction on 𝑛; the
case 𝑛 = 1 is trivial, so assume that 𝑛 > 1.

Suppose 𝑔 ∈ 𝐺 ⧵ {1} is arbitrary, and write 𝑔 as a word in the generators 𝑔𝑖. Suppose without loss
of generality that the rightmost letter in this word is 𝑔1, and write 𝑔 = ℎ𝑛⋯ℎ1 where every ℎ𝑖 with 𝑖
odd is a power of 𝑔1 and every ℎ𝑖 with 𝑖 even is a product of some string of the 𝑔𝑗 with 𝑗 ≠ 1. If ℎ𝑛 = 𝑔𝑘1
(𝑘 ≠ 0) then replace 𝑔 with the conjugate 𝑔−𝑘1 𝑔𝑔𝑘1 (and it suffices to check that this is loxodromic),
and relabel 𝑔1, ..., 𝑔𝑛 such that the rightmost letter of this new word is 𝑔1; repeat this process (at most
finitely many times) until either (a) the rightmost letter in the word in the ℎ’s for 𝑔 differs from the
leftmost (in which case 𝑛 is necessarily even), or (b) the length of the word— in terms of the number
of ℎ’s—becomes 1. Clearly in case (b) the word 𝑔 is either a power of 𝑔1 so is loxodromic, or lies in
𝐺′ so is loxodromic by the inductive hypothesis; so it remains only to resolve case (a).

Now 𝑔1 (resp. 𝑔−11 ) maps 𝐴1 into 𝐴′
1 (resp. 𝐴′

1 into 𝐴1) and so by continuity must move the two
components of ℂ̂ ⧵ 𝐴1 into the two components of ℂ̂ ⧵ 𝐴′

1; since 𝑔1𝐷 ∩ 𝐷 = ∅, 𝑔1 must move the
exterior of 𝐴1 (the component containing 𝐷) into the interior; this implies that the attractive fixed
point of 𝑔1 lies in 𝐵1 and so every positive power of 𝑔1 has the same property. Let 𝛾 be a Jordan curve
which separates 𝐴1 ∪𝐴′

1 from⋃𝑖>1(𝐴𝑖 ∪𝐴′
𝑖) and label the closures of the two components of ℂ̂ ⧵ 𝛾 by

𝐵1 (this is the closure of the component containing 𝐴1) and 𝐵2 (the closure of the other component).
Since 𝐵2 lies in the exterior of 𝐴1, 𝑔𝑘1𝐵2 ⊆ 𝐵1 (𝑘 ≥ 1). By a similar argument, 𝑔𝑘𝑖 𝐵1 ⊆ 𝐵2 for all 𝑖 > 1.
Let 𝐺′ ≔ ⟨𝑔2, ..., 𝑔𝑛⟩; if ℎ ∈ 𝐺′ then we even have that ℎ𝐵1 ⊆ 𝐵2, since ℎmay be written as a product
of 𝑔𝑘𝑖 where each 𝑔𝑖 moves the circles corresponding to the other 𝑔𝑗 into 𝐴′

𝑖 in the same fashion as
described.

Since 𝑛 is even, this ping-pong game between 𝐵1 and 𝐵2 necessarily leads to 𝑔(𝐵2) ⊂ in𝐵2 (the
inclusion is proper since the ping-pong game is played more than once, and so some 𝑔𝑖 with 𝑖 ≠ 1 is
involved which maps 𝐵1 into the interior of one of its circles). In particular, the map on 𝐵2 induced
by 𝑔 is contractive, and so 𝑔 has an attractive fixed point in 𝐵2; thus it is loxodromic. ▮

Remark. All of the statements of Proposition 3.5.2 hold if the disjoint circles in the Schottky data are
replaced with pairwise disjoint topological circles; see for instance exercise VII.F.8 of [83].
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Figure 3.4: The portion of a Riemann surface due to two circles paired by a loxodromic element in a
Schottky group.

We may see the action visually in Figure 3.4.
Let us now allow the circles to meet pairwise. The following proposition follows immediately

from the proof of Proposition 3.5.2: observe that to prove part 4 of that proposition, we showed that
every non-loxodromic element must be conjugate to a generator.

3.5.3 Proposition. Let 𝐴1, ..., 𝐴𝑛 and 𝐴′
1, ..., 𝐴′

𝑛 be circles bounding a common region𝐷 such that if 𝐴𝑖
and 𝐴′

𝑗 meet then 𝑖 = 𝑗, and let 𝑔1, ..., 𝑔𝑛 ∈ 𝕄 be such that for all 𝑖, 𝑔𝑖(𝐴𝑖) = 𝐴′
𝑖 and 𝑔𝑖(𝐷) ∩ 𝐷 = ∅. Let

𝒜 be the family of polyhedrons in ℂ̂ made up of the 1-gons 𝐴1, ..., 𝐴𝑛 and 𝐴′
1, ..., 𝐴′

𝑛, and consider the
system of side-pairings of𝒜 induced by the maps 𝑔1, ..., 𝑔𝑛. Define 𝐺 ≔ ⟨𝑔1, ..., 𝑔𝑛⟩.

1. 𝐺 is a discrete group, and is the free product∗𝑛
𝑖=1⟨𝑔𝑖⟩;

2. 𝐷 is a fundamental domain for the action of 𝐺 onΩ(𝐺);

3. 𝒮(𝐺) is obtained by taking the surface𝐷 (a sphere with 𝑛 deleted discs) and gluing the boundaries
together according to the 𝑔𝑖, so 𝒮(𝐺) is topologically a genus 𝑛 handlebody with 2𝑛 punctures
identified in pairs.

4. If an element ℎ ∈ 𝐺 is not loxodromic, then ⟨ℎ⟩ is conjugate in 𝐺 to one of the groups ⟨𝑔𝑖⟩, and ℎ
is elliptic (resp. parabolic) if 𝐴𝑖 intersects 𝐴′

𝑖 transversely (resp. tangentially). ▮

We call groups generated via the data of Proposition 3.5.3 generalised Schottky groups; usually
we will just shorten this to Schottky group. We now study the qualitative geometry of the resulting
quotients.

Suppose first that we have a pair of tangent circles paired by one of the generators; necessarily, it is
parabolic. Applying the Poincaré polyhedron theorem (Theorem 2.3.5), the Riemann surface locally
looks like a pair of cusps coming together at a deleted point (Figure 3.5). It is more interesting (but
harder to visualise) if we consider the interior of the 3-manifold. The best way to do this is to erect
the domes above ℂ̂ in the half-plane model (the left of Figure 3.6), and then perform the edge-gluing
by folding ℂ̂ “down”; thus the two dome surfaces combine to give a single disc in the quotient which
we may pass through (this is the disc shaded to the right of Figure 3.6: the reader should note that
this is the perspective from inside the 3-manifold, and the cusps that can be seen on the surface are
the insides of those visible in Figure 3.5). Observe that there is a nontrivial loop (in blue, passing
through the shaded disc and then around the deleted point) which exhibits that there is a deleted
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Figure 3.5: The portion of a Riemann surface due to two circles paired by a parabolic element in a
Schottky group.

Figure 3.6: The portion of 3-manifold interior due to two circles paired by a parabolic element in a
Schottky group.
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Figure 3.7: The portion of a Riemann surface due to two circles paired by an elliptic element in a
Schottky group.

Figure 3.8: The portion of 3-manifold interior due to two circles paired by an elliptic element in a
Schottky group.

arc in the interior of the 3-manifold (though in some sense this deleted arc is “infinitely short” in
the picture). Since the manifold is given as a quotient of a simply connected space ℍ3 by a group 𝐺
acting freely discontinuously on that space, we may apply standard covering space theory to see that
𝜋1(ℳ(𝐺)) = 𝐺; so for instance if we are considering a Schottky group on one parabolic generator
then we see that there is a single nontrivial loop in the space, and it is precisely this one. We can
extend this to multiple generators using the various combination theorems of Chapter VII of [83], in
which case we get exactly one nontrivial loop per generator in the purely parabolic case.

In the case of elliptic pairings, the pictures (Figure 3.7 for the surface and Figure 3.8 for the in-
terior) are similar to the parabolic case, except that instead of two cusp neighbourhoods meeting at
a deleted point we have a pair of cone points joined by a cone arc in the interior of the manifold; this
arc is exactly the projection of the axis of the elliptic element representing the cone points.

3.6 Quasiconformal deformation spaces
The Riley slice has more structure than just a set parameterising group representations: it is also a
moduli space. In this section we recall first the some basic terminology from the Teichmüller theory
of Riemann surfaces and the theory of quasiconformal deformation spaces, following a mixture of
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[46, 56, 72]; the reader is expected to have met this subject already and so our discussion is mainly to
fix notation. We then study more carefully the Teichmüller theory of Kleinian groups, which is not
expected to be as familiar to the reader; this is discussed at an elementary level in Chapter 8 of [57],
and in more detail in [88]. We will emphasise the parallels with the classical case.

3.6A Quasiconformal mappings
Define the differential operators 𝜕𝑧 ≔ (1/2)(𝜕𝑥 − 𝑖𝜕𝑦) and 𝜕𝑧 ≔ (1/2)(𝜕𝑥 + 𝑖𝜕𝑦), where 𝑥 = ℜ𝑧 and
𝑦 = ℑ𝑧. Let 𝑓 ∶ 𝐷 → 𝐷′, where 𝐷 and 𝐷′ are domains in ℂ, be a homeomorphism. If there exists
some Lebesgue measurable function 𝜇𝑓 ∶ 𝐷 → ℂ and some 𝑘 ∈ ℝ>0 with sup𝑧∈𝐷 |𝜇(𝑧)| ≤ 𝑘 < 1
such that 𝑓 satisfies the Beltrami equation

𝜕𝑧𝑓 = 𝜇𝑓(𝑧) 𝜕𝑧𝑓,

then 𝑓 is said to be quasiconformal with dilatation at most 𝐾, where 𝐾 = 1+𝑘
1−𝑘

; often this is
shortened to ‘𝐾-quasiconformal’. The function 𝜇𝑓 is called the Beltrami coefficient of 𝑓, and intu-
itively it measures the failure of 𝑓 to be conformal at a given point.

A homeomorphism 𝑓 ∶ 𝑆 → 𝑆′ between Riemann surfaces is said to be 𝐾-quasiconformal
if, whenever 𝜌 and 𝜎 are complex charts on 𝑆 and 𝑆′ respectively, the composition 𝜎𝑓𝜌−1 is 𝐾-
quasiconformal. If there is some 𝐾 < ∞ such that 𝑓 is 𝐾-quasiconformal, then 𝑓 is simply called
quasiconformal. The supremum of all 𝐾 such that 𝑓 is 𝐾-quasiconformal is called themaximal
dilatation of 𝑓.

Let 𝜋 ∶ 𝐷 → 𝑆 be the universal cover of 𝑆; computing Beltrami coefficients for 𝜎𝑓𝜌−1 where
each 𝜌 is chosen to be a suitable restriction of 𝜋 and gluing the results together, we obtain a function
𝜇𝑓 ∶ 𝐷 → 𝐷 such that whenever 𝛾 ∈ Aut𝜋 and 𝑧 ∈ 𝐷,

𝜇(𝑧) = 𝜇(𝛾(𝑧)) 𝛾
′(𝑧)
𝛾′(𝑧)

(that is, 𝜇 is a (−1, 1)-automorphic form for Aut𝜋). For the details, see Section V.1 of [72].
The reason that we want to study these mappings is that they will arise naturally when studying

deformation spaces of Kleinian groups. It is a consequence of the 𝜆-lemma (stated below as The-
orem 3.6.8) that if the entries of the matrices of a Kleinian group vary holomorphically, then the
ordinary set (and therefore the group action) varies quasiconformally in ℂ̂.

The next theorem, variously called theAlhfors-BersRiemannmapping theorem or themeas-
urable Riemannmapping theorem, guarantees a sufficient supply of quasiconformal maps.

3.6.1 Theorem. Let 𝜇 be a measurable function, compactly supported on ℂ, with ‖𝜇‖∞ < 1. Then
there is a unique solution 𝑓 ∶ ℂ̂ → ℂ̂ to the Beltrami equation

𝜕𝑧𝑓 = 𝜇(𝑧) 𝜕𝑧𝑓, for almost all 𝑧 ∈ ℂ

satisfying the normalisation condition that 𝑓 fixes {0, 1,∞} pointwise. ▮
For a proof, see Section 5.3 of [9].

3.6B Classical theory of Teichmüller space
Let 𝑆 be a hyperbolic6 Riemann surface.

6Of course one can do Teichmüller theory on any Riemann surface, but we are only interested in hyperbolic manifolds in
this thesis.
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3.6.2 Definition. A hyperbolic structure on 𝑆 is a pair (𝑅, 𝑓) where 𝑅 is a Riemann surface and
𝑓 ∶ 𝑆 → 𝑅 is a quasiconformal homeomorphism. We say that two such pairs (𝑅, 𝑓) and (𝑅′, 𝑓′) are
equivalent if 𝑓′𝑓−1 ∶ 𝑅 → 𝑅′ is homotopic to a conformal map. The Teichmüller space of 𝑆 is the
set of equivalence classes of hyperbolic structures on 𝑆 with respect to this equivalence; we denote it
by Teich(𝑆).

We may place a natural metric on Teich(𝑆) via the following formula:

(3.6.3) 𝜌 (𝐴, 𝐵) ≔ inf { log𝐾(𝑓′𝑓−1) ∶ (𝑅, 𝑓) ∈ 𝐴, (𝑅′, 𝑓′) ∈ 𝐵 }

where 𝐾(𝑓′𝑓−1) =
1+‖‖𝜇𝑓

‖
‖∞

1−‖‖𝜇𝑓
‖
‖∞

is the quasiconformal deformation coefficient of 𝑓′𝑓−1.

Because of the duality between quasiconformal maps and Beltrami coefficients, we may equival-
ently define the Teichmüller space of 𝑆 in the followingway: uniformise 𝑆 asℍ2/𝐺 for some Fuchsian
group𝐺, then Teich(𝑆) is the space of all boundedmeasurable functions 𝜇 onℍ2 (the universal cover
of any hyperbolic Riemann surface) such that ‖𝜇‖∞ < 1 and

𝜇(𝑧) = 𝜇(𝑔(𝑧))𝑔
′(𝑧)
𝑔′(𝑧)

for almost all 𝑧 ∈ ℍ2 and for all 𝑔 ∈ 𝐺, modulo the relation 𝜇 ∼ 𝜈 if 𝑓−1𝜇 𝑓𝜈 is homotopic to the identity
on ℍ2 (𝑓𝜇 and 𝑓𝜈 being solutions to the Beltrami equations for 𝜇 and 𝜈 respectively, on ℍ2).

Themapping class group of the surface 𝑆, Mod(𝑆), is the group of isotopy classes of orientation-
preserving homeomorphisms 𝑆 → 𝑆, where both the isotopies and the homeomorphisms are re-
quired to fix the boundary of 𝑆 pointwise. It has a natural action on Teich(𝑆): if [Σ, 𝜙] ∈ Teich(𝑆) is
represented by (Σ, 𝜙), and [𝑓] ∈ Mod(𝑆) is represented by 𝑓 ∶ 𝑆 → 𝑆, then define [Σ, 𝜙] ⋅ [𝑓] to be
represented by (Σ, 𝜙𝑓−1) (it requires some thought to see that this is well-defined). The Riemann
moduli space of 𝑆 is defined to be the quotient space

ℳ(𝑆) ≔ Teich(𝑆)/Mod(𝑆).

The action of Mod(𝑆) on Teich(𝑆) is discontinuous, and so ℳ(𝑆) admits a compatible hyperbolic
geometry. If 𝑆 = ⋃𝑆𝛼 is a possibly disconnected Riemann surface, then we define Teich(𝑆) =
∏𝛼 Teich(𝑆𝛼) and similar results hold.

Finally recall that, given a closed curve 𝜔 on a marked Riemann surface 𝑆 (that is, 𝜔 ∈ 𝜋1(𝑆);
by our standing assumption that 𝜋1(𝑆) is the orbifold fundamental group, 𝜔 misses all the marked
points of 𝑆), we may define a homeomorphism 𝜏𝜔 ∶ 𝑆 → 𝑆 by cutting 𝑆 along 𝜔, twisting one side of
the cut through a rotation of 2𝜋, and then regluing. Similarly, we may define a half-twist 𝜎𝜔 along 𝜔
by cutting along𝜔, twisting one side by𝜋, and then regluing. Themap 𝜏𝜔 is called aDehn twist, and
𝜎𝜔 a Dehn half-twist. The mapping class group of 𝑆𝑔,𝑛 is generated by finitely many Dehn twists
and half-twists [46, Corollary 4.16].

3.6C Deformation spaces of Kleinian groups
A Kleinian group represents not just a Riemann surface, but also an interior hyperbolic 3-manifold.
The deformation theory of Kleinian groups therefore must take into account the interior geometry.
In practice, this will mean for us the following: suppose the 3-manifold𝑀 = ℍ3/Γ is a braidmanifold
(that is, 𝜕𝑆 has 2𝑛 punctures paired by 𝑛 deleted tubes through the interior); then another manifold
is equivalent to 𝑀 if it has the same braid structure (i.e. it can be obtained via boundary isotopies
which fix the positions of the punctures or which permute punctures in such a way as to keep the
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braid group the same). In terms of the objects of interest, we will obtain a diagram of the following
form:

Teich(Γ) Teich(𝑆)

QH(Γ) ℳ(𝑆)

≃

M̂od(Γ) Mod(𝑆)

The theory of Teichmüller spaces for Kleinian groups is a special case of the concept of the Teich-
müller space of a dynamical system introduced by McMullen and Sullivan [120],[121], and [91, c.f.
Section 4], but was originally studied first by Bers [15, 16, 17], Kra [68, 69], Marden [78], and Maskit
[84, 86]; the specific theorems which we will need in the Kleinian group situation may be found in
[88, Section 5.3] (though this reference restricts itself to the torsion-free case) and Chapter 5 of [79].

3.6.4 Definition (C.f. Definition 3.6.2). A quasiconformal conjugate of Γ is a pair (𝐺, 𝑓) where
𝐺 is a Kleinian group, and 𝑓 is a quasiconformal automorphism of ℂ̂ such that the map 𝛾 ↦ 𝑓𝛾𝑓−1
is an isomorphism 𝜃𝑓 ∶ Γ → 𝐺. We say that two quasiconformal conjugates (𝐺1, 𝑓1), (𝐺2, 𝑓2) of Γ
are equivalent if there exists a Möbius transformation 𝑡 ∶ ℂ̂ → ℂ̂ isotopic to 𝑓2𝑓−11 , via a family of
quasiconformal automorphisms of ℂ̂ with uniformly bounded Beltrami coefficients and which all
induce the isomorphism 𝜃𝑓2𝜃−1𝑓1 ∶ 𝐺1 → 𝐺2 via conjugation. The Teichmüller space of Γ is the set
of equivalence classes of quasiconformal conjugates of Γwith respect to equivalence; we denote it by
Teich(Γ).

We place a metric space structure on Teich(Γ) by the same formula as Equation (3.6.3) (with the
obvious small modifications).

The Teichmüller space of a Kleinian group can also be defined as a space of particular auto-
morphic forms, but now with respect to the Kleinian group rather than to some Fuchsian uniform-
isation group: Teich(Γ) is the space of all measurable functions 𝜇 on Ω(Γ)7 such that ‖𝜇‖∞ < 1,
and

𝜇(𝑧) = 𝜇(𝛾(𝑧)) 𝛾
′(𝑧)
𝛾′(𝑧)

for almost all 𝑧 ∈ Ω(Γ) and for all 𝛾 ∈ 𝐺, modulo the relation 𝜇 ∼ 𝜈 if 𝑓−1𝜇 𝑓𝜈 is homotopic to the
identity on Ω(Γ) (where 𝑓𝜇 and 𝑓𝜈 solve the Beltrami equations for 𝜇 and 𝜈 respectively on Ω(Γ)).

We now define the analogue of the moduli space. Unfortunately we cannot simply quotient by a
group action, since it is not immediately clear what the ‘correct’ definition for the Kleinian mapping
class group is. Instead we will define what we want the moduli space of a Kleinian group to be, and
then we will show that it is the quotient of Teichmüller space by a subgroup of the surface mapping
class group.

The quasiconformal representation space of Γ, denoted QHom(Γ), is the space of representa-
tions 𝜃 ∶ Γ → PSL(2, ℂ) such that

1. 𝜃 is faithful and 𝜃Γ is discrete;

2. 𝜃 is type-preserving, that is if 𝛾 ∈ Γ is parabolic (resp. elliptic of order 𝑛) then 𝜃𝛾 is parabolic
(resp. elliptic of order 𝑛); and

3. the groups 𝜃Γ are all quasiconformally conjugate.
7One often sees ‘...functions on ℂ̂’ (for instance, it is this definition which appears in [87]); however by a result of Sullivan

[119] it suffices to look only atΩ(Γ).
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The subset of Hom(Γ) consisting of representations satisfying conditions (1) and (2) is closed, and
hence the closure of QHom(Γ) in Hom(Γ) consists of discrete groups [88, Proposition 4.18].

Thequasiconformal deformation space ofΓ is the spaceQH(Γ) = QHom(Γ)/ ≈, where𝐻 ≈ 𝐾
if there is some 𝑔 ∈ PSL(2, ℂ) with 𝐻 = 𝑔𝐾𝑔−1. Since this is the space of different ways on which to
place the Kleinian group structure on Γ up to conjugacy, it is analogous to the moduli space in the
classical theory.

There remain two problems: (1) to clarify the relationship between Teich(𝒮(Γ)) and Teich(Γ);
and (2) to show that there is in fact a natural surjection Teich(Γ) → QH(Γ) (and to give an explicit
description of this, analogous to the surface case where the surjection is the projection induced by
the mapping class group).

It turns out that the answer to (1) is straightforward to state: the two spaces are naturally homeo-
morphic if Γ is finitely generated. By Theorem 3.2.1 we may write 𝒮(Γ) ≔ 𝑆1 ∪⋯∪𝑆𝑘 where each 𝑆 𝑖
is an analytically finite Riemann surface; for each 𝑆 𝑖, view Teich(𝑆 𝑖) as a space of equivalence classes
of Beltrami coefficients, and Teich(𝒮(Γ)) as the Cartesian product of these spaces.

3.6.5 Theorem. Let Γ be a finitely generated Kleinian group withΩ(Γ) ≠ ∅. Given some

𝜇 = ([𝜇1], ..., [𝜇𝑘]) ∈ Teich(𝒮(Γ)),

there exist lifts (𝜇̂1, ..., 𝜇̂𝑘) of (𝜇1, ..., 𝜇𝑘) (respectively) toΩ(Γ) and quasiconformal automorphisms 𝑓𝜇 ∶
Ω(Γ) → Ω(Γ) with Beltrami coefficient 𝜇̂. Suppose that Γ𝜇 is the group which is quasiconformally con-
jugate to Γ via 𝑓𝜇. Then the map 𝜄 ∶ Teich(𝒮(Γ)) → Teich(Γ) defined by

𝜄([𝜇]) ≔ [(Γ𝜇, 𝑓𝜇)]

is a well-defined function, and is a homeomorphism. ▮

The torsion-free version of this theorem is proved in [88] as Theorem 5.26, and the proof goes
through in the torsion case as well with minimal changes (merely replace the classical Teichmüller
space with the version detecting cone singularities).

We now answer the second question posed: that of the relationship between Teich(Γ) and QH(Γ).

3.6.6 Theorem. Let Γ = ⟨𝛾1, ..., 𝛾𝑛⟩ be a finitely generated non-elementary Kleinian group withΩ(Γ) ≠
∅. For some Beltrami coefficient 𝜇, the map 𝑝 ∶ Teich(Γ) → QH(Γ) defined by

𝑝([𝜇]) ≔ 𝜃𝜇

is a well-defined holomorphic surjection. Further, there is a discrete subgroup M̂od(𝒮(Γ)) ≤ Mod(𝒮(Γ))
and a natural bijectionQH(Γ) ≈ Teich(𝒮(Γ))/M̂od(𝒮(Γ)) such that the two projection maps agree. ▮

In the case that Γ is geometrically finite, the group M̂od(𝒮(Γ)) is the subgroup generated by Dehn
twists along simple closed curves which bound compression discs. The torsion-free version of this
theorem appears in [88] as Theorem 5.27 and the following discussion. The proof given there ac-
tually works for the torsion case as well, as long as we are careful to replace all manifold theorems
and definitions with the corresponding ‘orbi-theorems’ and ‘orbi-definitions’: for example, the usual
definition of compression disc should be replaced with Definition 2.4.4. Another version of this the-
orem is found as Theorem 5.1.3 of [79] (where the theorem is also stated without any conditions on
torsion; the proof is sketched as Exercise 5-35, p.367ff).
Historical remark. The two theorems Theorem 3.6.5 and Theorem 3.6.6 are originally attibuted to
Bers and Greenberg [17] and Marden [78] (see [16, §2.4]).
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3.6D Holomorphic motions
An important tool in dealing with deformations of Kleinian groups is the theory of holomorphic
motions. A pertubation in the matrix entries of a Kleinian group will induce some kind of motion
of the limit and ordinary sets, and vice versa; the analytical properties of this motion turn out to be
shared by motions of Julia sets in deformation spaces of dynamical systems of rational maps (e.g.
the Mandelbrot set), and so deserve to be axiomatised and studied abstractly. The definition of a
holomorphic motion which we now state was given first by Mañé, Sad, and Sullivan [77], who also
proved the so-called ‘𝜆-lemma’ (which we will state a more general version of below, Theorem 3.6.8).
A good modern introduction to the theory may be found in Chapter 12 of [9].

3.6.7 Definition. Let 𝐴 ⊆ ℂ̂. A holomorphic motion of 𝐴 is a map Φ ∶ 𝔹2 × 𝐴 → ℂ̂ such that

1. For each 𝑎 ∈ 𝐴, the map 𝔹2 ∋ 𝜆 ↦ Φ(𝜆, 𝑎) ∈ ℂ̂ is holomorphic;

2. For each 𝜆 ∈ 𝔹2, the map 𝐴 ∋ 𝑎 ↦ Φ(𝜆, 𝑎) ∈ ℂ̂ is injective;

3. The mapping 𝐴 ∋ 𝑎 ↦ Φ(0, 𝑎) ∈ ℂ̂ is the identity on 𝐴.
By abuse of the English language, we say that 𝜌moves holomorphically in a set𝐷 (with no further
context) if there is some holomorphic motion of a subset of 𝐴 containing 𝜌which it is not important
to give explicitly.

The following result, due to Slodkowski [116, 117], shows that holomorphic motions are ‘rigid’:
they are determined everywhere even when defined on ‘small’ sets.

3.6.8 Theorem (Extended 𝜆-lemma). If Φ ∶ 𝔹2 × 𝐴 → ℂ̂ is a holomorphic motion of 𝐴 ⊆ ℂ, then Φ
has an extension to Φ̃ ∶ 𝔹2 × ℂ̂ → ℂ̂ such that

1. Φ̃ is a holomorphic motion of ℂ̂;

2. For each 𝜆 ∈ 𝔹2, the map Φ̃𝜆 defined by ℂ̂ ∋ 𝑎 ↦ Φ̃(𝜆, 𝑎) ∈ ℂ̂ is a 𝐾-quasiconformal homeo-
morphism with

𝐾 ≤ 1 + |𝜆|
1 − |𝜆| ;

3. Φ̃ is jointly continuous in ℂ̂ × ℂ̂; and

4. For all 𝜆1, 𝜆2 ∈ 𝔹2, Φ̃𝜆1Φ̃−1
𝜆2 is𝐾-quasiconformal with log𝐾 ≤ 𝜌(𝜆1, 𝜆2) (where 𝜌 is the hyperbolic

metric on 𝔹2). ▮
There is also an equivarant version due to Earle, Kra, and Krushkal’, appearing as Theorem 1 of

their paper [37]:

3.6.9 Theorem (Equivariant 𝜆-lemma). Let 𝐴 ⊆ ℂ̂ have at least three points, and let Γ be a group of
conformal motions preserving𝐴. LetΦ ∶ 𝔹2×𝐴 → ℂ̂ be a holomorphic motion on𝐴, and suppose that
for each 𝛾 ∈ Γ and each 𝜆 ∈ 𝔹2 there is a conformal map 𝜃𝜆(𝛾) such that

(3.6.10) Φ(𝜆, 𝛾(𝑧)) = 𝜃𝜆(𝛾)(Φ(𝜆, 𝑧))

for all 𝑧 ∈ 𝐴. Then Φ can be extended to a holomorphic motion on ℂ̂ such that Equation (3.6.10) holds
for all 𝑧 ∈ ℂ̂. ▮

Theorem 3.6.9 is important to us because it allows us to write proofs following the schema we
now outline. If 𝜌 ∶ Γ → PSL(2, ℂ) is a representation with image Γ̃, then an element ̃𝛾 ∈ Γ̃ is said to
be an accidental parabolic if 𝑓−1 ̃𝛾𝑓 is not parabolic in Γ.
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3.6.11 Proof Schema.

1. Assume that a non-elementary Kleinian group Γ𝜌 moves holomorphically with 𝜌 ∈ 𝑈 ⊆ ℂ.

2. Then the fixed points of Γ𝜌move holomorphically with 𝜌 since they are solutions to polynomial
equations in the matrix coefficients, and do not collide as long as Γ𝜌 remains non-elementary
and free of accidental parabolics.

3. But the fixed points of a Kleinian group are dense in the limit set, so the limit set moves holo-
morphically.

4. Thus by Theorem 3.6.9 the Kleinian groups Γ𝜌 are all quasiconformally conjugate (and in fact
the quasiconformal maps are quasisymmetric on the limit sets, see [9, Section 3.2]).

Wewill see in Figures 7.3 and 7.4 some snapshots of the holomorphic flows of limit sets of certain
Kleinian groups as their matrix coefficients are varied.

3.6E Measured laminations and quasiconformal deformation spaces
Finally we recall some results on the behaviour of ℳℒ(𝑆) as 𝑆 moves through a quasiconformal
deformation space, referencing primarily [61]; an alternative source for the continuity results here is
Chapter 6 of [88]. All of this theory is intimitely related to the Fenchel-Nielsen coordinates [46, Part
2, 56, Chapter 3] and Thurston’s work on foliations [45]: the main importance ofℳℒ0(𝑆)8 is that it
compactifies the Teichmüller space Teich(𝑆) (this is the Thurston compactification [88, §6.1.2])—
and we will see concretely that this is exactly what happens on the boundary of the Riley slice (see
the remark following the proof of Theorem 7.4.15).

Fix a quasiconformal family of Kleinian groups Γ𝜌 with the parameter 𝜌moving holomorphically
through a connected open set 𝐷 ⊆ ℂ, and let Ω∗(Γ𝜌) be a connected component of Ω(Γ𝜌) (such that
as 𝜌moves, the induced homeomorphisms of ℂ̂move the Ω∗(Γ𝜌) onto each other).

3.6.12 Lemma (Proposition 3.1 of [61]). All of the surfaces

𝒞(Γ𝜌) =
𝜕 h.convΛ(Γ𝜌)

Γ𝜌
and

Ω∗(Γ𝜌)
StabΓ𝜌 Ω∗(Γ𝜌)

are homeomorphic for all 𝜌 ∈ 𝐷. ▮

3.6.13 Lemma (Section 3.7 of [61]). The space of measured laminations on 𝜕𝒞(Γ𝜌) is independent of
𝜌. ▮

Given Lemmata 3.6.12 and 3.6.13, we denote by 𝑆 the homeomorphism class of the surfaces 𝒞(Γ𝜌)
and writeℳℒ(𝑆) for the space of measured laminations on any of the surfaces of that type.

3.6.14 Theorem (Continuity of lamination length: Theorem 4.5 of [61]). For 𝜌 ∈ 𝐷, let 𝑙𝜌 denote the
length function of Definition 3.4.5 on 𝒞(Γ𝜌). The map

𝐷 ×ℳℒ(𝑆) → ℝ>0

defined by
(𝜌, 𝜈) ↦ 𝑙𝜌(𝜈)

is jointly continuous in both arguments. ▮
8Properly this should be 𝒫ℳℒ0(𝑆), the quotient of ℳℒ0(𝑆) by the relation ∼ given by 𝜈 ∼ 𝜇 iff there exists some

nonzero 𝑐 ∈ ℝ such that 𝜈 = 𝑐𝜇.
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Finally,

3.6.15 Theorem (Continuity of bending measure: Theorem 4.6 of [61]). The map

pl ∶ 𝐷 → ℳℒ(𝑆)

defined by
𝜌 ↦ 𝛽𝜌

is continuous, where 𝛽𝜌 denotes the usual hyperbolic bending measure on 𝒞(𝜌). ▮

Though not proved in [61], a very similar argument to the proofs of Theorems 3.6.14 and 3.6.15
gives the next theorem:

3.6.16 Theorem (Continuity of intersection number). For𝜌 ∈ 𝐷, let 𝑖𝜌 denote the intersection number
function of Definition 3.4.5 on 𝒞(Γ𝜌). Fix a simple closed geodesic 𝛾 on 𝑆, and write 𝛾𝜌 for the simple
closed geodesic on 𝒞(Γ𝜌) which is isotopic to 𝛾. The map

𝐷 ×ℳℒ(𝑆) → ℝ>0

defined by
(𝜌, 𝜈) ↦ 𝑖𝜌(𝜈, 𝛾𝜌)

is jointly continuous in both arguments. ▮
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Chapter 4

The Riley slice: motivation and
definition

In this chapter, we discuss the historical motivation for the study of the Riley slice, and define both
the parabolic Riley slice and its elliptic cousins. Our discussion here is informal, and its purpose is
to orient the reader before we give an account of the topological and geometric properties of these
moduli spaces in the coming chapters.

4.1 Two-bridge links
Recall that a link 𝐿 of𝑚 components is a subset of 𝑆3 that consists of𝑚 disjoint simple closed curves,
each finitely piecewise-linear. A knot is a link with only one component. Some nice introductory
and reference books for knot theory which we find particularly helpful for the material which we
need are those by Cromwell [34], by Crowell and Fox [35], by Lickorish [73], and particularly the
recent book by Purcell [99].

The most fundamental topological invariant of a link is its associated complement manifold.

4.1.1 Definition. Let 𝐿 be a link. A tubular neighbourhood of a component 𝑘 of 𝐿 is the image𝑈
of an embedding of a solid torus into 𝑆3 such that 𝑘 lies in the interior of the embedding; a tubular
neighbourhood 𝑁 of 𝐿 is a union of tubular neighbourhoods of each of its components, with the
component neighbourhoods chosen to be mutually disjoint. The link complement manifold of 𝐿
is the manifold 𝑆3 ⧵ 𝑁. The fundamental group of the link 𝐿 is the fundamental group 𝜋1(𝑆3 ⧵ 𝑁).
We will often abuse notation and denote this group by 𝜋1(𝐿).

Recall now that a two-bridge link or a rational link ([34, Section 4.10], [99, Chapter 10]) is a
nontrivial link which can be embedded (without crossings) in a plane Σ ⊆ ℝ3 apart from two arcs
(the ‘bridges’) whose projections onto the plane consist of two disjoint straight segments; after adding
a point at∞, this is the same as saying that there exists a (topological) 2-sphere Σ ⊆ 𝑆3 such that

1. 𝐿 intersects Σ transversely at precisely four points, and

2. if𝑈 is either of the 3-balls bounded by Σ, 𝐿∩𝑈 projects radially onto Σ as a pair of disjoint arcs
(we call the system (𝑈,𝑈 ∩ 𝐿) a tangle).

An equivalent definition of two-bridge knots is the following: if𝐷 is a diagram of a knot 𝑘 (viewed
as a 4-valent graph together with crossing information) then a braid region in 𝐷 is a sequence of

43
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Figure 4.1: Two two-bridge knots; the braid regions on the left are labelled 𝑎1, 𝑎2, 𝑎3. Diagram from
[73, p. 9].

Figure 4.2: Pushing disjoint arcs on the sphere into the interior to form a 2-tangle.

regions (𝑏1, ..., 𝑏𝑛) of the graph complement such that (1) each 𝑏𝑖 is bounded by two edges and two
vertices, (2) 𝑏𝑖 and 𝑏𝑗 are incident iff |𝑖 − 𝑗| = 1 and 𝑏𝑖 and 𝑏𝑗 meet at a single vertex, (3) overcrossings
and undercrossings alternate, and (4) the sequence is of maximal length; a two-bridge link is then
a link which admits a diagram 𝐷 such that (a) every crossing is contained in a braid region, and
(b) 𝐷 admits an embedding into ℝ2 such that the 𝑥 coordinate has exactly two local minima. (This
description is much clearer when the diagrams are drawn out, as in Figure 4.1.)

There is an important procedure due to Schubert [112] andConway [32], described in [99, Chapter
10], which gives a surjection 𝜑 from ℚ̂ to the set of isotopy classes of rational links, with the property
𝜑(𝑝/𝑞) ≃ 𝜑(𝑟/𝑠) iff 𝑝 = 𝑟 and either 𝑞 ≡ 𝑠 (mod 𝑝) or 𝑞 ≡ 𝑠−1 (mod 𝑝).

We quickly indicate the computation of the rational number corresponding to a rational link
(thoughwe do not prove well-definedness or bijectivity of this representation); this number is known
as the Schubert normal form or simply normal form:

4.1.2 Algorithm. Let 𝐿 be a two-bridge link, and pick a representation of 𝐿 in space such that it is
embedded on a plane except for two arcs. Complete this plane to a sphere 𝑆 and push the planar
pieces of the curve into the interior slightly to form a ball with four marked points on the boundary
and two twisted arcs on the interior (Figure 4.2). Delete the arcs to form a 4-punctured sphere with
two deleted interior arcs. By performing Dehn half-twists along the oriented curves 𝛾(0/1) and 𝛾(1/0)
indicated in Figure 4.3,1, where we have been careful to draw points on the surface paired by the
original pair of bridge arcs, not the interior arcs forming the tangle, as the two horizontal pairs (top
and bottom), we may ‘unwind’ the knot—starting from the left, unwind each of the braid regions in
the knot one at a time, corresponding to alternating the applications of the ‘horizontal’ or ‘vertical’
Dehn twist (c.f. Figure 10.1 of [99], but we perform the process in reverse). Let (𝑎𝑛, ..., 𝑎1) be the
sequence of twisting numbers alternating in this way, with the sign of each 𝑎𝑖 denoting whether you
apply the twist or its inverse. Then the Schubert normal form is the rational number 𝑝/𝑞 given by

1This labelling is compatible with our labelling of geodesics that we will develop in Chapter 6; see Section 6.2.
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Figure 4.3: The two ‘generating’ Dehn twists for 2-tangles. Observe that 𝛾(0/1) and 𝛾(1/0) orient
according to the bridge arcs, not the tangle arcs.

Figure 4.4: The figure 8 knot (left) and a diagramexhibiting that it is two-bridgewith Schubert normal
form 1 + 1

1+ 1
2
= 5/3 (right).

the continued fraction
𝑝/𝑞 ≔ [𝑎𝑛, ..., 𝑎1] = 𝑎𝑛 +

1
𝑎𝑛−1 +

1
⋱+ 1

𝑎1

.

The unknotted form of the link after performing this procedure is either an unknot or a trivial link
of two components, depending on the parity of 𝑛: these are illustrated in Figure 4.3.

For convenience, we define the slope of a two-bridge knot to be the reciprocal of the Schubert
normal form.
Remark. Auseful list of rational knots and links up to 13 crossings was compiled by Herman Gruber;
unfortunately it is no longer available on his website, but it may be accessed through the Internet
Archive [52].

We note that a two-bridge link has either one or two components, according to whether its slope
has odd or even numerator respectively [34, Corollary 8.7.8].

One of the simplest examples of a two-bridge link is the figure 8 knot (Figure 4.4). It is important
historically as it was the first known example of a link whose complement manifold 𝑀 admits a
hyperbolic structure. In fact, William Thurston (informed in part by evidence presented by Robert
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Riley) in the early 1970s proved that “most” knot complements (in a certain sense) admit a hyperbolic
structure. The history surrounding this discovery is very interesting but out of scope for this thesis;
various accounts of interest are [102] and the accompanying commentary [25], Thurston’s account
[125], and the additional references given in the historical notes to Section 10.3 of [100] (p.504).

Thurston’s proof of the hyperbolicity of𝑀 is sketched in [124, Section 3.1], and a detailed descrip-
tion may be found in Section 10.3 of [100]. The manifold that is constructed is very closely related to
one first constructed in 1912 by Hugo Gieseking in his PhD thesis [50]; the idea is simply to apply the
Poincaré polyhedron theorem to a pair of ideal tetrahedra with some carefully chosen facet-pairings.
In addition to the sources just given, we direct the reader to the very nice picture given as Figure 1.9
of [88].

Riley’s proof, on the other hand, is more interesting to us at the moment; it is described in [103]
(see also the conference proceeding [105] for an overview). It is a consequence of Riley’s algebraic
theory of parabolic representations of two-bridge link groups (developed in [106, 107]). More pre-
cisely, Riley computes as Proposition 1 of [106] an over-presentation (in the sense of Chapter VI of
[35]) for the fundamental group 𝐺 of the figure 8 knot complement of the form

(4.1.3) 𝐺 = ⟨𝑥, 𝑦 ∶ 𝑤𝑥 = 𝑦𝑤⟩

where
𝑤 = 𝑥−1𝑦𝑥𝑦−1.

(The cited proposition is applied directly, with the note that the figure 8 knot has Schubert normal
form 5/3. One can also compute this presentation from the Wirtinger presentation: this method is
detailed in Example (4.3) of Chapter VI of [35]. The advantage of using an over-presentation rather
than the Wirtinger presentation is that the over-presentation has only two generators.)

Riley then defined a representation 𝜃 ∶ 𝐺 → PSL(2, ℂ) by

(4.1.4) 𝜃𝑥 ≔ 𝐴 = [1 1
0 1] 𝜃𝑦 ≔ 𝐵 = [ 1 0

−𝜔 1]

where 𝜔 is a primitive cube root of unity. Then Riley’s main result is the following:
4.1.5 Theorem (Theorem 1 of [103]). If Γ ≔ ⟨𝜃𝑥, 𝜃𝑦⟩ then Γ has presentation

⟨𝐴, 𝐵 ∶ 𝑊𝐴𝑊 −1 = 𝐵⟩

where𝑊 = 𝐴−1𝐵𝐴𝐵−1, and so 𝜃 gives an isomorphism 𝐺 ≃ Γ. ▮
Riley used Theorem 4.1.5 to prove the hyperbolicity of the manifold 𝑀 (Corollary on p.284 of

[103]), appealing to some results on 3-manifold topology. In general his theory shows that every
two-bridge link has a fundamental group with an over-presentation on two generators like Equa-
tion (4.1.3) for the figure 8 knot, and that every such group admits a discrete non-abelian represent-
ation with the images of the two generators being parabolic (Theorem 2 of [106]). These represent-
ations are not necessarily faithful: not every two-bridge link is hyperbolic, but the only exceptions
are torus knots [105, Corollary to Theorem 1] (for example, the trefoil knot is two-bridge but its com-
plement has ˜PSL(2, ℝ)-geometry since it is given by ˜PSL(2, ℝ)/ ˜PSL(2, ℤ)). The Fuchsian groups gen-
erated by two parabolic generators were classified by Knapp [64]. In 2002 Agol [1] conjectured the
following theorems (Theorems 4.1.6 and 4.1.7) and sketched an incomplete proof with some errors;
complete proofs were given by Aimi, Lee, Sakai, and Sakuma [5], and Akiyoshi, Ohshika, Parker,
Sakuma, and Yoshida [6].

4.1.6 Theorem. A non-free Kleinian group 𝐺 is generated by two non-commuting parabolic elements
iff one of the following holds:
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Figure 4.5: Riley’s plot of two-bridge link groups in the (+,+)-quadrant of ℂ, reproduced from the
monograph [7, p. VIII].

1. 𝐺 is conjugate to some hyperbolic two-bridge link group; or

2. 𝐺 is conjugate to the Heckoid group2 Heck(𝑝/𝑞, 𝑛) for some 𝑝/𝑞 ∈ ℚ and some 𝑛 ∈ 1
2
ℤ≥3. ▮

4.1.7 Theorem. If 𝐺 is a hyperbolic two-bridge link group then it has exactly two parabolic generating
pairs, up to conjugacy. If 𝐺 is a Heckoid group then it has a unique parabolic generating pair up to
conjugacy. ▮

If 𝑋 and 𝑌 are two parabolics which do not share fixed points (which must be the case, otherwise
the group would be elementary) then, up to conjugacy, they are represented by matrices

𝑋 = [1 1
0 1] , 𝑌𝜌 = [1 0

𝜌 1]

where 𝜌 ∈ ℂ. This normalisation associates a complex number 𝜌 with each two-bridge link group
representation. Riley devoted much effort to finding the set of 𝜌 ∈ ℂ such that
(4.1.8) Γ𝜌 ≔ ⟨𝑋, 𝑌𝜌⟩
is a two-bridge link group, producing the famous image Figure 4.5; we will now spend some time
discussing the features of this plot in order to motivate the rest of this thesis.

4.2 The features of Riley’s plot
The most obvious feature of Figure 4.5 is the fractal curve running diagonally across the centre of
the frame. This is the set of so-called cusp groups. In order to explain what these groups are, we
must consider the two ‘halves’ which the curve separates the plot into. The half of the plot on the left
(closer to 0) contains (marked with + or ×) various Heckoid groups (introduced by Riley in [104]
and formalised by Lee and Sakuma in [71]). Observe that these points appear to lie on curves which
lead to large peaks on the boundary curve. We now explain the construction of these groups.

2We will define Heckoid groups in the next subsection.
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Figure 4.6: Upper and lower unknotting tunnels for a two-bridge knot with four braid regions.

Figure 4.7: The four kinds of orbifolds found along an extended pleating ray.

The idea is very simple: recall that a unknotting tunnel for a link 𝐿 is a properly embedded arc
𝑡 in the complement manifold𝑀 for 𝐿 such that if 𝑁 is a tubular neighbourhood of 𝑡 then𝑀 ⧵ 𝑁 is
a handlebody; a two-bridge link has two natural unknotting tunnels, depicted in Figure 4.6, called
the upper and lower tunnels [109]. Let 𝐿 be the two-bridge knot of slope 𝑝/𝑞; let𝑀(𝑝/𝑞, 0) be the
knot complement manifold for 𝐿 and Heck(𝑝/𝑞, 0) be the fundamental group of𝑀(𝑝/𝑞, 0). Now we
informally3 define the Heckoid orbifold of of slope 𝑝/𝑞 and index 𝑛 ∈ 1

2
ℕ̂≥3, denoted 𝑀(𝑝/𝑞, 𝑛),

to be the orbifold obtained by replacing the arc 𝑡 ⊆ 𝑀(𝑝/𝑞) with a cone arc of angle 2𝜋/𝑛 (or with a
deleted arc if 𝑛 = ∞); the Heckoid group of slope 𝑝/𝑞 and index 𝑛, denoted Heck(𝑝/𝑞, 𝑛), is then
the orbifold fundamental group 𝜋1(𝑝/𝑞, 𝑛).

Let Γ𝜌 = ⟨𝑋, 𝑌𝜌 ∶ 𝑊𝑋 = 𝑌𝜌𝑊⟩ be a faithful representation of the two-bridge link group of
slope 𝑝/𝑞 (where𝑊 is a word in 𝑋 and 𝑌𝜌 depending on the fraction 𝑝/𝑞; compare Equation (4.1.3)
and [106, Proposition 1]). The element in Γ𝜌 corresponding to a loop around the upper tunnel 𝑡 is
represented by the word 𝑊𝑋𝑌−1

𝜌 𝑊 −1, which is necessarily trivial (since the tunnel arc is not de-
leted); the Heckoid group Heck(𝑝/𝑞, 𝑛) has the property that 𝑊𝑋𝑌−1

𝜌 𝑊 −1 is an elliptic element of
order 2𝜋/𝑛, corresponding to replacing the normal points on the tunnel arc with singular points of
order 𝑛 [6, Proposition 3.3]. The representatives for Heck(𝑝/𝑞, 𝑛) in ℂ therefore lie on the curve
tr2(𝑊𝑋𝑌−1

𝜌 𝑊 −1) ∈ (0, 4], where the ‘limit’ as the parameter goes to 0 is the two-bridge knot group
itself, and where the ‘limit’ as the parameter goes to 4 is a manifold where the cone arc is replaced
with a deleted point encircled by a parabolic tunnelword (the correspondingmanifold is called a cusp

3The purpose of this discussion is only tomotivate the definition of the Riley slice, and wewill not be dealing with Heckoid
groups in subsequent chapters; the formal definition, which may be found as Definition 3.2 of [6], involves quite a bit of
technical machinery and since we will not need it we omit it.
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manifold). We can push the parameter past 4 as well, past the point where the tunnel word turns
parabolic: the word turns hyperbolic, and now gives a curve of finite length on the Riemann surface
at infinity: the boundary becomes a 4-times punctured sphere with two arcs joining the punctures
(and we call the corresponding manifold a Riley manifold). This limiting procedure is depicted in
Figure 4.7 (following Figure 0.1 of [7]).

We now give some definitions to fix notation for the subsequent discussion. We will redefine all
of these in later chapters, and the later definitions agreewith the ones given here; the difference is the
point of view (namely, in this chapter we are starting in the space of two-bridge link groups and then
pushing outwards through the Heckoid orbifolds to reach the moduli space of 4-punctured spheres;
in later chapters, we will be studying the latter moduli space intrinsically and we will replace these
definitions with ones coming from the 4-punctured sphere geometry).

4.2.1 Definition. If 𝑝/𝑞 ∈ ℚ, then:

1. The admissable loop of slope 𝑝/𝑞, denoted 𝛾𝑝/𝑞, is the (homotopy class of a) loop surrounding
the upper tunnel of the two-bridge link of slope 𝑝/𝑞 in its complement manifold. If 𝜌 ∈ ℂ is
such that Γ𝜌 is a Heckoid group of slope 𝑝/𝑞 and index 𝑛 (for some 𝑛), then 𝛾𝑝/𝑞 is the (orbi-
fold homotopy class of a) loop around the cone arc of the corresponding orbifold. Finally, if Γ𝜌
has the property that 𝒮(Γ𝜌) is a 4-times punctured sphere (perhaps not even obtained by push-
ing out from a two-bridge link group of slope 𝑝/𝑞) then define 𝛾𝑝/𝑞 in the following way: take
the admissible loop of slope 𝑝/𝑞 in the Heckoid orbifolds, this naturally corresponds to a homo-
topy class of loops in the corresponding 3-manifold with boundary a 4-times punctured sphere;
these loops can be pushed onto the boundary and so we obtain a homotopy class of simple
closed curves on the 4-times punctured sphere which separate the punctures into pairs; now
for each possible hyperbolic structure on the 4-punctured sphere there is a unique geodesic in
this homotopy class; and we define 𝛾𝑝/𝑞(𝜌) to be this unique geodesic on the 4-times punctured
sphere 𝒮(Γ𝜌). (We will give a much easier and more useful definition in Chapter 6.)

2. The Farey word of slope 𝑝/𝑞 is the word Word(𝑝/𝑞) ≔ 𝑊𝑋𝑌−1
𝜌 𝑊 −1 (where 𝑊 is the word

in 𝑋 and 𝑌𝜌 coming from the two-bridge knot representation). Observe that Word(𝑝/𝑞) de-
pends on the value of 𝜌; if we wish to emphasise this dependence we will write Word(𝑝/𝑞) =
Word(𝑝/𝑞)(𝜌).

3. TheFarey polynomial of slope𝑝/𝑞 isΦ𝑝/𝑞 ≔ trWord(𝑝/𝑞)(𝜌), which is a polynomial of degree
𝑞 in the variable 𝜌.

4. The extended rational pleating ray of slope 𝑝/𝑞, ℰ𝒫(𝑝/𝑞) is the connected component of
Φ−1
𝑝/𝑞(ℝ) which contains the Heckoid groups of slope 𝑝/𝑞.

5. The rational pleating ray of slope 𝑝/𝑞, 𝒫(𝑝/𝑞) is the subset of ℰ𝒫(𝑝/𝑞) corresponding to
Φ−1
𝑝/𝑞((−∞,−2)).

6. The cusp group of slope 𝑝/𝑞 is the group Γ𝜌 on the extended pleating ray of slope 𝑝/𝑞 with
Φ𝑝/𝑞(𝜌) = −2.

Looking back at Riley’s plot, Figure 4.5, the fractal boundary is the closure of the set of cusp
groups, and the empty space in the upper right half of the plot is the moduli space of the four-times
punctured spheres.

4.2.2 Definition. The parabolic Riley slice, which we will often shorten toRiley slice and denote
by ℛ, is the set of 𝜌 ∈ ℂ such that the group Γ𝜌 of Equation (4.1.8) is free, discrete, and 𝒮(Γ𝜌) is a
4-times punctured sphere. We denote byℛ the closure ofℛ,ℛ ∪ 𝜕ℛ.
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Figure 4.8: Shaded is the Riley slice exterior (that is, the area of ℂ containing the Heckoid groups);
the portion of the boundary in the northeasterly quadrant of this figure is the curve of Figure 4.5.

This set and the group Γ𝜌 were also studied prior to the 1990s by Sanov [110], Brenner [23], Chang,
Jennings, and Ree [29], Ree [101], Lyndon and Ullman [74], Lyubich and Suvorov [75] (who termed
the discreteness problem for Kleinian groups on two parabolic generators the eye problem due to
the shape of ℂ ⧵ ℛ), and Maskit and Swarup [87]. Work subsequent to that of the papers by Keen,
Komori, and Series includes papers and talks by Beardon [11, 12], Gehring, Maclachlan, and Martin
[48], Bamberg [10], Agol [1], Gilman [51], Ohshika and Miyachi [96], Aimi, Lee, Sakai, and Sakuma
[5], Akiyoshi, Ohshika, Parker, Sakuma, and Yoshida [6], Martin [81, 82], and Elzenaar, Martin, and
Schillewaert [39] (see Chapter 8).

TheRiley sliceℛ consists of the area outside the shaded region of Figure 4.8. For the sake of saying
something concrete (and giving at least some credibility to Figure 4.8), we will prove the following
bound:

4.2.3 Lemma. If |𝜌| < 1, then 𝜌 ∉ ℛ.

Proof. Suppose 𝜌 ∈ ℛ, so Γ𝜌 is discrete. The Shimizu–Leutbecher inequality (Corollary 3.1.11) ap-
plied to 𝑋 and 𝑌𝜌 is exactly |𝜌| ≥ 1. ▮

Of course, this bound is quite bad. A slightly better one is given in Theorem 8.2.1, and some
bounds for sets that are essentially the same as the elliptic Riley slice exterior can be found in [82]
(see in particular Figure 1).

We also note that Γ𝜌 is elementary iff 𝜌 = 0 (since this is the only situation where the fixed points
of the generators collide). In the sequel we will apply results to the groups Γ𝜌 which require the
groups to be elementary; the reader should exclude 𝜌 = 0 in all of these situations. (Of course, 0 does
not lie inℛ by Lemma 4.2.3 so this is hardly ever something one needs to think about.)

In the next chapter we will study the topological and analytical properties of the Riley slice: for
instance, we will show that it is an open set and that it is actually the quasiconformal deformation
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Figure 4.9: A branched cover with branching curve the figure 8 knot in 𝑆3, generated by the Polycut
software [21]; different colours represent different sheets of the cover.

space of any of the groups in its interior. Then, in Chapter 7 we will study themore modern theory of
the slice due to Keen and Series [63] which uses the rational pleating rays to describe the geometry
of the moduli space.

4.3 Elliptic Riley slices
In this thesis, one of the primary goals is to generalise the theory of the Riley slice to the case that
𝑋 and 𝑌𝜌 are elliptic. This corresponds to the following geometric situation: instead of considering
the complement manifold 𝑀 of a link 𝐿, we take an orbifold 𝑂 supported on 𝑆3 with 𝐿 as the sin-
gular locus. More precisely, we take an orbifold induced by viewing 𝐿 as a branching curve, and
gluing different 𝑆3-sheets together through the ‘portals’ of the knot. This idea is due to Thurston, in
particular his 1992 talk Knots to Narnia [123]. Various attempts have beenmade to visualise this geo-
metric phenomenon, including the software Polycut [21] (see Figure 4.9) and a virtual reality model
by Sümmerman [122].

Tomake this precise algebraically, for 𝜌 ∈ ℂ and 𝑎, 𝑏 ∈ ℕwe define Γ𝑎,𝑏𝜌 to be the group generated
by

𝑋 = [exp(𝜋𝑖/𝑎) 1
0 exp(−𝜋𝑖/𝑎)] , 𝑌𝜌 = [exp(𝜋𝑖/𝑏) 0

𝜌 exp(−𝜋𝑖/𝑏)] ;

note that, with the convention 𝜋𝑖/∞ ≔ 0wemay view the parabolic groups Γ𝜌 of the previous section
as limiting cases.
Warning. The matrices 𝑋 and 𝑌 have respective orders 𝑎 and 𝑏. This is because 𝑋𝑎 = 𝑌𝑏 = −𝐼 and
the ambient group which ⟨𝑋, 𝑌𝜌⟩ is taken within is PSL(2, ℂ), not SL(2, ℂ).

The idea now is that for certain values of 𝜌, the orbifold ℍ3/Γ𝑎,𝑏𝜌 has singular locus a two-bridge
link, with one of the two bridges corresponding to a branching of order 𝑎 and the other a branching
of order 𝑏 (the generators 𝑋 and 𝑌𝜌 here are analogous to 𝐴 and 𝐵 in [123], where Thurston takes
all the branching orders equal to 2). We may then define elliptic Heckoid groups as in the previous
section, giving a sequence of orbifolds precisely analogous to those of Figure 4.7 but with the cusp
orbifolds bounded by a pair of 3-marked spheres with one pair of marked points (the pair surrounded
by the tunnel loop) being punctures and the other marked points being the endpoints of two cone
arcs in the orbifold of respective cone angle 2𝜋/𝑎 and 2𝜋/𝑏; the Riley orbifolds are then bounded by



52 CHAPTER 4. THE RILEY SLICE: MOTIVATION AND DEFINITION

4-times marked spheres with one pair of marked points being cone points of angle 2𝜋/𝑎 joined by an
order 𝑎 cone arc and the other pair being of angle 2𝜋/𝑏 and joined by an order 𝑏 cone arc. We then
make the analogous definitions to Definition 4.2.1 and Definition 4.2.2; in particular,

4.3.1 Definition. The elliptic Riley slice for cone orders 𝑎 and 𝑏, which we denote by ℛ𝑎,𝑏, is the
set of 𝜌 ∈ ℂ such that Γ𝑎,𝑏𝜌 is discrete, isomorphic to ℤ/(𝑎) ∗ℤ/(𝑏) and 𝒮(Γ𝜌) is supported on a sphere
with four cone points, two of order 𝑎 and two of order 𝑏. We denote by ℛ𝑎,𝑏 the closure of ℛ𝑎,𝑏,
ℛ𝑎,𝑏 ∪ 𝜕ℛ𝑎,𝑏. We also identify ℛ with ℛ∞,∞, and we allow any combination of finite and infinite
values for 𝑎, 𝑏.

Some illustrations of the elliptic Riley slice exteriors may be found as Figure 4.10 (the generating
computer code may be found in Example A.1.3). Intitial work towards understanding the elliptic
Riley slices was carried out in [128].
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(a) (2, 2) (b) (2, 3) (c) (2, 4) (d) (2,∞)

(e) (3, 2) (f) (3, 3) (g) (3, 4) (h) (3,∞)

(i) (4, 2) (j) (4, 3) (k) (4, 4) (l) (4,∞)

(m) (5, 2) (n) (5, 3) (o) (5, 4) (p) (5,∞)

(q) (6, 2) (r) (6, 3) (s) (6, 4) (t) (6,∞)

(u) (∞, 2) (v) (∞, 3) (w) (∞, 4) (x) (∞,∞)

Figure 4.10: Riley slices for various cone point orders (𝑎, 𝑏).
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Chapter 5

Analytical and topological
properties

In this chapter, we begin with the definition given in the previous chapter (Definition 4.3.1) and
deduce topological and analytic properties of the Riley slices ℛ𝑎,𝑏. We do not rely on any of the
motivating discussion of the previous chapter in our proofs: while we motivated the Riley slice via
deforming knot groups (moving ‘from the outside in’), it is far easier to work ‘from the inside out’
with the purely Kleinian-group-theoretic definition.

Our main results are the following:

• The Riley slices as defined in Definition 4.3.1 are equal to the quasiconformal deformation
spaces of any group in the interior (Lemma 5.1.7);

• ℛ𝑎,𝑏 is a connected set, homeomorphic to an open annulus (Corollary 5.1.6);

• The boundary 𝜕ℛ𝑎,𝑏 (as a subset of ℂ̂) consists of precisely two varieties of group: a group Γ on
the boundary is either a Kleinian group of the first kind (i.e. Ω(Γ) = ∅), or represents a surface
consisting of a pair of thrice-marked spheres, with at least one marking on each sphere being
parabolic (the cusp groups of Definition 4.2.1); this is proved in Theorem 5.2.4.

5.1 The quasiconformal deformation space
Throughout this section, fix 𝜌 ∈ ℛ𝑎,𝑏 and set Γ = Γ𝑎,𝑏𝜌 (where 𝑎, 𝑏 ∈ ℕ≥2 and max{𝑎, 𝑏} ≥ 3).

5.1.1 Proposition. Let [Γ̃, 𝑓] ∈ QH(Γ) (where [Γ̃, 𝑓] represents the equivalence class of (Γ̃, 𝑓)); then
we may choose the representative (Γ̃, 𝑓) such that 𝑓 fixes the points {0, 𝑋(0),∞}. With this choice, there
exists some ̃𝜌 ∈ ℂ such that

Γ̃ = ⟨𝑋, 𝑌 ̃𝜌⟩.

The map 𝑖 ∶ QH(Γ) → ℂ̂ defined by 𝑓 ↦ ̃𝜌 where 𝑓 is the unique representative defined above is a
well-defined injective map.

Proof. Let (𝑤1, 𝑤2, 𝑤3) ≔ (𝑓(0), 𝑓(1), 𝑓(∞)); since Möbius transformations are triply transitive we
may define a function 𝑡 by defining (𝑡(𝑤1), 𝑡(𝑤2), 𝑡(𝑤3)) ≔ (0, 1,∞); now set 𝑓′ ≔ 𝑡𝑓. If Γ̃′ is the
conjugate group induced by 𝑓′, then the map 𝑡 = 𝑓′𝑓−1 induces an equivalence between (Γ̃, 𝑓) and

55
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(Γ̃′, 𝑓′) (with a trivial homotopy that satisfies the quasiconformality conditions by virtue of everything
being 0-quasiconformal), and 𝑓′ fixes (0, 1,∞). We may then replace (Γ̃, 𝑓) with (Γ̃′, 𝑓′).

Assuming now that 𝑓 fixes (0, 1,∞), 𝑓−1𝑋𝑓 is aMöbius transformationwhich fixes∞ (so is upper
triangular), has the same order and type as𝑋 , and sends 0 ↦ 𝑋(0); this is enough to force 𝑓−1𝑋𝑓 = 𝑋 .
We also see that 𝑓−1𝑌𝜌𝑓 is of the same order and type as 𝑌𝜌 and fixes 0 so is of the form 𝑌 ̃𝜌 for some
̃𝜌. This shows that the map 𝑖 ∶ QH(Γ) → ℂ̂ is well-defined; and it is clearly injective. ▮

5.1.2 Proposition. If ̃𝜌 ∈ ℛ𝑎,𝑏, then there exists a path 𝛾 ∶ [0, 1] → ℛ𝑎,𝑏 such that

1. 𝛾(0) = 𝜌 and 𝛾(1) = ̃𝜌

2. For all 𝑡 ∈ [0, 1] there exists a quasiconformal homeomorphism 𝑤(𝑡) ∶ ℂ̂ → ℂ̂ such that
(Γ𝛾(𝑡), 𝑤(𝑡)) is a quasiconformal conjugate of Γ.

In particular,ℛ𝑎,𝑏 is a path connected quasiconformal deformation space.

Remark. For this proposition, see also [121, Theorem 2] (observe that torsion-free is not assumed)
and [87].

Proof. Let ̃𝜌 ∈ ℛ𝑎,𝑏. Then 𝒮(Γ ̃𝜌) is a 4-times punctured sphere and so (considering the Teichmüller
space of such surfaces) there exists a quasiconformal mapping 𝑓 ∶ 𝒮(Γ ̃𝜌) → 𝒮(Γ𝑎,𝑏𝜌 ); lift 𝑓 to ̃𝑓 ∶
ℂ̂ → ℂ̂ and let 𝜇 be the Beltrami coefficient of this mapping; by the measurable Riemann mapping
theorem (Theorem 3.6.1) we may solve the Beltrami equation

𝜕𝑧𝑓𝑡 = 𝑡𝜇(𝑧)𝜕𝑧𝑓𝑡

for each 𝑡 ∈ [0, 1]; in particular, 𝑓0 is a conformal map, and 𝑓1 = ̃𝑓 (by the uniqueness part of the
measurable Riemann mapping theorem). This gives a path in Teich(𝒮(Γ𝑎,𝑏𝜌 )) which projects to the
desired path in QH(Γ𝑎,𝑏𝜌 ). ▮

5.1.3 Corollary. For any 𝜌 ∈ ℛ𝑎,𝑏,ℛ𝑎,𝑏 = 𝑖(QH(Γ𝑎,𝑏𝜌 )).

Proof. By Proposition 5.1.2, ℛ𝑎,𝑏 ⊆ QH(Γ𝑎,𝑏𝜌 ). On the other hand, if ̃𝜌 ∈ QH(Γ𝑎,𝑏𝜌 ) then 𝒮(Γ ̃𝜌) is a
Kleinian group with 𝒮(Γ ̃𝜌) = 𝒮(Γ𝑎,𝑏𝜌 ); since Γ ̃𝜌 is isomorphic to Γ𝑎,𝑏𝜌 it is isomorphic to ℤ/(𝑎) ∗ ℤ/(𝑏).
Combining these observations, we see ̃𝜌 ∈ ℛ𝑎,𝑏 which proves the opposite inclusion. ▮

5.1.4 Corollary. No group inℛ𝑎,𝑏 contains accidental parabolics.

Proof. First note that the groups are quasi-Fuchsian (e.g. Γ𝑎,𝑏57 is Fuchsian for any 𝑎, 𝑏); then apply
[83, p. IX.D.17]. ▮

5.1.5 Corollary. dimQH(Γ𝑎,𝑏𝜌 ) = 1.

Proof. By Theorem 3.6.5 and Theorem 3.6.6 QH(Γ𝑎,𝑏𝜌 ) is a quotient of Teich(𝒮(Γ𝑎,𝑏𝜌 )) by a discontinu-
ous group action and so dimQH(Γ𝑎,𝑏𝜌 ) = dimTeich(𝒮(Γ𝑎,𝑏𝜌 )) = 1. ▮

In fact, QH(Γ𝑎,𝑏𝜌 ) = Teich(𝒮(Γ𝑎,𝑏𝜌 ))/⟨𝜔⟩where 𝜔 is the Dehn twist along a geodesic loop bounding
a compression disc in 𝒮(Γ𝑎,𝑏𝜌 ). The element 𝜔 is a parabolic element of the mapping class group (see
[46, p. 383]), so the quotient is a sphere with one puncture corresponding to 𝜔 and one deleted disc
(see Figure 5.1, where the indicated horoball is that of Lemma 3.3.3); in particular,

5.1.6 Corollary. QH(Γ𝑎,𝑏𝜌 ) is topologically an annulus. ▮
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Figure 5.1: The action of an elementary parabolic group on ℍ2.

Corollary 5.1.6 is also an easy consequence of Theorem 7.4.15 which we will prove using the
Keen–Series theory.

Fix some 𝜌 ∈ ℛ𝑎,𝑏, and let 𝑋 and 𝑌𝜌 denote the generators of Γ𝜌 as above. We have seen that there
is a natural bijection (namely, 𝑖) betweenℛ𝑎,𝑏 and QH(Γ𝑎,𝑏𝜌 ).

5.1.7 Lemma. The map 𝑖 is a holomorphic embedding of QH(Γ𝑎,𝑏𝜌 ) into ℂ for all 𝜌 ∈ ℛ𝑎,𝑏.

Proof. We will show that 𝑖−1 is holomorphic following Proof Schema 3.6.11. Recall that, by The-
orem 3.6.8, if 𝜌 is allowed to move holomorphically in ℛ𝑎,𝑏 then the fixed points of Γ𝜌 move holo-
morphically (since they are given by polynomial equations in the matrix coefficients) and therefore
(since the fixed points are dense in the limit set) the limit setmoves holomorphically; by the 𝜆-lemma,
this holomorphicmotion extends to a holomorphicmotion of ℂ̂ and therefore assigns quasiconformal
deformations of Γ𝜌 to points near to 𝜌 inℂ in a holomorphicmap; by uniqueness of the representation
we chose in the definition of 𝑖, this assignment must be 𝑖−1.

Of course for this proof to work we need to check that for 𝜌 ∈ ℛ𝑎,𝑏 then Γ𝜌 is (a) non-elementary
and (b) has no accidental parabolics: property (a) is true since the two generators𝑋, 𝑌𝜌 havenontrivial
commutator as long as 𝜌 ≠ 0, and (b) is true since every surface in the slice has exactly four marked
points. ▮

The guiding question which was studied by Keen and Series [63] in the parabolic case, and which
we will study for the remainder of this thesis, is the following:

5.1.8 Question. What is the geometry ofℛ𝑎,𝑏 induced by the embedding 𝑖?

Remark. In the sequel, we will implicitly identify ℛ𝑎,𝑏 and QH(Γ𝑎,𝑏𝜌 ) for some fixed 𝜌 ∈ ℛ𝑎,𝑏 under
the map 𝑖.

5.2 Topology of the boundary
In this section, we discuss some results about the structure of the boundary of the Riley slice. We state
these results for the general situation ofℛ𝑎,𝑏, but the proofs we cite onlymention the case 𝑎 = 𝑏 = ∞.
The majority of the proofs transfer without significant incident to the torsion case, and we discuss
those where this might not be true.

5.2.1 Lemma. Every group Γ = Γ𝑎,𝑏𝜌 for 𝜌 ∈ 𝜕ℛ𝑎,𝑏 is discrete and isomorphic to the groups in the
interior ofℛ𝑎,𝑏.
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Proof. This is immediate from the observation that convergence in the quasiconformal deformation
space is exactly algebraic convergence. ▮

For the next set of results we apply the theory of Bers andMaskit [15, 84] on deformation spaces of
quasi-Fuchsian groups (that is, groups which are quasiconformally conjugate to Fuchsian groups—
or, equivalently, have limit set lying on a quasicircle); since there are Fuchsian groups in each Riley
slice (e.g. Γ𝑎,𝑏72 lies in every slice) the Riley slices are quasi-Fuchsian deformation spaces.
Remark. Since the time of the classical papers on boundaries of deformation spaces by Bers, Maskit,
and Swarup (among others) [15, 84, 87],muchworkhas been done to develop powerful hammers that
can deal with the degenerate groups which might lie on the boundaries. In particular, the density
conjecture (that every group on the boundary is an algebraic limit of groups on the interior) and the
ending lamination conjecture (that hyperbolic manifolds with finitely generated fundamental
group are determined by their conformal boundary and their ending laminations) are germane to
our study of deformation spaces. A very nice discussion of these modern results (and others) may be
found in Section 5.4 and subsequent sections of [79], as well as the final sections of Chapter 4 of [88].

Given a quasi-Fuchsian deformation space𝐷 = QH(𝐹) (𝐹 Fuchsian), a cusp group is a group on
the boundary 𝜕𝐷 which has an accidental parabolic.

We first give a result which comes from the set of results of the type ‘geometrically finite groups
on the boundary appear only by pinching nontrivial loops down’; it appears in [84] (essentially it is
a result of the discussion culminating in Theorems 5 and 6 of that paper).

5.2.2 Theorem. If 𝜌 ∈ 𝜕ℛ𝑎,𝑏 contains at least three conjugacy classes of non-loxodromic elements,
then Γ𝜌 is a cusp group. ▮

We now recall the famous Ahlfors measure zero theorem, which was conjectured by Ahlfors
in 1966 and proved by him when the group 𝐺 is geometrically finite [4]; Canary [27] proved the
theorem for the case that 𝐺 is ‘geometrically tame’, and so the full theorem follows from Marden’s
tameness conjecture (for which see the discussion starting on p.292 of [79]).

5.2.3 Theorem (Ahlfors measure zero theorem). The limit set of a finitely generated Kleinian group
𝐺 has either the entire Riemann sphere, or is of measure 0. ▮

For a modern, readable proof in the geometrically finite case see [88, §3.2.2].
The proof of the following theorem makes up the main part of [87], which also shows that every

group in ℛ with Ω(𝐺) ≠ ∅ is geometrically finite. One should note that, at the time of this paper,
the Ahlfors measure zero conjecture was not yet proven and so the authors must rely on some heavy
machinery of Sullivan [119] to see that the quasiconformal deformations in the space are not sup-
ported on the limit set. Since everything in ℛ𝑎,𝑏 is finitely generated we may apply Theorem 5.2.3
to skip this difficulty when reading the paper. In fact, as a consequence of Bowditch’s discussion of
Maskit’s planarity theorem [20], every point in an elliptic Riley slice corresponds to a geometrically fi-
nite group, and so we only need the ‘easy’ version of themeasure zero theorem. Bowditch also shows
that every complex structure on the 4-marked sphere has a realisation in one of the Riley slices.

5.2.4 Theorem. Every group Γ = Γ𝑎,𝑏𝜌 for 𝜌 ∈ 𝜕ℛ𝑎,𝑏 is either ‘of the first kind’ (i.e. Λ(Γ) = ℂ̂), or 𝒮(Γ)
is a disjoint union of a pair of spheres, each with three marked points. ▮

The following theorem is due to McMullen [90] and resolved a classical conjecture of Bers [15]
(who proved, at least, that cusps exist and are of null measure in the boundary):

5.2.5 Theorem. Cusp groups are dense in 𝜕ℛ𝑎,𝑏. ▮
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We are sure that an even stronger result holds, if cusp groups are defined in terms of the Keen–
Series pleating laminations; this appears as Conjecture 10.2.2.

The next theorem is proved by Ohshika and Miyachi as Theorem 1.2 of [96] as a consequence
of the ending lamination theorem. We believe that a similar result for the torsion case might be
obtained by modifying the proof of the special case of the ending lamination theorem given in that
paper to allow for torsion generators.

5.2.6 Theorem. The boundary 𝜕ℛ∞,∞ is a topological circle, and the Riley slice ℛ∞,∞ is the interior
of its closure. ▮

It is also believed by experts that the Riley slice has outward cusps; in the cases of the Earle slice
(see [65]) and the Maskit slice (see [62]) the analogous result is known to be true [93]. Some related
results were proved by Lyubich and Suvorov: if 𝐾 = ℂ ⧵ ℛ∞,∞, then 𝐾 is the closure of its interior
[75, Corollary 1] and 𝐾 is the closure of the set of 𝜌 such that Γ𝜌 is non-discrete; the set of 𝜌 such that
Γ𝜌 has torsion is also dense in 𝐾 [75, Theorem 2].
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Chapter 6

Curves on the 4-marked sphere

The goal of the Keen-Series theory is to produce a foliation of the Riley slice which represents geo-
metric properties of the quasiconformal deformation structure. We saw in the previous chapter that
ℛ is the quotient of Teich(𝑆0,4) by the Dehn twist along a curve bounding a compression disc, and in
Section 1.1 and Chapter 4 we gave some geometric intuition for this: a four-marked sphere produced
by a non-elementary group generated by two non-loxodromic elements is made up of two discs glued
along a common curve. A dense set of fibres in the Keen-Series foliation will be curves along which
the corresponding surfaces are deformed by shrinking along this gluing curve; this chapter is devoted
to studying the gluing curves on the surface from a topological viewpoint.

Our discussion in this section is drawn from several sources; primarily we referenced the papers
[6, 63, 66] and the monograph [7], but some parts of the theory are developed in [94] (for the 1-
punctured torus case which is almost immediately applicable) and [18].

6.1 Geodesic coding on the 4-marked sphere
In discussing the coordinate system on ℛ∞,∞ introduced in [63] and in generalising this to the case
where we allow elliptic generators, it is necessary to be able to connect easily elements of the group
Γ𝜌 to geodesics on the surface Ω(Γ𝜌)/Γ𝜌. The basic ideas are very classical and date back to Dehn’s
algorithm on surfaces (see for instance Chapter 6 of [118]) via the work of Birman and Series [18,
113] on geodesic coding on hyperbolic surfaces. Our treatment below also draws from a similar
discussion for the moduli space of once-punctured tori in Chapter 1 of [7]). All of the results which
we give below appear, in the parabolic case, in [63] with some corrections in [66].

Draw an ideal quadrilateral 𝒫 on the 4-marked sphere 𝑆, as in Figure 6.1; 𝒫 defines a polygonal
complex on 𝑆 with two faces. In the figure, we have labelled each face-edge pair so that every edge
is labelled with a single letter in a different case on each face; this is done compatibly, so on one face
the edges are labelled 𝑋, 𝑌,𝑊, 𝑍 and on the other 𝑥, 𝑦, 𝑤, 𝑧. Let 𝛼 be a non-boundary-parallel curve
on 𝑆 (so 𝑆 ⧵ 𝛼 is a disjoint union of two twice-marked discs); there is a unique geodesic of minimal
length in the same homotopy class as 𝛼 (we denote the set of all of these geodesics bounding pairs
of marked points by 𝐶(𝑆)). Let 𝑃 be a point on this geodesic which lies in the interior of a face,
and choose an orientation of the geodesic; now walk along the geodesic from 𝑃, writing down at
every edge-crossing the label associated to the face you are entering. The result is a word in the
symbols {𝑋, 𝑥, 𝑌 , 𝑦,𝑊,𝑤, 𝑍, 𝑧}. For a fixed 𝜌 ∈ ℛ𝑎,𝑏, define a map Word𝒫 ∶ 𝐶(𝑆) → Γ𝑎,𝑏𝜌 by sending
(𝑋, 𝑥, 𝑌 , 𝑦) ↦ (𝑋𝑎,𝑏, (𝑋𝑎,𝑏)−1, 𝑌𝑎,𝑏

𝜌 , (𝑌𝑎,𝑏
𝜌 )−1), sending (𝑊,𝑤, 𝑍, 𝑧) ↦ (1, 1, 1, 1), and then declaring

the image of two concatenated words to be the product of the images of the adjoined words.

61
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Figure 6.1: A labelled ideal quadrilateral on the 4-marked sphere.

Figure 6.2: Fundamental domain for a Riley group with two parabolic generators.

The following theorem shows that, for 𝜌 ∈ ℛ𝑎,𝑏 with |𝜌| sufficiently large, there is a natural
choice for 𝒫 which reflects the group structure.

6.1.1 Theorem. Let 𝐼+𝑌 = 𝑆(|𝜌|−1, −𝛽−1𝜌−1) and 𝐼−𝑌 = 𝑆(|𝜌|−1, 𝛽𝜌−1) be the isometric circles of 𝑌𝜌. If
𝑋 is parabolic, let 𝐼±𝑋 = {𝑧 ∈ ℂ ∶ ℑ𝑧 = ±1} ∪ {∞} and assume that 𝜌 is sufficiently large that 𝐼±1𝑌 lie
entirely within the vertical strip {𝑧 ∈ ℂ ∶ −1 < ℜ𝑧 < 1}. If 𝑋 is elliptic, then suppose 𝜌 is sufficiently
large that we may choose two lines 𝐼±1𝑋 through (𝛼−1 −𝛼)−1, making an angle of 2𝜋/𝑝 with the property
that 𝐼±1𝑌 are contained within one of the open cones of angle 2𝜋/𝑝 ofℂ cut out by the lines. Let ∘𝐼𝛼𝑔 be the
hyperbolic plane erected above 𝐼𝛼𝑔 (𝛼 = ±1, 𝑔 = 𝑋, 𝑌𝜌).

Let ∘𝐷 be the (connected) hyperbolic polyhedron bounded by the domes ∘𝐼𝛼𝑔 , and let 𝐷 = ℂ̂ ∩ ∘𝐷.

1. The polyhedron ∘𝐷 is a fundamental polyhedron for Γ𝜌 acting on ℍ3.

2. 𝐷 is a fundamental domain for Γ𝜌 acting onΩ(Γ𝜌).

3. The orbifoldℳ(Γ𝜌) has fundamental group Γ𝜌; it is the interior of a topological sphere with four
marked points arranged in pairs, each pair represented by one of the two generators of the group;
the two points corresponding to a generator are joined by either a deleted arc in the manifold (if
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Figure 6.3: Fundamental domain for a Riley group with two elliptic generators, of orders 𝑝 and 𝑞.

Figure 6.4: Fundamental domain for a Riley group with one elliptic and one parabolic generator.
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the generator is parabolic), or an arc of singular points with a cone angle of 2𝜋/𝑛 (if the generator
is elliptic of order 𝑛).

Fundamental domains are sketched in Figures 6.2 to 6.4.

Proof. Parts (1) and (2) of the result follow from Proposition 3.5.3, since 𝑋 and 𝑌𝜌 pair 𝐼±𝑥 and 𝐼±𝑌
respectively, and each maps 𝐷 entirely off itself. To see that the orbifold has the fundamental group
Γ𝜌, we note that ℍ3 is simply connected and so by the covering space theory recalled above Γ𝜌 =
𝜋1(ℍ3/Γ𝜌). Finally the remark about the topological type of the manifold follows from the Poincaré
polyhedron theorem, as in the discussion immediately following Proposition 3.5.3. ▮

6.1.2 Corollary. Every group inℛ𝑎,𝑏 is geometrically finite.

Proof. By Theorem 6.1.1, there is a group inℛ𝑎,𝑏 which is geometrically finite; by [83, VI.E.7], every
quasiconformal deformation of a geometrically finite group is geometrically finite. ▮

Recall that, if 𝑓 ∈ PSL 2, ℂ is loxodromic, then its complex translation length is the number

trlen𝑓 ≔ 2 arccosh tr𝑓2 ;

the two real numbers ℜ trlen𝑓 and ℑ trlen𝑓 respectively give the translation length of the action of
𝑓 on its axis in ℍ3, and the angle which 𝑓 rotates points about its axis (the so-called holonomy of
the action). A nice exposition of these quantities is found as Section 12.1 of [76].

6.1.3 Lemma. Suppose that 𝜌 ∈ ℛ𝑎,𝑏 satisfies the hypothesis of Theorem 6.1.1, and let 𝑆 be the corres-
ponding Riemann surface; let 𝒫 be the ideal quadrilateral consisting of the projections of the isometric
circles as defined in that theorem. For every 𝛼 ∈ 𝐶(𝑆),Word𝒫(𝛼) is an element of Γ𝑎,𝑏𝜌 which preserves
the lift of 𝛼 toΩ(Γ𝑎,𝑏𝜌 ); accordingly, ifWord𝒫(𝛼) is hyperbolic, then the length of 𝛼 in the quotient metric
is exactly the translation length ofWord𝒫(𝛼).

Proof. This is immediate from the definition of Word(𝑝/𝑞) as a cutting sequence. ▮

6.1.4 Lemma. Suppose that 𝜌 ∈ ℛ𝑎,𝑏 satisfies the hypothesis of Theorem 6.1.1, and let 𝑆 be the corres-
ponding Riemann surface, let 𝒫 be the ideal quadrilateral consisting of the projections of the isometric
circles as defined in that theorem, and let 𝛼 ∈ 𝐶(𝒮(Γ𝑎,𝑏𝜌 )). Let ̃𝜌 ∈ ℛ𝑎,𝑏 be arbitrary, and let 𝑓 ∶ ℂ̂ → ℂ̂
be the quasiconformal conjugate sending Γ𝜌 to Γ ̃𝜌. Then 𝑓Word𝒫(𝛼)𝑓−1 in Γ𝑎,𝑏̃𝜌 leaves 𝑓𝛼 invariant.

Proof. This follows because 𝑓 is a homeomorphism, so acts sufficiently nicely on both the loops on
the surface and the elements of the fundamental groupwhich represent them; this action is of course
compatible with the conjugation action on the group, since one is defined in terms of the other. ▮

By Proposition 5.1.1, 𝑓Word𝒫(𝛼)𝑓−1 is the word in the two generators of Γ𝑎,𝑏̃𝜌 given by exactly
the same sequence of 𝑋±1 and 𝑌±1 as Word𝒫(𝛼), just with the substitution of ̃𝜌 for 𝜌. Thus we may
define Word(𝛼) for each 𝜌 as the word in Γ𝑎,𝑏𝜌 corresponding to this sequence.

We now introduce an enumeration of simple closed non-boundary-parallel geodesics by ℚ̂ ∶=
ℚ ∪ {∞}. This is done by passing to a universal cover of 𝑆; it must be stressed that this is a purely
topological process, and the cover doesnot lift the geometry of 𝑆. Cutting 𝑆 along three of the four arcs
in the polygonal complex gives a hexagon; identify this hexagon with the polygon inℝ2 with vertices
(0, 0), (0, 1), (0, 2), (1, 2), (1, 1), (1, 0), labelling the edges of this hexagon according to the face-edge
labelling on 𝑆; then tessellate ℝ2 according to the induced edge pairing (e.g. the edge labelled 𝑋 is
glued to that labelled 𝑥), as in Figure 6.5. (We will not worry about whether the vertices of the tiling
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Figure 6.5: Topological cover of the 4-marked sphere induced by the polygonal complex of Figure 6.1,
together with (in red) a line segment of slope 1/2 which projects exactly onto a simple closed non-
boundary-parallel curve on 𝑆 and which allows us to read off from the red labels that Word(1/2) =
𝑦𝑥𝑌𝑋 .

are deleted or marked in any way: when we ‘lift’ geodesics, they will always be lifted away from the
vertex lattice.)

Define now a map 𝛾 ∶ ℚ̂ → 𝐶(𝑆) as follows: if 𝑝/𝑞 ∈ ℚ̂, then pick a point 𝑃 ∈ (0, 1)2 such that
the line 𝐿 in ℝ2 of slope 𝑝/𝑞 which passes through 𝑃 does not hit any points of ℤ2; then 𝐿 projects
down to a curve on 𝑆 which bounds two marked points (namely, the curve with the same cutting
sequence on 𝑆 as 𝐿 has on the lifted grid) and there is a unique geodesic 𝛾(𝑝/𝑞) in 𝐶(𝑆) in the same
homotopy class; some examples are seen in Figure 6.6.

We wish to extend this theorem to allow irrational slopes. Observe that any nontrivial simple
closed geodesic on the 4-marked sphere must bound either two discs containing resp. one and three
marked points, or two discs each containing two marked points. In the latter case, there is a unique
geodesic in that isotopy class ofminimal length; but in the former case there is no geodesic ofminimal
length, and all geodesics are isotopic to the stationary curve at themarked point of the singly-marked
disc. Thus no geodesics of the latter type may lie inℳℒ0(𝑆). This shows that 𝐶(𝑆) = ℳℒ0(𝑆) (since
clearly any two geodesics of the first type must intersect).

6.1.5 Theorem. Let 𝑆 be a 4-marked sphere. Thenℳℒ(𝑆) is in natural bijective correspondence with ℝ̂
via a map 𝛾 ∶ ℝ̂ → ℳℒ(𝑆), such that the restriction 𝛾↾ℚ̂ is exactly the bijective correspondence between
ℚ̂ andℳℒ0(𝑆) just defined.

Proof. Define 𝛾 exactly as in the rational case: if 𝜆 ∈ ℝ, then 𝛾(𝜆) is the projection of any line passing
through (0, 1)2 of slope 𝜆 in ℝ2 which does not hit any lattice points of ℤ2 to the surface 𝑆 via the
side-pairing indicated in Figure 6.5. If 𝜆 is rational, then one obtains an element ofℳℒ0(𝑆) as just
defined; if 𝜆 is irrational, the projection is dense in a 2-dimensional compact subset away from the
singular part of 𝑆. ▮

The composition of 𝛾 ∶ ℚ̂ → 𝐶(𝑆) followed by Word ∶ 𝐶(𝑆) → Γ𝑎,𝑏𝜌 gives a map ℚ̂ → Γ𝑎,𝑏𝜌
which we also denote byWord. Observe that Word(∞) = 1. (Of course, wemight also define cutting
sequences for irrational slopes; in this case, we obtain biinfinite words in the letters 𝑋, 𝑥, 𝑌, 𝑦 rather
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Figure 6.6: Three of the simplest rational curves on the sphere: 𝛾(0/1), 𝛾(1/1), and 𝛾(1/0); the red
and blue arcs are the respective lifts of the vertical and horizontal lines of the lattice spanned by
ℤ2, and we have indicated the intersection number of each curve with these arcs to illustrate their
dependence on 𝑝/𝑞.

than words representing group elements: see [18] for an interesting discussion of the combinatorial
group theory.)

6.1.6 Lemma (Structure of Word(𝑝/𝑞)). Suppose 𝑝/𝑞, 𝑟/𝑠 ∈ ℚ̂.1

1. (Structure of image words.) Suppose 𝑞 ≠ 0. ThenWord(𝑝/𝑞) is a word of length 2𝑞, alternating
between 𝑋±1 and (𝑌𝑎,𝑏

𝜌 )±1, such that the number of times the exponent flips between±1 overall is
the residue of |𝑝|mod 2𝑞.

2. (Defined mod 2.) If 𝑝/𝑞 ≡ ±𝑟/𝑠 (mod 2) thenWord(𝑝/𝑞) =Word(𝑟/𝑠).

3. (Almost injective mod 2.) If 𝑝/𝑞 ≢ ±𝑟/𝑠 (mod 2) thenWord(𝑝/𝑞) ≠Word(𝑟/𝑠).

Proof. (1) follows from careful study of the lattice. (2) follows from observing firstly that 𝑝/𝑞 + 2 =
(𝑝+2𝑞)/𝑞 so by (1) the two words have the same length, and then observing that the letter appearing
at any given place in the word depends only on the ‘height’ mod 2. Similar arguments show that the
lines of slope 𝑝/𝑞 and 2 − 𝑝/𝑞 have the same word. (3) follows immediately from (1). ▮

Remark. In [63], part (3) of Lemma 6.1.6 is incorrectly stated (Remark 2.5). This is corrected in [66]
(Theorem 1.2).

The word Word(𝑝/𝑞) is called the Farey word of slope 𝑝/𝑞; the trace trWord(𝑝/𝑞) is a polyno-
mial in the indeterminate 𝜌 known as the Farey polynomial of slope 𝑝/𝑞 and we denote it here by
Φ𝑎,𝑏
𝑝/𝑞(𝜌). The properties of Lemma 6.1.6 carry over to the polynomials: 𝑞 is the degree ofΦ

𝑎,𝑏
𝑝/𝑞, and (in

the parabolic case where ‘sign’ is meaningful) 𝑝measures the number of sign changes in the coeffi-
cient sequence. We will study the structure of the Farey polynomials more closely in Chapter 9; for
the time being we simply note the following symmetry which will be useful in subsequent chapters:

6.1.7 Lemma. LetWord(𝑝/𝑞) be a Farey word; then the word consisting of the first 2𝑞 − 1 letters of
Word(𝑝/𝑞) is conjugate to 𝑋 or 𝑌 according to whether the 𝑞th letter ofWord(𝑝/𝑞) is 𝑋±1 or 𝑌±1 (i.e.
according to whether 𝑞 is even or odd respectively)

1We observe the convention here, and subsequently, that the statement “𝑝/𝑞 ∈ ℚ̂” implicitly implies that (𝑝, 𝑞) = 1 if
𝑞 ≠ 0 .
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Figure 6.7: Three of the simplest rational arcs on the sphere: 𝛽(0/1), 𝛽(1/1), and 𝛽(1/0). As in Fig-
ure 6.6, the interaction with the lifts of the horizontal and vertical lines in the lattice determine (or
are determined by) the slope 𝑝/𝑞.

Proof. This identity comes from considering the rotational symmetry of the line of slope 𝑝/𝑞 about
the point (𝑞, 𝑝); it is clear from the symmetry of the picture that the first 𝑝 − 1 letters of Word(𝑝/𝑞)
are obtained from the (𝑝 + 1)th to (2𝑝 − 1)th letters by reversing the order and swapping the case
(imagine moving the line down by 𝜖 to hit the point (𝑞, 𝑝), rotating the line by 180 degrees onto itself,
and then moving the line back up; and observe the motion of the labelling). ▮

6.1.8 Example. In red in Figure 6.5 we see that

Word(1/2) = 𝑦𝑥𝑌𝑋 = (𝑌𝑎,𝑏
𝜌 )−1(𝑋𝑎,𝑏)−1𝑌𝑎,𝑏

𝜌 𝑋𝑎,𝑏;

this has one sign flip in the exponents (from -1 to 1) and is of length 2×2. The Farey words for 𝑞 ≤ 12
are listed in Table 6.1 and the Farey polynomials for 𝑞 ≤ 4 are listed in Table 6.2.

It will be useful also to consider a version of these results which allow curves through themarked
points. A rational arc is a curve on themarked sphere which is the union of two disjoint simple arcs,
each joining two marked points (and both arcs disjoint even at the endpoints, so all four marked
points are covered).

6.1.9 Proposition. Let 𝐴(𝑆) be the set of isotopy classes in 𝑆 = 𝒮(Γ𝑎,𝑏𝜌 ) of rational arcs. Then 𝐴 is in
bijective correspondence with ℚ̂.

Proof. The proof proceeds in precisely the same way as the case of simple closed curves, except now
we consider the lines of rational slope which originate at (0, 0). The added complication is that each
slope corresponds to two possible lines (shifted vertically by 1/2). See Figure 6.7 (and compare with
Figure 6.6 to see how the curves and arcs with corresponding slopes relate). ▮

We write 𝛽(𝑝/𝑞) for the rational arc of slope 𝑝/𝑞.
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Table 6.1: Farey words Word(𝑝/𝑞) for small 𝑞. See Example A.1.2.

𝑝/𝑞 Word(𝑝/𝑞)
0/1 𝑦𝑋
1/1 𝑌𝑋
1/2 𝑦𝑥𝑌𝑋
1/3 𝑦𝑋𝑌𝑥𝑌𝑋
2/3 𝑦𝑥𝑦𝑋𝑌𝑋
1/4 𝑦𝑋𝑦𝑥𝑌𝑥𝑌𝑋
3/4 𝑦𝑥𝑦𝑥𝑌𝑋𝑌𝑋
1/5 𝑦𝑋𝑦𝑋𝑌𝑥𝑌𝑥𝑌𝑋
2/5 𝑦𝑋𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑋
3/5 𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑋𝑌𝑋
4/5 𝑦𝑥𝑦𝑥𝑦𝑋𝑌𝑋𝑌𝑋
1/6 𝑦𝑋𝑦𝑋𝑦𝑥𝑌𝑥𝑌𝑥𝑌𝑋
5/6 𝑦𝑥𝑦𝑥𝑦𝑥𝑌𝑋𝑌𝑋𝑌𝑋
1/7 𝑦𝑋𝑦𝑋𝑦𝑋𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑋
2/7 𝑦𝑋𝑦𝑥𝑌𝑥𝑦𝑋𝑦𝑋𝑌𝑥𝑌𝑋
3/7 𝑦𝑋𝑌𝑥𝑦𝑋𝑌𝑥𝑌𝑋𝑦𝑥𝑌𝑋
4/7 𝑦𝑥𝑌𝑋𝑦𝑥𝑦𝑋𝑌𝑥𝑦𝑋𝑌𝑋
5/7 𝑦𝑥𝑦𝑋𝑌𝑋𝑌𝑥𝑦𝑥𝑌𝑋𝑌𝑋
6/7 𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑋𝑌𝑋𝑌𝑋𝑌𝑋
1/8 𝑦𝑋𝑦𝑋𝑦𝑋𝑦𝑥𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑋
3/8 𝑦𝑋𝑌𝑥𝑌𝑋𝑦𝑥𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑋
5/8 𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑥𝑌𝑋𝑦𝑥𝑦𝑋𝑌𝑋
7/8 𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑌𝑋𝑌𝑋𝑌𝑋𝑌𝑋
1/9 𝑦𝑋𝑦𝑋𝑦𝑋𝑦𝑋𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑋
2/9 𝑦𝑋𝑦𝑋𝑌𝑥𝑌𝑥𝑦𝑋𝑦𝑋𝑦𝑥𝑌𝑥𝑌𝑋
4/9 𝑦𝑋𝑌𝑥𝑦𝑋𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑋𝑦𝑥𝑌𝑋
5/9 𝑦𝑥𝑌𝑋𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑋𝑌𝑥𝑦𝑋𝑌𝑋
7/9 𝑦𝑥𝑦𝑥𝑌𝑋𝑌𝑋𝑌𝑥𝑦𝑥𝑦𝑋𝑌𝑋𝑌𝑋
8/9 𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑋𝑌𝑋𝑌𝑋𝑌𝑋𝑌𝑋
1/10 𝑦𝑋𝑦𝑋𝑦𝑋𝑦𝑋𝑦𝑥𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑋
3/10 𝑦𝑋𝑦𝑥𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑥𝑌𝑋𝑦𝑋𝑌𝑥𝑌𝑋
7/10 𝑦𝑥𝑦𝑋𝑌𝑋𝑦𝑥𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑥𝑌𝑋𝑌𝑋
9/10 𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑌𝑋𝑌𝑋𝑌𝑋𝑌𝑋𝑌𝑋
1/11 𝑦𝑋𝑦𝑋𝑦𝑋𝑦𝑋𝑦𝑋𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑋
2/11 𝑦𝑋𝑦𝑋𝑦𝑥𝑌𝑥𝑌𝑥𝑦𝑋𝑦𝑋𝑦𝑋𝑌𝑥𝑌𝑥𝑌𝑋
3/11 𝑦𝑋𝑦𝑥𝑌𝑥𝑌𝑋𝑦𝑋𝑌𝑥𝑌𝑥𝑦𝑋𝑦𝑋𝑌𝑥𝑌𝑋
4/11 𝑦𝑋𝑌𝑥𝑌𝑋𝑦𝑋𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑋
5/11 𝑦𝑋𝑌𝑥𝑦𝑋𝑌𝑥𝑦𝑋𝑌𝑥𝑌𝑋𝑦𝑥𝑌𝑋𝑦𝑥𝑌𝑋
6/11 𝑦𝑥𝑌𝑋𝑦𝑥𝑌𝑋𝑦𝑥𝑦𝑋𝑌𝑥𝑦𝑋𝑌𝑥𝑦𝑋𝑌𝑋
7/11 𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑋𝑌𝑋𝑦𝑥𝑦𝑋𝑌𝑋
8/11 𝑦𝑥𝑦𝑋𝑌𝑋𝑌𝑥𝑦𝑥𝑦𝑋𝑌𝑋𝑦𝑥𝑦𝑥𝑌𝑋𝑌𝑋
9/11 𝑦𝑥𝑦𝑥𝑦𝑋𝑌𝑋𝑌𝑋𝑌𝑥𝑦𝑥𝑦𝑥𝑌𝑋𝑌𝑋𝑌𝑋
10/11 𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑋𝑌𝑋𝑌𝑋𝑌𝑋𝑌𝑋𝑌𝑋
1/12 𝑦𝑋𝑦𝑋𝑦𝑋𝑦𝑋𝑦𝑋𝑦𝑥𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑥𝑌𝑋
5/12 𝑦𝑋𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑋𝑦𝑥𝑌𝑥𝑦𝑋𝑌𝑥𝑌𝑋𝑦𝑥𝑌𝑋
7/12 𝑦𝑥𝑌𝑋𝑦𝑥𝑦𝑋𝑌𝑥𝑦𝑥𝑌𝑋𝑦𝑥𝑌𝑋𝑌𝑥𝑦𝑋𝑌𝑋
11/12 𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥𝑌𝑋𝑌𝑋𝑌𝑋𝑌𝑋𝑌𝑋𝑌𝑋
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Table 6.2: Farey polynomials Φ𝑎,𝑏
𝑝/𝑞(𝑧) for small 𝑞. Here, 𝛼 = exp(𝜋𝑖/𝑎) and 𝛽 = exp(𝜋𝑖)/𝑏.

𝑝/𝑞
0/1 𝛼

𝛽
+ 𝛽

𝛼
− 𝑧

1/1 𝛼𝛽 + 1
𝛼𝛽

+ 𝑧

1/2 2 + (𝛼𝛽 − 𝛼
𝛽
− 𝛽

𝛼
+ 1

𝛼𝛽
) 𝑧 + 𝑧2

1/3
1
𝛼𝛽 + 𝛼𝛽 + (3 − 1

𝛼2 − 𝛼2 − 1
𝛽2 − 𝛽2 + 𝛼2

𝛽2 +
𝛽2
𝛼2 ) 𝑧

+ (𝛼𝛽 − 2𝛼𝛽 − 2𝛽𝛼 + 1
𝛼𝛽) 𝑧

2 + 𝑧3

2/3

𝛼
𝛽 + 𝛽

𝛼 + (−3 + 𝛼2 + 1
𝛼2 −

1
𝛼2𝛽2 − 𝛼2𝛽2 + 𝛽2 + 1

𝛽2 ) 𝑧

+ (−2𝛼𝛽 − 2
𝛼𝛽 + 𝛼

𝛽 + 𝛽
𝛼) 𝑧

2 − 𝑧3

1/4

2 + ( 𝛼𝛽3 −
𝛼3
𝛽3 +

2
𝛼𝛽 − 3𝛼𝛽 + 𝛼3

𝛽 + 𝛽
𝛼3 − 3𝛽𝛼 + 2𝛼𝛽 − 𝛽3

𝛼3 +
𝛽3
𝛼 ) 𝑧

+ (6 − 2
𝛼2 − 2𝛼2 − 2

𝛽2 + 3𝛼
2

𝛽2 − 2𝛽2 + 3𝛽
2

𝛼2 ) 𝑧
2

+ ( 1
𝛼𝛽 − 3𝛼𝛽 − 3𝛽𝛼 + 𝛼𝛽) 𝑧3 + 𝑧4

3/4

2 + ( 1
𝛼3𝛽3 −

1
𝛼𝛽3 −

1
𝛼3𝛽 + 3

𝛼𝛽 − 2𝛼𝛽 − 2𝛽𝛼 + 3𝛼𝛽 − 𝛼3𝛽 − 𝛼𝛽3 + 𝛼3𝛽3) 𝑧

+ (6 − 2
𝛼2 − 2𝛼2 − 2

𝛽2 +
3

𝛼2𝛽2 − 2𝛽2 + 3𝛼2𝛽2) 𝑧2

+ ( 3
𝛼𝛽 − 𝛼

𝛽 − 𝛽
𝛼 + 3𝛼𝛽) 𝑧3 + 𝑧4
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6.2 The geodesic representation in terms of Dehn twists
We have given two definitions of the curves 𝛾(𝑝/𝑞): one in this chapter (as the geodesic obtained by
projecting a line of slope 𝑝/𝑞 from a cover to the 4-marked sphere), and one implicitly in Section 1.1
and Section 4.1, as the curve obtained when unknotting a two-bridge link while keeping track of the
Dehn twist action on 𝛾(1/0). In this section, we check that these are the same.

Recall that we use the notation [𝑎𝑛, ..., 𝑎1] to stand for the simple2 continued fraction

𝑎𝑛 +
1

𝑎𝑛−1 +
1

⋱+ 1
𝑎1

;

Later, in Section 9.3, we will study these decompositions in the context of computing Farey polyno-
mials using the Farey sums which we define in the next section.

We will be dealing with slopes of two-bridge links, which we defined to be equal to the reciprocal
of the Schubert normal form; the Schubert normal formwas defined in terms of a continued fraction
decomposition, and so taking the reciprocal we end up with another continued fraction decomposi-
tion

[0, 𝑎𝑛, ..., 𝑎1] =
1

𝑎𝑛 +
1

𝑎𝑛−1+
1

⋱+ 1
𝑎1

.

We now recall a standard fact from classical number theory.

6.2.1 Proposition ([54, Theorem 162]). Every rational number can be expressed as a finite simple
continued fraction in exactly two ways, one with an even and one with an odd number of convergents
(number of sequence elements 𝑎𝑛). These are of the form

[𝑎1, ..., 𝑎𝑁−1, 𝑎𝑁 , 1] and [𝑎1, ..., 𝑎𝑁−1, 𝑎𝑁 + 1]

respectively, for some 𝑁. ▮

The length of the continued fraction decomposition of [𝑎1, ..., 𝑎𝑁−1, 𝑎𝑁 , 1] = [𝑎1, ..., 𝑎𝑁−1, 𝑎𝑁+1]
is defined to be 𝑁. For example, the length of the decomposition

1 + 1
1 + 1

2

= 1 + 1
1 + 1

1+ 1
1

is 3.
In stating the following result, we use the notation from Section 3.6B to denote Dehn half-twists:

namely, if 𝜔 is a closed curve on a surface 𝑆, then we write 𝜎𝜔 for the Dehn half-twist along 𝜔. We
write 𝜎𝑘𝜔 for the 𝑘-fold application of the half-twist (or the −𝑘-fold application of the inverse half-
twist, if 𝑘 < 0). Given a two-bridge knot represented by a 2-tangle inside a 4-marked 2-sphere and
a pair of disjoint bridge arcs projected onto the sphere, write 𝜐(1/0) for the unique nontrivial simple
closed curve on the 2-sphere which does not intersect the bridge arcs, and write 𝜐(0/1) for the unique
nontrivial simple closed curvewhich intersects both arcs exactly once (so 𝜐(0/1) and 𝜐(1/0) agreewith
𝛾(0/1) and 𝛾(1/0) respectively, as defined in Figure 4.3. Now define 𝜐(𝑝/𝑞) for other 𝑝/𝑞 ∈ ℚ̂ via the
following algorithm (c.f. Algorithm 4.1.2):

6.2.2 Algorithm. Let [𝑎𝑛, ..., 𝑎1] be the unique continued fraction decomposition of 𝑝/𝑞with 𝑎1 ≠ 1.
2The adjective ‘simple’ in this context means that the denominators are all taken to be 1 and that all of the 𝑎𝑛 are positive.
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1. Let 𝑖 = 1, and let 𝜔 ≔ 𝜐(1/0).

2. If 𝑖 is odd, replace 𝜔 with 𝜎𝑎𝑖𝜐(0/1)𝜔.

3. Otherwise, if 𝑖 is even, replace 𝜔 with 𝜎𝑎𝑖𝜐(1/0)𝜔.

4. If 𝑖 = 𝑛 then conclude that 𝜐(𝑝/𝑞) = 𝜔 and terminate, otherwise set 𝑖 to 𝑖 + 1 and go back to
(2).

Now the main result is the following:

6.2.3 Theorem. The two functions 𝛾 and 𝜐 agree on ℚ̂.
Recall in preparation for the proof that we have a fixed ideal quadrilateral 𝒫 on the 4-marked

sphere 𝑆, and that we label the opposing sides𝑊 and 𝑍, and 𝑋 and 𝑌 (Figure 6.1).

Proof. The curve 𝜐(𝑝/𝑞) is a non-boundary-parallel geodesic on the 4-marked sphere which cuts the
quadrilateral𝒫 finitely many times, and so is equal to some 𝛾(𝑟/𝑠). The latter is uniquely determined
by the number of times it cuts each pair of opposite edges of the quadrilateral (it cuts the 𝑊 and
𝑍 edges 𝑟 times each, and the 𝑋 and 𝑌 edges 𝑠 times each). Thus, we just need to compute the
intersubsection numbers of 𝜐(𝑝/𝑞)with these edges. Suppose that 𝑟𝑖/𝑠𝑖 is the cutting number fraction
obtained at the 𝑖th step; then by induction in the case that 𝑖 is even we have

𝑟𝑖+1
𝑠𝑖 + 1 =

𝑟𝑖 + 𝑎𝑖+1𝑠𝑖
𝑠𝑖

= [0, 𝑎𝑖, ..., 𝑎1] + 𝑎𝑖+1 = [𝑎𝑖+1, 𝑎𝑖, ..., 𝑎1]

and in the case that 𝑖 is odd
𝑟𝑖+1
𝑠𝑖 + 1 =

𝑟𝑖
𝑠𝑖 + 𝑎𝑖+1𝑟𝑖

= 1
𝑎𝑖+1 +

𝑠𝑖
𝑟𝑖

= [0, 𝑎𝑖+1, 𝑎𝑖, ..., 𝑎1].

The first equality in each case follows from considering the geometric action of the Dehn twist on
the curve at the 𝑖th step: the key point is that we are alternating between ‘horizontal’ and ‘vertical’
twists (see Figure 1.1 for a step-by-step example of this). In any case, this completes the proof, since
it shows that the cutting fraction at the 𝑛th step is [(0), 𝑎𝑛, ..., 𝑎1] = 𝑝/𝑞; i.e. 𝜐(𝑝/𝑞) = 𝛾(𝑝/𝑞). ▮

6.3 The Farey triangulation and spines
Recall that PSL(2, ℤ) acts as a group of isometries on ℍ2. The orbits of the ideal triangle spanned by

(1/0, 1/1, 0/1) = (∞, 1, 0)

under SL(2, ℤ) form a simplicial complex tiling ℍ2 which is called the Farey triangulation; we
denote this by𝒟. Given a simplicial complex 𝒞 we write 𝒞(𝑛) for the set of 𝑛-faces, and we use ⪯ for
the face relation. In particular,𝒟(0) = ℚ̂, and the objects of𝒟(2) are triangles with vertex triples of
the form {𝑝/𝑞, (𝑝 + 𝑟)/(𝑞 + 𝑠), 𝑟/𝑠} where 𝑝𝑠 − 𝑞𝑟 = ±1. This second assertion follows immediately
from the definition of𝒟 as a tessellation: if {𝑎/𝑏, 𝑐/𝑑, 𝑒/𝑓} ∈ 𝒟(2), then there exists some matrix

[𝑝 𝑟
𝑞 𝑠] ∈ PSL(2, ℤ)

which acts on the ‘seed triangle’ like

[𝑝 𝑟
𝑞 𝑠] [

1 1 0
0 1 1] = [𝑎 𝑐 𝑒

𝑏 𝑑 𝑓]



72 CHAPTER 6. CURVES ON THE 4-MARKED SPHERE

which gives immediately that (𝑎/𝑏, 𝑐/𝑑, 𝑒/𝑓) = (𝑝/𝑞, (𝑝 + 𝑟)/(𝑞 + 𝑠), 𝑟/𝑠). The operation

(𝑝/𝑞, 𝑟/𝑠) ↦ (𝑝 + 𝑟)/(𝑞 + 𝑠)

will be fundamental to our later study; it is called themediant operation or Farey addition. We
write (𝑝/𝑞) ⊕ (𝑟/𝑠) for the Farey addition of 𝑝/𝑞 to 𝑟/𝑠. We will be careful to only combine 𝑝/𝑞 and
𝑟/𝑠 in this way if they satisfy the determinant condition 𝑝𝑠 − 𝑞𝑟 = ±1 as above (in which case they
are both in least terms); we call two such fractions Farey neighbours. Farey addition has many
useful properties: for instance, the mediant of two Farey neighbours is also a Farey neighbour of
each summand (an easy calculation). We will also need the following lemma which appears in [54,
§3.3]:

6.3.1 Lemma. If 𝑝/𝑞 and 𝑟/𝑠 are Farey neighbours with 𝑝/𝑞 < 𝑟/𝑠, then 𝑝/𝑞 < (𝑝/𝑞) ⊕ (𝑟/𝑠) < 𝑟/𝑠,
and (𝑝/𝑞) ⊕ (𝑟/𝑠) is the unique fraction of minimal denominator between 𝑝/𝑞 and 𝑟/𝑠. More precisely,
let 𝑢/𝑣 be any fraction in (𝑝/𝑞, 𝑟/𝑠); then there exist two positive integers 𝜆, 𝜇 such that

𝑢 = 𝜆𝑝 + 𝜇𝑟 and 𝑣 = 𝜆𝑟 + 𝜇𝑠

(so of course the minimal denominator is obtained when 𝜆 = 𝜇 = 1). ▮

The action of SL(2, ℤ) on the lattice ℤ2 also descends to an action on 𝑆0,4, since it is a subgroup
of the group Γ of 1

2
ℤ2 rotations exhibiting 𝑆0,4 as a quotient.

6.3.2 Lemma. Let 𝐴 ∈ SL(2, ℤ), let 𝑝, 𝑞 ∈ ℤ be coprime, and define 𝑟, 𝑠 ∈ ℤ by

[𝑟𝑠] = 𝐴 [𝑝𝑞] .

Then 𝛾(𝑟/𝑠) = 𝐴𝛾(𝑝/𝑞) and 𝛽(𝑟/𝑠) = 𝐴𝛽(𝑝/𝑞).

Proof. Clearly if 𝐴 sends (𝑝, 𝑞) ∈ ℤ2 to (𝑟, 𝑠) then 𝐴 sends the line of slope 𝑝/𝑞 to the line of slope
𝑟/𝑠. ▮

We now study the relation between a triangle Δ ∈ 𝒟(2) and the corresponding triples of curves
on 𝑆0,4. It is easiest to consider the rational arcs first and then deduce the results for curves: this is
based on the analogous theory for the once-punctured torus (see section 1.2 of [7]; the theory for the
4-punctured sphere will likely appear in the second volume, [8], which has not yet appeared at the
time of writing).

6.3.3 Proposition.

1. Let 𝜎 ∈ 𝒟(2) have vertices 𝑝1/𝑞1, 𝑝2/𝑞2, 𝑝3/𝑞3. Then the rational arcs 𝛽(𝑝𝑖/𝑞𝑖) are all mutually
disjoint (except perhaps at marked points).3 Further, the union of the three arcs determines a so-
called ideal triangulation of 𝑆0,4: the surface, cut along the three arcs, falls apart into a disjoint
union of four 2-simplices (Figure 6.8). The simplicial complex spanned by the three arcs is denoted
by trg(𝜎).

2. Let 𝜆 ∈ 𝒟(1) have vertices 𝑝/𝑞, 𝑟/𝑠. Then the rational arcs 𝛽(𝑝/𝑞), 𝛽(𝑟/𝑠) determine an ideal
polygonal decomposition of 𝑆0,4 into a pair of ideal quadrilaterals; this complex is denoted by
trg(𝜆) (extending trg to a map of face complexes reversing inclusion).

3There is a technical point here: of course we can homotope one curve to cross another curve an additional two times by
pulling a loop across. What wemean here is to choose representatives from each homotopy class with minimum intersection.



6.3. THE FAREY TRIANGULATION AND SPINES 73

Figure 6.8: The ideal triangulation corresponding to the triangle 𝜎 with vertices 0/1, 1/1, 1/0 (com-
pare Figure 6.7).

Proof. The idea is to use the PSL(2, ℤ) action to say that it suffices to check the ‘canonical triple’
(0/1, 1/1, 1/0). This follows immediately fromLemma 6.3.2 (the action is continuous hence preserves
intersection numbers). ▮

Let 𝜎 ∈ 𝒟(2) be a triangle, and consider the dual complex to trg(𝜎) on 𝑆0,4. This complex is also
simplicial, and is a strong deformation retract of the punctured sphere (or marked sphere when the
marked points are deleted); we call it the spine corresponding to 𝜎, denoted spine(𝜎). We also define
spine(𝜆) for 𝜆 ∈ 𝒟(1) analogously.

We now briefly consider the relationship between two adjacent triangles in 𝒟 (that is, two tri-
angles sharing a common edge). Let 𝜎1, 𝜎2 share the edge 𝜆. Then spine(𝜎1) and spine(𝜆) differ
by the collapsing of two non-adjacent edges to form a ‘cross’ shape cutting the surface into four 1-
punctured discs (see Figure 6.9); reversing this process gives a move from spine(𝜆) to spine(𝜎2). This
combinatorial process can be expanded into a continuous family of deformation retracts forming a
2-dimensional subcomplex of 𝑆0,4 × [−1, 1] analogous to the case of the 1-punctured torus in figure
1.1 of [7] which leads towards the theory of Jørgensen: this theory is out of the scope of the current
work.
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Figure 6.9: Collapsing spine(𝜎) (blue net) to spine(𝜆) for a triangle 𝜎 ∈ 𝒟(2) and one of its edges. The
purple circles bound edges of spine(𝜎)which collapse to vertices of spine(𝜆). The dual triangulation
to spine(𝜎) is also indicated (the red arcs).



Chapter 7

The foliation theory of Keen and
Series

In the early 1990s, Keen and Series developed a coordinate system for the parabolic Riley sliceℛ∞,∞

based on the same ideas as their theory for the Maskit slice described in [62], [114], and [94, from
p.287]. In this section, we explain this coordinate system and indicate the extension to the case that
we allow elliptic generators. To the best of our knowledge, this elliptic theory has not appeared in
the literature (though it is believed by experts that the theory goes through with minimal changes
from the parabolic case).

7.1 Motivation
Consider the group Γ = Γ∞,∞

4𝑖 with limit set shown in Figure 7.1a. In that figure, we show in red and
blue the edges of the fundamental domain defined via isometric circles for Γ as in Theorem 6.1.1;
clearly the isometric circles are disjoint and so by that theorem Γ lies in the Riley slice ℛ∞,∞. By
Lemma 3.4.2, the convex core 𝒞(Γ) is a 4-punctured sphere. Observe that the portion of the limit set
shown in the figure seems to be contained within the two lines {𝑧 ∈ ℂ ∶ ℑ𝑧 = ±1/4} and the two
circles of radius 1/2 centred at ±1/2; in fact, the entire limit set is the orbit of this portion under 𝑋 .
(That this is in fact the case will follow from the theory we develop later in the chapter.) Consider
the two subgroups of Γ defined by

Γ1 = ⟨𝑥, 𝑦𝑋𝑌⟩, Γ2 = ⟨𝑥𝑦𝑋, 𝑌⟩
(wherewe use the convention 𝑥 = 𝑋−1 and 𝑦 = 𝑌−1); these two subgroups are Fuchsian (for example,
by Lemma 7.3.11 below), and have limit sets corresponding to the line {𝑧 ∈ ℂ ∶ ℑ𝑧 = 1/4} and
the circle 𝐶(1/2, 1/2) respectively (see Figures 7.1b and 7.1c). It is easy to check that the other two
bounding curves correspond to limit sets of conjugate Fuchsian subgroups to Γ1 and Γ2 in Γ. The
boundary 𝜕 h.convΛ(𝛾) is the ‘roof’ of the hyperbolic planes above these curves, in the sense that if 𝐹
is the union of the hyperbolic planes above the two horizontal lines and the hyperbolic planes above
the horizontal translates of each of the circular arcs, then 𝜕 h.convΛ(𝛾) is the subset

{(𝑧, 𝑡) ∈ 𝐹 ∶ if (𝑧, 𝑡′) ∈ 𝐹, then 𝑡′ ≤ 𝑡}.
The convex core boundary 𝜕𝒞(Γ) is then the quotient of this convex hull boundary by Γ. Compute
the fixed points of 𝑥𝑦𝑋𝑌 :

Fix(𝑥𝑦𝑌𝑋) = {±√34 − 1
2 + 𝑖14}.

75
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(a) Limit set of Γ∞,∞
4𝑖 . (b) Limit set of ⟨𝑥, 𝑦𝑋𝑌⟩

(𝜌 = 4𝑖, 𝑎 = 𝑏 = ∞).
(c) Limit set of ⟨𝑥𝑦𝑋, 𝑌⟩
(𝜌 = 4𝑖, 𝑎 = 𝑏 = ∞).

Figure 7.1: A full limit set and two F-peripheral subgroup limit sets. The two subgroup limit sets are
only small portions of the corresponding circles, so are hard to see even though we have increased
the sizes of dots marking the points.

These are precisely the intersection points of the horizontal line ℑ𝑧 = 1/4 with the circle centred
at −1/2; thus the intersection between the corresponding hyperbolic surfaces is exactly the axis of
𝑥𝑦𝑋𝑌 in ℍ3; since 𝑥𝑦𝑋𝑌 = Word(1/2), this axis is a lift of 𝛾(1/2). The other pleats in 𝜕 h.convΛ(Γ)
correspond to the axes of conjugates ofWord(𝑥𝑦𝑋𝑌), and so project to the same curve on the quotient
surface. This means that the bending locus of the pleated surface 𝜕𝒮(Γ) is exactly the projection of
this axis, and the two flat pieces are the projections of the hyperbolic domes above the limit sets of Γ1
and Γ2. The entire situation is visible in Figure 7.2.

Taking Γ-images of the four ‘boundary’ circles gives a pair of circle chains in the limit set; it turns
out that a circle chain structure with the same combinatorial structure appears in the limit sets of
Γ∞,∞
𝑘𝑖 for all 𝑘 > 2. This can be seen in Figure 7.3 (see also Figure 7.4 for an example in the (5,∞)
Riley slice), which also shows that as 𝜌 → 2𝑖 along the imaginary axis this circle chain structure
degenerates to a circle packing. (Compare with the Maskit slice case, for instance the pictures in
Figure 9.15 of [94].) The Keen–Series foliation of ℛ∞,∞ will have, as leaves, the curves joining all
groups with the same circle chain structure. In fact, in [63] (compared to the earlier [62]) the notion
of circle chains is replaced by the study of the corresponding Fuchsian groups (in the example above
of 𝜌 = 4𝑖, these are the groups Γ1 and Γ2) which project to flat pieces of the convex hull boundary;
these groups will be called F-peripheral groups.

We have already seen that the Riley slices are homeomorphic to annuli (Corollary 5.1.6). We
will strengthen this result here, and give an explicit homeomorphism between the Riley slice and an
annulus such that the natural radial coordinate system of the annulus represents the geometric data
of points in ℛ𝑎,𝑏. More precisely, following [63, Theorem 5.4] for each pair (𝑎, 𝑏) we will define a
dense lamination Λ onℛ𝑎,𝑏 and a map

Π𝑎,𝑏 ∶ |Λ| → ℚ/2ℤ × ℝ>0

sending each 𝜌 in a leaf of Λ to a pair (𝛾, ℓ) where 𝛾 is a simple closed geodesic on 𝒮(Γ𝑎,𝑏𝜌 ) bounding
two punctures modulo Dehn twists along a curve 𝜔 bounding a compression disc (these equivalence
classes of curves correspond to elements of ℚ/2ℤ via the bijection Word of Chapter 6) and where ℓ
measures the length of 𝛾, normalised so that it is independent of the equivalence class of the curve
modulo twists along 𝜔; then we extend Π𝑎,𝑏 to a homeomorphism

Π𝑎,𝑏 ∶ ℛ𝑎,𝑏 → ℝ/2ℤ × ℝ>0.
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Figure 7.2: The hyperbolic convex hull, h.convΛ(Γ∞,∞
4𝑖 ).

This procedure is detailed in Theorem 7.4.15; see also the motivational discussion in Section 1.1.
The rational pleating rays of ℛ𝑎,𝑏 will correspond to the fibres of Π𝑎,𝑏 for a single geodesic

on the surface; we will see that this is exactly the curve in ℛ𝑎,𝑏 such that the convex core boundary
𝜕𝒞(Γ𝑎,𝑏𝜌 ) has two flat pieces, both 2-marked discs, glued along the projection of the axis of some Farey
word (in the example above with 𝜌 = 4𝑖, we have a group lying on the 1/2 pleating ray). One disc
has two marked points of order 𝑎 joined by a singular arc through the 3-manifold, and the other
has two joined marked points of order 𝑏. The pleating locus of 𝜕𝒞(Γ𝑎,𝑏𝜌 ) is a single curve 𝛾(𝑝/𝑞)
separating these two discs; it is precisely the curve obtained by winding up the curve defined as 𝛾(∞)
in Definition 4.2.1 above via Dehn twists around the compression disc that unwind the two bridge
arcs into a pair of unknotted arcs (compare Figure 1.1). That this gluing is in fact the situation is
proved below as Lemma 7.2.10.

DeformingΓ𝑎,𝑏𝜌 along a rational pleating ray corresponds to pinching in or pulling out the geodesic
corresponding to the bending locus (i.e. changing the length of the geodesic to obtain a new com-
plex structure in the moduli space); along the pleating ray the corresponding Farey polynomial is
real-valued, and this value (being the trace of the word representing the geodesic) gives another rep-
resentation of the length of the gluing curve. In fact, the image under Φ𝑎,𝑏

𝑝/𝑞 of the rational pleating
ray corresponding to the geodesic enumerated by 𝑝/𝑞 is exactly (−∞,−2). As the curve is pinched
down to length 0, in the limit the word Word(𝑝/𝑞) becomes parabolic and we obtain a cusp group
in the sense of Definition 4.2.1; there is a unique cusp group for each 𝑝/𝑞, and they are dense in the
boundary 𝜕ℛ𝑎,𝑏.

The Keen-Series theory can be extended, by deforming past the cusp group into the Heckoid
groups as in Section 4.2; recent literature has studied this from a point of view ‘internal’ to the Riley
slice by studying the combinatorial structure of the limit sets, rather than the ‘external’ view we
mentioned in the cited section (deforming to the boundary of the Riley slice from its exterior in ℂ
through knot orbifolds). Some exemplar papers include [5, 6, 81, 96].
Remark. This notion of viewing the boundary of a moduli space as being the limiting groups after
pinching down geodesics represented by hyperbolic elements is quite general, for instance see [60,
85, 95]. The idea has been worked out in detail for many other moduli spaces beyond theMaskit and
Riley slices we have mentioned above; for instance, the so-called diagonal slice of Schottky space
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(a) 𝜌 = 10𝑖 (b) 𝜌 = 5𝑖

(c) 𝜌 = 4𝑖 (d) 𝜌 = 3𝑖

(e) 𝜌 = 2.5𝑖 (f) 𝜌 = 2𝑖 (cusp group; the limit set is a circle pack-
ing)

Figure 7.3: Limit sets of Γ∞,∞
𝜌 for various 𝜌 ∈ ℝ𝑖.
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(a) 𝜌 = 4𝑖 (b) 𝜌 = 3𝑖

(c) 𝜌 = 2𝑖 (cusp group) (d) 𝜌 = 1.7𝑖

(e) 𝜌 = 1.5𝑖 (f) 𝜌 = √2𝑖

Figure 7.4: Limit sets of Γ5,∞𝜌 for various 𝜌 ∈ ℝ𝑖. The limit sets (a) and (b) lie in the corresponding
Riley slice; at the cusp point, shown in (c), the different portions of the limit sets collide to form a
circle packing; and then limit sets (d), (e), and (f) are in the exterior of the corresponding Riley slice.
To obtain the limit set circles in gooddefinition, weplotted points corresponding towords of lengthup
to 20, and thematrixmultiplication produced some numerical error (also visible in Figure 7.5 below).
To reduce the visibility of this error we reduced the opacity of the plotted points, c.f. Example A.2.2.
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(a) ⟨𝑥, 𝑦𝑋𝑌⟩ (b) ⟨𝑥𝑦𝑋, 𝑌⟩

Figure 7.5: Two F-peripheral subgroups of Γ5,∞1.7𝑖 .

[115], the Earle embedding [65], and various other linear slices through complex Fenchel-Nielsen
coordinates for the deformation space of quasi-Fuchsian once-punctured torus groups [67].

7.2 F-peripheral subgroups
Motivated by the previous section, we make the following definition:

7.2.1 Definition. Let Γ be a Kleinian group. A subgroup 𝐹 ≤ Γ is called F-peripheral in Γ if

1. 𝐹 is Fuchsian, and

2. 𝐹 has an invariant disc Δ which contains no limit points of Γ (the F-peripheral disc of 𝐹).

We say that𝐹 is strongly F-peripheral if, aswell as being F-peripheral, the boundary of the invariant
disc contains no limit points of Γ which are not limit points of 𝐹; i.e.

Δ ∩ Λ(Γ) = Λ(𝐹).

Some F-peripheral subgroups of a 2-parabolic group were shown in Figure 7.1; some examples of
a group with an elliptic generator may be seen in Figure 7.5 (the full limit set of this group appears
above as Figure 7.4d).

In this section we will prove some technical results about F-peripheral subgroups in moduli
spaces.

7.2.2 Lemma. Let Γ0 be an arbitrary geometrically finite Kleinian group, let 𝜌 ∶ [0, 1] → QH(Γ0) be a
path with 𝜌(0) = Γ0, write Γ𝑡 for Γ𝜌(𝑡), and for every 𝑡 write 𝑓𝑡 for the quasiconformal homeomorphism
𝑓𝑡 ∶ ℂ̂ → ℂ̂ which conjugates Γ0 to Γ𝑡.

Suppose that 𝐹0 ≤ Γ0 is finitely generated and strongly F-peripheral with peripheral disc Δ0, and
suppose that 𝐹𝑡 ≔ 𝑓𝑡𝐹0𝑓−1𝑡 ≤ Γ𝑡 is Fuchsian for every 𝑡. Then there exists some 𝜀 > 0 such that 𝐹𝑡 is
F-peripheral for every 𝑡 ∈ [0, 𝜀].

Alex Elzenaar
Bad feeling this is what is failing in elliptic casr
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Figure 7.6: The canonical polygon of a F-peripheral group 𝐹 in Γ = Γ∞,∞
3𝑖 showing the horoballs

𝐻𝑡
𝑣 for the two parabolic elements. Observe that the quotient of the roof of 𝜕 h.convΛ(Γ) above the

peripheral disc Δ by 𝐹 is a disc with two punctures, with the circular edge of the disc being the
projection of the axis of Word(1/2) (compare Figure 7.2).
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The proof is essentially the same as that of [63, Proposition 3.1]: the case where the F-peripheral
group has an elliptic generator is actually easier, since we do not need to cut out a neighbourhood of
a cone point to bound the canonical polygon away from the limit set.

Proof. Without loss of generality, assume∞ ∉ Δ0. Let𝑅0 be the canonical Fricke polygon, whichwas
characterised in Lemma 3.2.6; consider the holomorphic motion of [0, 1] induced by the quasicon-
formal deformation structure, namely

𝑓 ∶ [0, 1] × ℂ̂ → ℂ̂
(𝑡, 𝑧) ↦ 𝑓𝑡(𝑧)

and observe that the fixed points of 𝐹𝑡move continuously with 𝑡 and soΛ(𝐹𝑡) and thus the peripheral
discs Δ𝑡 = Δ(𝐹𝑡)move continuously with 𝑡. For 𝑡 sufficiently small, there is a fundamental polygon
𝑅𝑡 for 𝐹𝑡 with vertices of the form 𝑓𝑡𝑣 for 𝑣 a vertex of 𝑅0 and with sides circular arcs arbitrarily close
to the sides of 𝑅0.

We next try to bound these polygons away from the limit setΛ(Γ)—this is fine everywhere except
for any parabolic fixed points on 𝜕Δ𝑡, and so we need to cut out neighbourhoods of these, By Corol-
lary 6.1.2, every group in ℛ𝑎,𝑏 is geometrically finite; and by Lemma 3.3.4, this implies that every
parabolic fixed point of each Γ𝑡 is doubly cusped. In particular, if 𝐹𝑡 contains any parabolic element
𝑣, we can find a horodisc𝐻𝑣

𝑡 based at 𝑣 inΔ𝑡 such that𝐻𝑡
𝑣 ⊆ Ω(Γ𝑡) and such that the Euclidean radius

of𝐻𝑣
𝑡 is continuous in 𝑡 (see Figure 7.6 for an example in the Riley slice). Let 𝑆𝑡 = 𝑅𝑡 ⧵⋃𝑣𝐻

𝑣
𝑡 (where

the union is taken over the parabolic vertices of 𝑅𝑡); since Δ0∩Λ(Γ0) = Λ(Γ0) there exists some 𝛿 > 0
such that 𝑑Euc.(𝑆0, Λ(Γ0)) ≥ 𝛿. Further, by the continuity of the polygons 𝑅𝑡 in 𝑡 there exists some 𝜀
such that

(7.2.3) 𝑑Euc.(𝑆𝑡, Λ(Γ𝑡)) ≥ 𝛿/2 > 0

for every 𝑡.
We now show that the curve 𝜌↾[0,𝜀] parameterises only F-peripheral groups. Suppose 0 ≤ 𝑡 ≤ 𝜀

is such that 𝐹𝑡 is not F-peripheral. Then, since 𝐹𝑡 is Fuchsian by assumption, we must have some
𝑧 ∈ Λ(Γ𝑡) ∩ Δ𝑡. Since 𝑅𝑡 is a fundamental domain for 𝐹𝑡 and Λ(Γ𝑡) is invariant under 𝐹𝑡, there is
some 𝑧′ in the 𝐹𝑡-orbit of 𝑧 which lies in Λ(Γ𝑡) ∩ 𝑅𝑡. By construction of the horodiscs, 𝑧′ (being a
limit point) cannot lie in any 𝐻𝑡

𝑣 and so 𝑧′ ∈ 𝑆𝑡. Thus 𝑑Euc.(𝑧′, 𝑆𝑡) = 0; but 𝑧′ ∈ Λ(Γ𝑡), contradicting
Equation (7.2.3). ▮

We specialise to the Riley groups now; we formalise the notion of taking pairs of F-peripheral
subgroups whose hyperbolic quotients glue along the axis of some Farey word Word(𝑝/𝑞) to give a
4-marked sphere.

7.2.4 Definition. The 𝑝/𝑞-circle chain is the set 𝒰𝑎,𝑏
𝑝/𝑞(𝜌) of subgroups of Γ

𝑎,𝑏
𝜌 generated by two

elliptics or parabolics 𝑈1, 𝑈2, such that

1. either both𝑈1 and𝑈2 are of order 𝑎 or both are of order 𝑏, or𝑈1 is order 𝑎 and𝑈2 is order 𝑏 (or
vice versa); and

2. the product𝑈1𝑈2 represents the free homotopy class of the projection of the axis of Word(𝑝/𝑞)
on 𝒮(Γ𝑎,𝑏𝜌 ).

Remark. The two cases ‘𝑈1 and𝑈2 are conjugate to the same generator’ or ‘𝑈1 and𝑈2 are conjugate to
different generators’ in Definition 7.2.4 essentially correspond to the two cases of Figure 4.3—when
𝑝/𝑞 is the slope of a link with odd length continued fraction decomposition then the curve 𝛾(𝑝/𝑞)
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bounds a compression disc and separates the two generators; when 𝑝/𝑞 is the slope of a link with
even length continued fraction decomposition, then 𝛾(𝑝/𝑞) bounds a disc which cuts through both
singular arcs and bounds two discs on the surface, each containing one marked point represented by
each generator.

7.2.5 Example. This definition realises in general the ideas of the previous section: the example
there was a pair of non-conjugate elements of the 1/2-circle chain,

⟨𝑥, 𝑦𝑋𝑌⟩, ⟨𝑥𝑦𝑋, 𝑌⟩ ∈ 𝒰1/2.

We continue generalising the results of Section 3 of [63]. Below, the symbol 𝜌 stands for a fixed
𝜌 ∈ ℂ (perhaps not in the Riley slice) such that Γ𝑎,𝑏𝜌 is discrete (where, as always, 𝑎 and 𝑏 are fixed
elements of ℕ̂).

Since the marked generators of a subgroup in a circle chain set cannot be conjugate in that sub-
group, we obtain the following:

7.2.6 Lemma. Let 𝐹 be a F-peripheral subgroup of Γ = Γ𝑎,𝑏𝜌 , lying in𝒰𝑎,𝑏
𝑝/𝑞. Then the surface Δ(𝐹)/𝐹 is

a disc with two marked points. ▮

7.2.7 Lemma. Let 𝐹 be a F-peripheral subgroup of Γ𝑎,𝑏𝜌 , lying in𝒰𝑎,𝑏
𝑝/𝑞 with the two marked generators

having productWord(𝑝/𝑞). Then every boundary hyperbolic of 𝐹 is conjugate toWord(𝑝/𝑞).

Proof. By Proposition 3.2.5, the number of boundary hyperbolic conjugacy classes is equal to the
number of circular boundary components in the Fuchsian quotient; by Lemma 7.2.6 there is one
such component. ▮

7.2.8 Lemma. Suppose that Γ = Γ𝑎,𝑏𝜌 contains two non-conjugate F-peripheral subgroups 𝐹1 and 𝐹2
in𝒰𝑎,𝑏

𝑝/𝑞. Then both 𝐹1 and 𝐹2 are strongly F-peripheral.

Proof. By conjugation in Γ, the products of the generators of each 𝐹𝑖 are equal toWord(𝑝/𝑞); thus the
boundary circles 𝜕Δ(𝐹1) and 𝜕Δ(𝐹2) intersect at the fixed points of Word(𝑝/𝑞). We proceed to show
that 𝐹1 is strongly F-peripheral; the same argument, swapping 𝐹1 and 𝐹2, shows that 𝐹2 is strongly F-
peripheral. Let 𝜎 be the arc in 𝜕Δ(𝐹1) between the two fixed points of Word(𝑝/𝑞)which is contained
inΔ(𝐹2); it contains no limit points of Γ since 𝐹2 is F-peripheral. By Lemma 7.2.7, every other interval
of discontinuity for the action of 𝐹1 on 𝜕Δ(𝐹1) is 𝐹1-equivalent to 𝜎. Since points on 𝜕Δ(𝐹1) are either
in intervals of discontinuity or are limit points of Λ(𝐹1), and no Γ limit points can lie on images of 𝜎,
we see that 𝜕Δ(𝐹1) ∩ Λ(Γ) = Λ(𝐹1) as required. ▮

7.2.9 Lemma. Suppose that Γ = Γ𝑎,𝑏𝜌 contains two non-conjugate F-peripheral subgroups 𝐹1 and 𝐹2 in
𝒰𝑎,𝑏
𝑝/𝑞. For each 𝑖 let𝐻𝑖 be the hyperbolic plane erected aboveΔ(𝐹𝑖); by the definition of Poincaré extension,

𝐹𝑖 acts as a group of hyperbolic isometries on𝐻𝑖 and so wemay define a Nielsen region𝑁 𝑖 for this action.
This Nielsen region is precisely invariant under 𝐹𝑖 in Γ.

The proof of this lemma found in the parabolic case as [63, Lemma 3.4] requires the use of topo-
logy (in particular the Euler characteristic), and so the elliptic case requires the analogous differential
geometry of orbifolds.

Proof. Subclaim. 𝐹𝑖 is the stabiliser inΓ of𝑁 𝑖. Let𝐹′ be the stabiliser of𝑁 𝑖 in Γ; 𝐹′ therefore stabilises
the boundary of Δ(𝐹𝑖) (𝐹′ sends an arc through two points in 𝑁 𝑖 to another arc through two points
in 𝑁 𝑖, and since 𝑁 𝑖 is full-dimensional in 𝐻𝑖, for any pair of points 𝜉1, 𝜉2 in 𝜕Δ(𝐹𝑖) there exist two
points in𝑁 𝑖 lying on the geodesic [𝜉1, 𝜉2]; thus 𝐹′, sending 𝜉1 and 𝜉2 to the endpoints of the geodesic
joining the images of the two points in𝑁 𝑖, sends 𝜉1 and 𝜉2 to two other points on 𝜕Δ(𝐹𝑖)) and therefore

Alex Elzenaar
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Figure 7.7: The decomposition of a surface on 𝒫1/2 by cutting along 𝛾(1/2) gives two discs, each
containing two pairedmarked points.

stabilises the entire hemisphere𝐻𝑖, so is Fuchsian. Thus, since 𝐹′ ≥ 𝐹𝑖, there is an induced covering
map 𝑁 𝑖/𝐹𝑖 → 𝑁 𝑖/𝐹′. Since 𝐹𝑖 ∈ 𝒰𝑎,𝑏

𝑝/𝑞, 𝑁 𝑖/𝐹𝑖 is a disc with two marked points and so has Euler
characteristic −1 + 2/𝑛 where 𝑛 is the order of the marked points (see Definition 2.2.4). Since a
covering may only increase marked point orders, 𝑁 𝑖/𝐹′ has Euler characteristic at most −1 + 2/𝑛.
On the other hand, the degree of a covering is a positive integer. Hence applying Proposition 2.2.5
we see that the covering is of degree 1 and so 𝐹𝑖 = 𝐹′. Thus 𝐹𝑖 is the stabiliser of𝑁 𝑖. Q.E.D. (Subclaim).

Suppose for contradiction that 𝑈 ∈ Γ ⧵ 𝐹𝑖 but 𝑈(𝑁 𝑖) ∩ 𝑁 𝑖 ≠ ∅. We have two cases.

1. Suppose Δ(𝐹𝑖) = 𝑈Δ(𝐹𝑖). Then 𝑈 stabilises Δ(𝐹𝑖), and by Lemma 7.2.8 it must permute the
arcs of discontinuity of 𝐹𝑖 on the boundary. Further it is conformal on 𝐻𝑖 and so preserves the
angles of the edges of 𝑁 𝑖 on translation. These two facts imply that 𝑈 stabilises the Nielsen
region and thus 𝑈 ∈ 𝐹𝑖 by the subclaim, giving the required contradiction.

2. On the other hand, supposeΔ(𝐹𝑖) ≠ 𝑈Δ(𝐹𝑖). The set𝑈(𝑁 𝑖)∩𝑁 𝑖 lies on the arc of intersection of
the two domes𝐻𝑖 and𝑈𝐻𝑖. Since 𝐹𝑖 is F-peripheral, the arcΔ𝑖∩𝜕𝑈Δ𝑖 is an arc of discontinuity
for 𝐹𝑖 and so 𝑁 𝑖 is bounded by the arc joining the intersection points of Δ𝑖 with 𝜕𝑈Δ𝑖; on
the other hand, 𝑁 𝑖 is open, and so 𝑁 𝑖 cannot contain any points of this arc (which gives the
contradiction). ▮

7.2.10 Lemma. Suppose that Γ = Γ𝑎,𝑏𝜌 contains two non-conjugate F-peripheral subgroups 𝐹1 and 𝐹2
in𝒰𝑎,𝑏

𝑝/𝑞. Then 𝜕𝒞(Γ) consists of two flat pieces, both 2-marked discs, glued along the pleating locus of the
surface which consists exactly of the projection of the axis of Word(𝑝/𝑞) under Γ. In particular, 𝜌 ∈ ℛ𝑎,𝑏

and the pleating locus of 𝜕𝒞(Γ) is 𝛾(𝑝/𝑞).

The cutting procedure for a surface with pleating locus 𝛾(1/2) may be seen in Figure 7.7. Com-
parison with Figure 7.10 below shows that the curve sometimes separates paired marked points, and
sometimes places paired points in the same disc. The difference is that one group comes from a two-
bridge link and the other a two-bridge knot, so in one case the pleating curve is obtained from Dehn
twisting a compression disc boundary and in the other case it is obtained from a curve crossing both
tangle arcs.

Proof of Lemma 7.2.10. Let 𝐻1 and 𝐻2 be the hemispheres above the discs Δ(𝐹1) and Δ(𝐹2), and let
𝑁1 and 𝑁2 be the respective Nielsen regions for the hyperbolic actions on the hemispheres by the
groups 𝐹1 and 𝐹2. By Lemma 7.2.6, each 𝑆 𝑖 ≔ 𝑁 𝑖/𝐹𝑖 is a sphere with two punctures and a hole. All of
the surfaces are hyperbolic and so have curvature−1. We may also compute the Euler characteristic,

Alex Elzenaar
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namely
𝜒(𝑆1) = −1 + 2

𝑎, and 𝜒(𝑆2) = −1 + 2
𝑏

so by the Gauss-Bonnet theorem for orbifolds (Theorem 2.2.6) we have

Area(𝑆1) = 2𝜋 − 4𝜋
𝑎 and Area(𝑆2) = 2𝜋 − 4𝜋

𝑏 .

By Lemma 7.2.9,𝑁 𝑖/𝐹𝑖 = 𝑁 𝑖/Γ for both 𝑖. Since both 𝐹𝑖 are F-peripheral, each𝑁 𝑖/Γ lies in 𝜕𝒞(Γ); and
since the 𝐹𝑖 are non-conjugate, they are disjoint subsets of the surface. On the other hand, we may
apply Corollary 2.2.7 to see that

Area(𝒮(Γ)) = 4𝜋 (1 − 1
𝑎 −

1
𝑏) .

Thus the surface must be the union of the two discs. ▮

Given some 𝜌 ∈ ℛ𝑎,𝑏, we write pl(𝜌) (or pl𝑎,𝑏(𝜌) if we need to emphasis 𝑎 and 𝑏) for the pleating
locus of 𝜕𝒞(Γ𝑎,𝑏𝜌 ). By Lemma 7.2.10, if Γ𝑎,𝑏𝜌 has two non-conjugate groups in 𝒰𝑎,𝑏

𝑝/𝑞, then pl(𝜌) can be
identified with the rational number 𝑝/𝑞. In the next section, we will show that one can go backwards
through this equivalence.

7.3 Measured laminations and rational pleating rays
In this section, we will show that the groups in ℛ𝑎,𝑏 whose convex core boundary consists of two
discs glued along 𝛾(𝑝/𝑞) form an analytic curve. We continue to follow Sections 3 and 4 of [63] and
the corrections in [66].
7.3.1 Definition. Let 𝑝/𝑞 ∈ ℚ. The 𝑝/𝑞-rational pleating ray is the set

𝒫𝑎,𝑏
𝑝/𝑞 ≔ {𝜌 ∈ ℛ𝑎,𝑏 ∶ pl(𝜌) = ̂𝛾(𝑝/𝑞)}

where ̂𝛾(𝑝/𝑞) is the geodesic inℳ(Γ𝑎,𝑏𝜌 )which is represented by the element Word(𝑝/𝑞). (This word
is always loxodromic since it is not in the parabolic or elliptic subgroups generated by the generators
of Γ𝑎,𝑏𝜌 or any conjugates of these: for instance this follows from Lemma 6.1.7.)

Some very nice pictures of the rational pleating rays can be found as Figure 1 of [63], Figure 0.2b
of [7], and Figures 1 and 2 of the joint preprint [39] which were produced by Yasushi Yamashita.

It is immediate from the definition and Theorem 6.1.5 that 𝒫𝑝/𝑞 ∩ 𝒫𝑟/𝑠 = ∅ iff 𝑝/𝑞 ≠ 𝑟/𝑠.

7.3.2 Proposition. 𝜌 ∈ 𝒫𝑎,𝑏
𝑝/𝑞 iff Γ = Γ𝑎,𝑏𝜌 has two non-conjugate F-peripheral subgroups in𝒰𝑎,𝑏

𝑝/𝑞(𝜌).

Proof. One direction is Lemma 7.2.10, so we need to show that if 𝜌 ∈ 𝒫𝑎,𝑏
𝑝/𝑞 then we can find two

non-conjugate subgroups in the 𝑝/𝑞 circle chain. Let Σ, Σ′ be the two connected components of
𝜕𝒞(Γ) ⧵ ̂𝛾(𝑝/𝑞). Let Σ̃ be a connected component of the lift of Σ to ℍ3. By a similar argument to
that in the proof of Lemma 7.2.9, the stabiliser of Σ̃ in Γ stabilises the hyperbolic plane spanned by
Σ̃ and so is Fuchsian. Let 𝐹 be this stabiliser. It is F-peripheral since Σ is a flat piece of the convex
hull boundary and so h.convΛ(Γ) lies entirely on one side of the hyperbolic plane. The plane has
two marked points; let 𝑈1 and 𝑈2 be parabolic or elliptic elements representing simple loops about
eachmarked point with compatible orientation so that𝑈1𝑈2 represents 𝛾(𝑝/𝑞). Since 𝐹 is acting on a
simply connected domain to form the quotient, we have 𝐹 = ⟨𝑈1, 𝑈2⟩ and so 𝐹 ∈ 𝒰𝑎,𝑏

𝑝/𝑞. Running the
same argument for Σ′ produces a second such group 𝐹′ ∈ 𝒰𝑎,𝑏

𝑝/𝑞, and 𝐹 and 𝐹′ must be nonconjugate
as Σ ≠ Σ′. ▮
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Figure 7.8: The hyperbolic locus of slope 1/3 forℛ∞,∞.

We now begin to carry out the programme described in Section 7.1, namely showing that the
pleating rays are exactly the curves that correspond to pinching down the geodesic Word(𝑝/𝑞) in the
complex structure.

7.3.3 Lemma. Let 𝜌 ∈ 𝒫𝑎,𝑏
𝑝/𝑞 . ThenWord(𝑝/𝑞)(𝜌) is hyperbolic.

Proof. By Proposition 7.3.2, Word(𝑝/𝑞) is conjugate to a word lying in a Fuchsian group, so has real
trace, and is loxodromic. ▮

We define the hyperbolic locus of Φ𝑎,𝑏
𝑝/𝑞 to be the following set:

ℋ̃𝑎,𝑏
𝑝/𝑞 ≔ {𝜌 ∈ ℂ ∶ Φ𝑎,𝑏

𝑝/𝑞(𝜌) ∈ (−∞,−2) ∪ (2,∞)}.

Note that this set does not consist only of points in the Riley slice; Figure 7.8 shows the hyperbolic
locus ℋ̃∞,∞

1/3 , and Figure 7.9 shows the hyperbolic locii of an elliptic Riley slice. By Lemma 7.3.3,
𝒫𝑎,𝑏
𝑝/𝑞 ⊆ ℋ̃𝑎,𝑏

𝑝/𝑞. Based on Lemma 6.1.6, it suffices from now on to restrict ourselves to studying 𝑝/𝑞 ∈
[0, 1] ∩ ℚ; from now on, we implicitly assume this inclusion.

7.3.4 Theorem. The pleating ray 𝒫𝑎,𝑏
𝑝/𝑞 is the union of either one or two non-empty connected compon-

ents of ℋ̃𝑎,𝑏
𝑝/𝑞. These are complex conjugate smooth 1-manifolds sets with asymptotic slope1 𝜋𝑝/𝑞 and

−𝜋𝑝/𝑞 respectively, such that the 𝑝/𝑞-cusp set

Cusp𝑎,𝑏𝑝/𝑞 ≔ 𝜕ℛ𝑎,𝑏 ∩ 𝒫𝑎,𝑏
𝑝/𝑞

consists of exactly two distinct complex-conjugate points.
1When we write that a curve 𝑘 inℛ𝑎,𝑏 has ‘asymptotic slope 𝜃’, we will always mean that |𝜌| → ∞, the argument of the

tangent vector to 𝑘 at 𝜌 tends to 𝜃.
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Figure 7.9: The union of the hyperbolic locii of small slope for a representative elliptic Riley slice.

Remark (A). In the parabolic case, this is stated as Theorem 2.4 of [66] (correcting Theorems 3.7 and
4.1 of [63]).
Remark (B). One can improve Theorem 7.3.4: we have already noted that𝒫𝑝/𝑞 and𝒫𝑟/𝑠 are disjoint if
𝑝/𝑞 ≠ 𝑟/𝑠 (𝑝/𝑞, 𝑟/𝑠 ∈ ℚ ∩ [0, 1]), and this remains correct if the pleating rays are replaced with their
closures [60].

We will prove a series of lemmata before giving the proof of Theorem 7.3.4 on Page 91. Most of
these are adapted from the proofs given in [63, 66] with only minimal changes from the parabolic-
only case.

7.3.5 Lemma. Let 𝑗 ∶ ℂ̂ → ℂ̂ be a conformal or anti-conformal bijection and fix Γ = Γ𝑎,𝑏𝜌 for some
𝜌 ∈ ℛ𝑎,𝑏. If pl(Γ) is a simple closed geodesic represented by a word𝑊(𝜌) in Γ, then pl(𝑗Γ𝑗−1) is a simple
closed geodesic represented by 𝑗𝑊(𝜌)𝑗−1.

Proof. Since 𝑗 is (anti-)conformal, it maps circles to circles. It also satisfies Λ(𝑗𝐺𝑗−1) = 𝑗Λ(𝐺) for
any Kleinian group 𝐺, so sends F-peripheral subgroups of Γ to F-peripheral subgroups of 𝑗Γ𝑗−1. By
Proposition 7.3.2, the pleating locus pl(𝜌) is a curve represented by 𝑊 in Γ iff 𝑊 lies in two non-
conjugate F-peripheral subgroups of Γ; by preservation of F-peripheralness this is true iff 𝑗𝑊𝑗−1 lies
in two non-conjugate F-peripheral subgroups of 𝑗Γ𝑗−1, and a second application of the proposition
finishes the proof. ▮

7.3.6 Lemma. Let 𝑝/𝑞 ∈ ℚ̂ and let 𝑗 ∶ ℂ → ℂ be the complex conjugation map. Then 𝒫𝑎,𝑏
𝑝/𝑞 = 𝑗(𝒫𝑎,𝑏

𝑝/𝑞 ).

Proof. Apply Lemma 7.3.5 to 𝑗 and observe that 𝑗𝑋𝑗−1 = 𝑋 and 𝑗𝑌𝜌𝑗−1 = 𝑌𝜌. ▮

7.3A The Fuchsian case
We study the case that Γ𝑎,𝑏𝜌 is Fuchsian separately. In this case, the entire group is F-peripheral,
and h.convΛ(Γ𝑎,𝑏𝜌 ) is degenerate: it is a surface, not a 3-manifold. To fit this into our strategy of
considering the convex core boundary as being a pair of 2-punctured discs glued along a boundary
curve represented by a Farey word, we follow the discussion at the end of Section 3 of [63] and view
h.convΛ(Γ𝑎,𝑏𝜌 ) as being a pleated surface with two faces (the two sides of the hyperbolic convex hull
in ℍ3) and a single pleating curve with bending angle 𝜋 (the edge of the disc); one should think of it
as being the deformation retract of the 4-times punctured sphere obtained by ‘deflating’ it to a disc
such that the paired punctures are aligned.
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Figure 7.10: The pleated surface for a Fuchsian group inℛ is obtained by deflating the surface such
that the singular arcs through the manifold retract into themselves.

For convenience, in this section we define the two (real) numbers

(7.3.7)
0 ≔ 𝛼

𝛽 + 𝛽
𝛼 = 2 + 2 cos (𝜋𝑎 − 𝜋

𝑏 )

1 ≔ −𝛼𝛽 − 1
𝛼𝛽 = −2 − 2 cos (𝜋𝑎 + 𝜋

𝑏 )

where 𝛼 = exp(𝜋𝑖/𝑎) and 𝛽 = exp(𝜋𝑖/𝑏). Observe that when 𝑎 = 𝑏 = ∞, 0 = 4 and 1 = −4. (These
numbers will turn out to be the two cusps Cusp𝑎,𝑏0/1 and Cusp

𝑎,𝑏
1/1 .)

7.3.8 Lemma. Let 𝜌 ∈ ℝ.

1. If 𝜌 ∈ (1, 0), then one of 𝑌−1
𝜌 𝑋 or 𝑌𝜌𝑋 in Γ𝑎,𝑏𝜌 is elliptic.

2. If 𝜌 ∈ {1, 0}, then one of 𝑌−1
𝜌 𝑋 or 𝑌𝜌𝑋 is parabolic.

In particular, 𝜌 ∉ ℛ𝑎,𝑏 (since (1) implies that there is a relation between 𝑋 and 𝑌𝜌, and (2) implies the
existence of an accidental parabolic).

Proof. The result follows immediately from directly calculating the traces of the two elements. ▮

Remark. In fact, one can improve the statement of Lemma 7.3.8. Modifications of the arguments
in Section 11.4 of [13] (in particular, in the case that either 𝑋 or 𝑌𝜌 is parabolic use Theorem 11.4.1
or 11.4.2 directly; if both are elliptic, modify the proof of Theorem 11.4.3 and replace Beardon’s Fig-
ure 11.4.5 with our Figure 7.11), show that if Γ𝑎,𝑏𝜌 is discrete with 𝜌 within the bounds given in the
lemma above, then Γ𝑎,𝑏𝜌 is a triangle group. In the process one may even classify the triangle groups
which appear; in recent years much work has been done to extend this classification in the case of
ℛ∞,∞, i.e. to specify all of the discrete groups in the exterior (a precise result, as conjectured by Agol
[1] and proved in 2020 [5, 6], was stated above as Theorem 4.1.6) and to study the non-discrete groups
[81].

7.3.9 Proposition. The following are equivalent for 𝜌 ∈ ℛ𝑎,𝑏:

1. Γ𝑎,𝑏𝜌 is Fuchsian;

2. 𝜌 ∈ ℝ;

3. 𝜌 ∈ 𝒫𝑎,𝑏
0/1 ∪ 𝒫

𝑎,𝑏
1/1 .
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Figure 7.11: Modification of Beardon’s Figure 11.4.5 in the case that both generators are known to be
elliptic: we have drawn both isometric circles of 𝑓 and arranged the ‘cone’ region for 𝑔 symmetrically
with respect to Fix(𝑓) rather than with the midpoint of the isometric circle of 𝑓−1 (c.f. Figure 6.3 and
Theorem 6.1.1 above); the red angle is 2𝜋/𝑏 and the blue angle is 2𝜋/𝑎.

Proof. It will be important to recall from Table 6.2 that

Φ𝑎,𝑏
0/1(𝜌) =

𝛼
𝛽 + 𝛽

𝛼 − 𝜌 and Φ𝑎,𝑏
1/1(𝜌) = 𝛼𝛽 + 1

𝛼𝛽 + 𝜌,

where 𝛼 = exp(𝜋𝑖/𝑎) and 𝛽 = exp(𝜋𝑖/𝑏). We have seen that both 𝛼
𝛽
+ 𝛽

𝛼
and 𝛼𝛽 + 1

𝛼𝛽
are real. In

particular,
𝜌 ∈ ℝ ⟺ Φ𝑎,𝑏

0/1(𝜌) ∈ ℝ ⟺ Φ𝑎,𝑏
1/1(𝜌) ∈ ℝ.

Now to the lemma proper. If Γ𝑎,𝑏𝜌 is Fuchsian then tr𝑋𝑌𝜌 = Φ𝑎,𝑏
0/1(𝜌) is real and thus 𝜌 is real,

establishing (1)⟹ (2). If 𝜌 is real, then Γ𝑎,𝑏𝜌 is trivially Fuchsian, establishing the converse.
Next, assume 𝜌 ∈ 𝒫𝑎,𝑏

0/1 ∪ 𝒫
𝑎,𝑏
1/1 ; then by Lemma 7.3.3, either Φ

𝑎,𝑏
0/1(𝜌) or Φ

𝑎,𝑏
1/1(𝜌) is real and so by

the above discussion 𝜌 is real. Conversely, suppose 𝜌 is real. Then by Lemma 7.3.8, 𝜌 ∉ [1, 0]. We
now split into two cases according to whether 𝜌 < 1 or 𝜌 > 0; the two arguments are very similar
and so we only discuss the first case. Suppose then that 𝜌 < 1; the group Γ = Γ𝑎,𝑏𝜌 is a Fuchsian
group generated by two parabolics, and it acts on both the upper and lower half-planes. One can
easily check that there is a fundamental domain for Γ in both half-planes consisting of the common
exterior of four hyperbolic lines inℍ2 (for instance, the 2-elliptic case is seen in Figure 7.11; in general
we are doing something like Theorem 6.1.1 but for Fuchsian groups). In particular, by the Poincaré
polyhedron theorem, the quotient surface is a disc with two marked points, one per generator (we
have just reproved Lemma 7.2.6). One also easily sees that the boundary of each disc is represented by
Word(1/1) = 𝑌𝜌𝑋 (in the other case, by Word(0/1) = 𝑌−1

𝜌 𝑋). It follows with an elegant inevitability
that 𝜌 ∈ 𝒫1/1 (resp. 𝜌 ∈ 𝒫0/1). ▮

In the proof of the preceeding proposition we showed the following:

7.3.10 Corollary. Define 0, 1 as in Equation (7.3.7). Then:

𝒫𝑎,𝑏
1/1 = (−∞, 1) 𝒫𝑎,𝑏

0/1 = (0,∞)
Cusp𝑎,𝑏1/1 = 1 Cusp𝑎,𝑏0/1 = 0.

In particular, the two pleating rays are non-empty, 1-dimensional manifolds.
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7.3B The non-Fuchsian case
We need a small technical lemma.

7.3.11 Lemma. If 𝐺 = ⟨𝐴, 𝐵⟩ is a non-elementary Kleinian group with tr𝐴 ∈ ℝ, tr𝐵 ∈ ℝ, and
tr𝐴𝐵 ∈ ℝ, then 𝐺 is Fuchsian. ▮

The proof of Lemma 7.3.11 is straightforward and left to the reader (see for example Project 6.6
of [94]).

7.3.12 Lemma. If 𝑝/𝑞 ∉ {0/1, 1/1} then 𝒫𝑎,𝑏
𝑝/𝑞 is open in ℋ̃𝑎,𝑏

𝑝/𝑞.

Proof. For convenience, in this proof we neglect to write the superscript 𝑎,𝑏 and the subscript 𝑝/𝑞.
Suppose 𝜌0 ∈ 𝒫, and let 𝐾 be the connected component of ℋ̃ ∩ℛ containing 𝜌0. Sinceℛ is open, 𝐾
is open in ℋ̃. Therefore, since ℋ̃ is the inverse image of an open arc under a polynomial, there is an
open arc 𝛼 ⊆ 𝐾 containing 𝜌0.

By Proposition 7.3.2, Γ𝜌0 has two non-conjugate F-peripheral subgroups, 𝐹1(𝜌0) and 𝐹2(𝜌0), of Γ𝜌0
in 𝒰(𝜌0). For any 𝜌 ∈ ℛ write 𝐹𝑖(𝜌) for the quasiconformal conjugate of 𝐹𝑖(𝜌0) lying in Γ𝜌 induced
by the quasiconformal conjugacy between Γ𝜌0 and Γ𝜌. For all 𝜌 ∈ 𝛼, Word𝑝/𝑞(𝜌) ∈ Γ𝜌 has real trace
(by definition of ℋ̃). This word lies in 𝐹𝑖(𝜌) for each 𝜌 ∈ 𝛼 (by Proposition 5.1.1 the quasiconformal
conjugacy preserves 𝑋 and sends 𝑌𝜌0 ↦ 𝑌𝜌). Hence 𝐹𝑖(𝜌) is Fuchsian: indeed, the two generat-
ors have real trace (being conjugates of elements with real trace) and Word𝑝/𝑞(𝜌) is the product of
these two generators (by the definition of a circle chain group) and has real trace, so we may apply
Lemma 7.3.11.

Now by Lemma 7.2.8, both 𝐹𝑖(𝜌0) are strongly F-peripheral; thus by Lemma 7.2.2, there is a small
open subarc of 𝛼 such that all the 𝐹𝑖(𝜌) for 𝜌 on this subarc are F-peripheral. This proves openness
of 𝒫 in ℋ̃. ▮

7.3.13 Lemma. If 𝑝/𝑞 ∉ {0/1, 1/1} then 𝒫𝑎,𝑏
𝑝/𝑞 is closed in ℋ̃𝑎,𝑏

𝑝/𝑞.

Proof. For convenience, in this proof we neglect to write the superscript 𝑎,𝑏 and the subscript 𝑝/𝑞.
Suppose (𝜌𝑛)∞𝑛=1 is a sequence of elements in𝒫 and let 𝜌𝑛 → 𝜌∞. Let 𝑘 = lim𝑛→∞ Φ(𝜌𝑛); clearly this
is real. Suppose that 𝜌∞ ∈ ℋ̃, so |𝑘| > 2. We show that 𝜌∞ ∈ 𝒫.

Let 𝐹1(𝜌1) and 𝐹2(𝜌1) be two non-conjugate F-peripheral groups in𝒰(𝜌1). Wewould like to check
that both of the 𝐹𝑖(𝜌∞) (the subgroups of Γ𝜌∞ corresponding to the 𝐹𝑖(𝜌1) under the global quasicon-
formal conjugacy sending Γ𝜌1 ↦ Γ𝜌∞) are F-peripheral. The problem is that we know only that
𝜌∞ ∈ ℋ̃, so it is not necessarily in ℛ, and so this alleged quasiconformal conjugacy does not neces-
sarily exist! We therefore define the groups 𝐹𝑖(𝜌∞) as being algebraic limits of the 𝐹𝑖(𝜌𝑛) (which we
may define via quasiconformal conjugacy) and check everything with these. So for each 𝑖, let 𝐴𝑖(𝜌1)
and 𝐵𝑖(𝜌1) be elements of the correct orders (i.e. those orders which occur in the definition of circle
chain groups) generating 𝐹𝑖(𝜌1) such that 𝐴𝑖(𝜌1)𝐵𝑖(𝜌1) =Word𝑝/𝑞(𝜌1). Then (since this is just an al-
gebraic equation),𝐴𝑖(𝜌𝑛)𝐵𝑖(𝜌𝑛) =Word𝑝/𝑞(𝜌𝑛) for every 𝑛. Further, since conjugacy is algebraic, the
groups 𝐹𝑖(𝜌𝑛) = ⟨𝐴𝑖(𝜌𝑛), 𝐵𝑖(𝜌𝑛)⟩ are non-conjugate for each 𝑛. The groups also must be F-peripheral,
since the choice of generating elements of the right order with product Word(𝑝/𝑞)(𝜌𝑛) is unique in
Γ𝜌𝑛 up to conjugation by Word𝑝/𝑞(𝜌𝑛).

Fix 𝑖 and set 𝐹𝑖(𝜌∞) ≔ ⟨𝐴𝑖(𝜌∞), 𝐵𝑖(𝜌∞)⟩. The two generators are of the right order and have the
right product (since these are algebraic properties), and so by Lemma 7.3.11 the groups are Fuchsian.
By assumption ||Φ𝑝/𝑞(𝜌𝑛)|| > 2 for all 𝑛; also, observe that the peripheral discs of the 𝐹𝑖(𝜌𝑛) converge
to one of the discs Δ bounded by the circle through the midpoint of the two fixed points of 𝐴𝑖(𝜌∞),
the midpoint of the two fixed points of 𝐵𝑖(𝜌∞), and the two fixed points of Word𝑝/𝑞(𝜌∞). Since none
of the converging discs contain limit points for the respective Γ𝜌𝑛 , the disc Δ contains no limit points
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Figure 7.12: Ramifications of a singularity on a pleating ray.

for Γ𝜌∞ . Hence 𝐹𝑖(𝜌∞) is F-peripheral; the same argument for 𝐹3−𝑖(𝜌∞) and the previous observation
that both groups are non-conjugate shows via Proposition 7.3.2 that 𝜌∞ ∈ 𝒫. ▮

7.3.14 Proposition. 𝒫𝑎,𝑏
𝑝/𝑞 is a union of connected components of ℋ̃𝑎,𝑏

𝑝/𝑞.

Proof. This is just the combination of Lemmata 7.3.12 and 7.3.13. ▮

7.3C Completing the proof of Theorem 7.3.4
7.3.15 Lemma. The hyperbolic locus 𝐻𝑝/𝑞 has exactly 𝑞 branches; for each 𝑘 ∈ ℤ there is a branch
which has asymptotic angle 𝑘𝜋/𝑞.

Proof. As |𝑧| → ∞, (Φ𝑎,𝑏
𝑝/𝑞(𝑧)) /𝑧𝑞 → 1; and the result is clearly true for 𝑧𝑞. ▮

Notation. Let ℍ+ and ℍ−denote the upper and lower closed half-planes of ℂ respectively. Given a
set 𝐴 ⊆ ℂ, write 𝐴+ and 𝐴− for 𝐴 ∩ ℍ+ and 𝐴 ∩ ℍ− respectively.

We now proceed to prove Theorem 7.3.4 (stated on Page 86).

Proof of Theorem 7.3.4. The proof goes via induction on the Farey tree. That is, for the inductive step
we assume the statement for 𝛼, 𝛽 ∈ ℚ and then prove it for 𝛼⊕𝛽; the base cases are the statements for
0/1 and 1/1, which we proved as Corollary 7.3.10. (See Figure 9.2 for a graphical illustration showing
the inductive paths.)

Now suppose we are interested in 𝑝/𝑞 ∈ ℚ, and we have proved that the two neighbours of 𝑝/𝑞
in the 𝑞th Farey sequence satisfy the conclusions of the theorem; say that these neighbours are 𝑟1/𝑠1
and 𝑟2/𝑠2. Pick 𝑧1 ∈ 𝒫𝑟1/𝑠1 and 𝑧2 ∈ 𝒫𝑟2/𝑠2 . By Lemma 7.3.6, we may assume that 𝑧1, 𝑧2 ∈ ℍ+. Join 𝑧1
and 𝑧2 by an arc 𝛼 lying entirely withinℛ ∩ℍ+. Now by continuity of pl and the intermediate value
theorem, there is a point 𝑧 on 𝛼 with pl(𝑧) = (𝑟1/𝑠1) ⊕ (𝑟2/𝑠2) = 𝑝/𝑞. Hence we see 𝑧 ∈ 𝒫𝑝/𝑞 so the
pleating ray is non-empty.

Now letℋ𝑝/𝑞 be the union of the two branches of ℋ̃𝑝/𝑞 ∩ ℍ+ with asymptotic angles 𝜋𝑝/𝑞 and
−𝜋𝑝/𝑞 respectively (Lemma 7.3.15). There is exactly one branch of ℋ̃𝑝/𝑞 in ℍ+ bounded between
ℋ+

𝑟1/𝑠1 and ℋ
+
𝑟2/𝑠2 , because by Lemma 6.3.1 there are no other fractions of denominator at most 𝑞

between 𝑟1/𝑠1 and 𝑟2/𝑠2. Similarly we see that there is one branch of ℋ̃𝑝/𝑞 in ℍ+ bounded between
ℋ−

𝑟1/𝑠1 andℋ
−
𝑟2/𝑠2 . It follows from Proposition 7.3.14 that 𝒫𝑝/𝑞 = ℋ𝑝/𝑞.

We next check that𝒫𝑝/𝑞 is non-singular. Suppose for contradiction that 𝒫𝑝/𝑞 contained a compon-
ent of ℋ̃𝑝/𝑞 with a singular point: that is, a critical point 𝜌0 of the trace polynomialΦ𝑝/𝑞, say of degree
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𝑛. Then Φ𝑝/𝑞(𝜌) expands about 𝜌0 as a power series of the form

Φ𝑝/𝑞(𝜌) − Φ𝑝/𝑞(𝜌0) = (𝜌 − 𝜌0)𝑛
𝑞−𝑛
∑
𝑚=0

𝑎𝑚(𝜌 − 𝜌0)𝑚

and hence pre-image of a line through Φ𝑝/𝑞(𝜌0) has 2𝑛 branches through 𝜌0. In particular, there are
at least two branches of ℋ̃ of increasing trace through 𝜌0 (since we assume 𝑛 ≥ 1). We have already
seen that exactly one of these branches lies asymptotically between 𝒫𝑟1/𝑠1 and 𝒫𝑟2/𝑠2 , so the other
must cross either of these two pleating rays within the Riley slice; and hence that branch (a subset
of the connected component allegedly contained in the pleating ray) cannot lie in 𝒫𝑝/𝑞, for branches
of different slope are disjoint by the definition of the pleating rays (Figure 7.12). This is the desired
contradiction.

Since the Farey polynomial has no critical points on a pleating ray, it has no local maxima or
minima. In particular, it is monotone increasing or decreasing when restricted to the pleating ray.
It is clear now that the closure of the pleating ray intersects 𝜕ℛ at exactly two points: it intersects
at the cusp groups where the Farey polynomial becomes −2 (so intersects at least twice) and cannot
intersect anywhere else (since the interior of𝒫𝑝/𝑞 lies in the Riley slice and is unbounded on two ends,
being a union of two components of ℋ̃, the only additional points added when taking the closure are
these two). ▮

7.4 Irrational pleating rays
Recall from Theorem 6.1.5 that slight deformations of lines of rational slope which represent curves
on the 4-marked sphere give foliations of the sphere which are parameterised by irrational slopes.
This, along with the fact that the rational pleating rays are dense in the slice (which we will prove
below as Corollary 7.4.5), indicates that we can extend our lamination ofℛ𝑎,𝑏 to a foliation by consid-
ering those groups which induce a pleating locus of irrational slope. Thus we extend Definition 7.3.1
as follows:

7.4.1 Definition. Let 𝜆 ∈ ℝ̂. The 𝜆-pleating ray is the set

𝒫𝑎,𝑏
𝜆 ≔ {𝜌 ∈ ℛ𝑎,𝑏 ∶ pl(𝜌) = ̂𝛾(𝜆)}

where ̂𝛾(𝜆) is the nearest-point retraction to𝒞(Γ𝜌) of the curve 𝛾(𝜆) defined in Theorem 6.1.5. If 𝜆 ∈ ℚ̂
we call the pleating ray rational; otherwise we call it irrational.

7.4A Irrational properties analogous to the rational properties
In this subsection, we collect various ‘niceness’ results for irrational pleating rays thatwehave already
seen for the rational ones. We essentially follow Section 6.1 of [62].

7.4.2 Lemma. Let 𝜆, 𝜆′ ∈ ℝ.

1. 𝒫𝜆 ≠ ∅.

2. 𝒫𝜆 ∩ 𝒫𝜆′ = ∅ ⟺ 𝜆 ≠ 𝜆′.

Proof. That different pleating rays are disjoint is trivial from the definition. That 𝒫𝜆 ≠ ∅ follows
from the same proof as that given in Theorem 7.3.4: pick 𝑝/𝑞 and 𝑟/𝑠 with 𝑝/𝑞 < 𝜆 < 𝑟/𝑠 and use
continuity of pl. ▮
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Figure 7.13: Figure for the proof of Proposition 7.4.4.

7.4.3 Lemma. ℛ𝑎,𝑏 = ⋃𝜆∈ℝ 𝒫𝜆.

Proof. By the discussion of the Fuchsian case above, we see that if 𝜌 ∈ ℝ ∩ ℛ𝑎,𝑏 then 𝜌 lies on a
pleating ray. On the other hand if 𝜌 ∈ ℛ𝑎,𝑏 lies off the real axis, then the limit set Λ(Γ𝑎,𝑏𝜇 ) is not the
full Riemann sphere and so the pleating locus is nontrivial; by Theorem 6.1.5 the pleating locus is
represented by 𝛾(𝜆) for some 𝜆. ▮

Next we have an analogue/extension of Theorem 7.3.4. This is essentially a concrete application
of the theory contained in Chapter 9 of [124], as we are analysing the geometrically infinite ends of
the deformation space.

7.4.4 Proposition. For 𝜆 ∈ ℝ, the pleating ray𝒫𝑎,𝑏
𝜆 lies in the real locus of an analytic function defined

onℛ𝑎,𝑏.

Remark. We modify the function Ψ from Lemma 5.1 of [63] to obtain the desired function; a more
elegant choice of function surely exists.

Proof. Assume 𝜆 ∈ ℝ ⧵ ℚ and fix 𝜌0 ∈ 𝒫𝑎,𝑏
𝜆 . Let 𝜉 be one of the four marked points on the convex

core 𝑆 = 𝒞(Γ𝑎,𝑏𝜌0 ), say of order 𝑛. The leaves of pl(𝜌0) lie away from 𝜉 (the leaves, being geodesic,
cannot pass over 𝜉 directly, so they lie in 𝑆 ⧵ {𝜉}; pick an open neighbourhood of the deleted point,
then this is non-compact but the pleating locus of pl(𝜌0) is compact, and so we may shrink this open
neighbourhood to avoid pl(𝜌0)), hence 𝜉 lies in a flat part of the lamination. By Thurston’s theory of
measured laminations (in particular [124, Proposition 9.5.4]) this flat part must be a monogon with
a single marked point 𝜉 in the interior. Cutting along a geodesic between 𝜉 and the monogon vertex
gives a triangle which lifts into a flat piece of 𝜕 h.convΛ(Γ𝑎,𝑏𝜌0 ) (Figure 7.13); the lifted triangle on the
induced hyperbolic metric of this flat piece has two ideal vertices 𝑢̃1 and 𝑢̃2, and one vertex ̃𝜉 with
angle 2𝜋/𝑛 (which may or may not be ideal, according to whether 𝜉 is a puncture). Now define a
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point 𝜏 in the following way: take the diameter of the circle in ℂ̂ bounding the support plane which
the three points lie onwhich passes through ̃𝜉. This line cuts the circle at two points, and one of these
intersubsections 𝜏 is uniquely determined by being on the same side of [𝑢̃1, 𝑢̃2] as ̃𝜉. Let 𝜃 be the angle
of the tangent line to the circle at 𝜏; one can determine a formula for 𝜃 in terms of the positions of
𝑢1, 𝑢2, 𝜏 using hyperbolic trigonometry, and in fact we may find an analytic function 𝜎 ∶ ℂ3 → ℂ
which sends 𝑢1, 𝑢2, 𝜏 to a complex number 𝜎(𝑢1, 𝑢2, 𝜏) with argument equal to 𝜃.

The positions of 𝑢1, 𝑢2, ̃𝜉 and hence 𝑢1, 𝑢2, 𝜏 depend analytically on the value of 𝜌 and do not
collide, by the 𝜆-lemma [37, 116] — for the ideal points one needs no further argument, but for the
possible non-ideal point use the fact that ̃𝜉 lies on the axis of the corresponding generator and must
form a triangle with angle 2𝜋/𝑛 on the sphere passing through it and the other two points. In any
case, we have an analytic function 𝜌 ↦ 𝜎(𝜌), and this is a function defined on ℂ (since it can be
written entirely in terms of the trigonometry of the point configurations).

Now observe that for 𝜌 ∈ 𝒫𝜆, 𝜃must be the same angle 𝜙 as the line joining the two fixed points of
the generator representing 𝜉 (or the same angle as the translation direction, in the case of a parabolic).
In particular we see that the function Ψ defined by Ψ(𝜌) = 𝜎(𝜌) exp−𝑖𝜙(𝜌) is an analytic function
which is real on the pleating ray pl(𝜆). ▮

We may now prove density of the rational pleating rays, following [62, Corollary 6.2]. Compare
this with Theorem 5.2.5.

7.4.5 Corollary. The union⋃𝜆∈ℚ 𝒫
𝑎,𝑏
𝜆 is dense inℛ𝑎,𝑏.

Proof. Suppose 𝜌0 ∈ ℛ𝑎,𝑏 lies on the irrational pleating ray 𝒫𝜆 for some 𝜆 ∈ ℝ ⧵ ℚ. By Proposi-
tion 7.4.4 the pleating ray is smooth and so by openness of ℛ𝑎,𝑏 there is a path 𝜌 ∶ [0, 1] → ℛ𝑎,𝑏

with 𝜌(0) = 𝜌0 and which is locally transverse to 𝒫𝜆. By Theorem 3.6.15 the map pl ∘𝜌 ∶ [0, 1] → ℝ
(where we are using Theorem 6.1.5 to view pl as a map into ℝ) is continuous and by transversality
for small 𝜀 > 0 we have (pl ∘𝜌)(𝜀) ≠ 𝜆. Hence by the intermediate value theorem and density of ℚ
in ℝ there is some 𝜀′ ∈ (0, 𝜀] with (pl ∘𝜌)(𝜀′) ∈ ℚ. In particular by choosing 𝜌(1) arbitrarily close to
𝜌(0) we may find rational pleating rays arbitrarily close to 𝜌(0). ▮

A simplemodification to the argument of Corollary 7.4.5 gives amore quantitative result (c.f. [62,
Lemma 6.3]):

7.4.6 Lemma (Rational approximation lemma). Suppose that 𝜌∞ ∈ 𝒫𝜆 and that 𝑝𝑛/𝑞𝑛 ∈ ℚ is a
sequence with lim𝑛→∞ 𝑝𝑛/𝑞𝑛 = 𝜆. Then for each 𝑛 there is a point 𝜌𝑛 ∈ 𝒫𝑝𝑛/𝑞𝑛 such that lim𝑛→∞ 𝜌𝑛 =
𝜌∞.

Proof. Without loss of generality assume 𝑝𝑛/𝑞𝑛 is an increasing sequence. Pick an arbitrary 𝜌1 ∈
𝒫𝑝1/𝑞1 , and pick a path 𝜎 ∶ [0, 1] → ℛ with 𝜎(0) = 𝜌1 and 𝜎(1) = 𝜌∞ which is transverse to 𝒫𝜆 at 𝜌∞
and which does not meet 𝒫𝜆 at any other point. As in the proof of Corollary 7.4.5, by the continuity
of pl, for each 𝑛 since 𝑝1/𝑞1 ≤ 𝑝𝑛/𝑞𝑛 ≤ 𝜆 the path 𝜎 intersects 𝒫𝑝𝑛/𝑞𝑛 at some point 𝜌𝑛 = 𝜎(𝑡𝑛).
By deforming 𝜎 if necessary we may assume that the sequence (𝑡𝑛) is monotone increasing. By the
monotone convergence theorem, this sequence has a limit 𝑡∞ ≔ lim𝑛→∞ 𝑡𝑛. Now by continuity of
pl ∘𝜎,

pl(𝜎(𝑡∞)) = lim
𝑛→∞

pl(𝜎(𝑡𝑛)) = lim
𝑛→∞

𝑝𝑛/𝑞𝑛 = 𝜆

so 𝜎(𝑡∞) ∈ 𝒫𝜆 and hence 𝜎(𝑡∞) = 𝜌∞ by the assumption that 𝜎 hits 𝒫𝜆 exactly once. ▮

We give finally a nice consequence of the indexing of the Keen–Series foliation by ℝ and the
theory above, which is not important in the logical development of the theory:

7.4.7 Corollary. The union of the rational pleating rays is of null measure in the Riley slice.
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Figure 7.14: The universal cover ofℛ𝑎,𝑏.

Proof. ℚ is measure zero in ℝ. ▮

We will use this analogy between the inclusion

{rational pleating rays} ⊆ {leaves of the Keen–Series foliation}

andℚ ⊆ ℝ in amore fundamental way: namely, in the next sectionwewill prove a stronger analogue
of Theorem 7.3.4 than Proposition 7.4.4 by a process exactly analogous to the proof of properties of
ℝ via the Dedekind cut construction from ℚ.

7.4B The family of normalised complex length functions
Wemodify the length formulae to make sense in the irrational case: there are two of these formulae,
firstly the length formula for measured laminations inℳℒ(𝑆) fromDefinition 3.4.5 which is infinite
on dense foliations, and secondly the formula which determines the length of the curve 𝛾(𝑝/𝑞) from
the trace of the Farey word from Lemma 6.1.3 and which is clearly meaningless when the word is
biinfinite. Since ||Φ𝑎,𝑏

𝑝/𝑞(𝜌)|| ≠ 2 for 𝜌 ∈ ℛ𝑎,𝑏 (there are no accidental parabolics in the interior), and
since Φ𝑎,𝑏

𝑝/𝑞 is real on 𝒫𝑝/𝑞 by Lemma 7.3.3, there is a branch of the complex length function

𝜌 ↦ trlen(Word(𝑝/𝑞)(𝜌)) = 2 arccosh
Φ𝑎,𝑏
𝑝/𝑞(𝜌)
2

on the universal cover ℛ̃𝑎,𝑏 ofℛ𝑎,𝑏 (Figure 7.14) which is real on 𝒫𝑎,𝑏
𝑝/𝑞 ; we call this branch 𝐿̂𝑝/𝑞. This

function still does not make sense in the irrational case, and as 𝑝/𝑞 → 𝜆 ∈ ℝ ⧵ ℚ one observes
heuristically that 𝐿̂𝑝/𝑞(𝜌) → ∞. The problem is that an irrational line accumulates infinite length
because it wraps ‘horizontally’ around the sphere infinitely many times. We therefore divide each
rational length by the (finite) number of ‘wraps’ before taking the limit; this turns out to work.

By consideration of Figure 6.5 and the remainder of the theory in that section, we see that the
intersection number 𝑖(𝛾(𝑝/𝑞), 𝛾(∞)) is 𝑞/2. We therefore define the normalised complex length of
Word(𝑝/𝑞) on ℛ̃𝑎,𝑏 to be the function defined by

𝐿𝑎,𝑏𝑝/𝑞(𝜌) ≔
𝐿̂𝑝/𝑞(𝜌)

𝑖(𝛾(𝑝/𝑞), 𝛾(∞)) =
2
𝑞𝐿̂𝑝/𝑞(𝜌).



96 CHAPTER 7. THE FOLIATION THEORY OF KEEN AND SERIES

Observe that (by definition) we have, for 𝜌 ∈ 𝒫𝑎,𝑏
𝑝/𝑞 ,

𝐿𝑎,𝑏𝑝/𝑞(𝜌) =
𝑙𝜌(𝛾(𝑝/𝑞))

𝑖(𝛾(𝜌), 𝛾(𝑝/𝑞))

where we identify the measured lamination with unit mass across the single bending locus 𝛾(𝑝/𝑞)
with 𝛾(𝑝/𝑞) itself, and where we have chosen the branch upon projection to the the covered space,
ℛ𝑎,𝑏, to be the branch which has

inf
𝜌∈𝒫𝑎,𝑏

𝑝/𝑞

𝐿𝑎,𝑏𝑝/𝑞(𝜌) = 0.

(Compare all this to Lemma 6.4 of [62].) Anotherway of putting this is that 𝐿𝑎,𝑏𝑝/𝑞 induces by projection
a multivalued function ℛ𝑎,𝑏 → ℂ where the function values at 𝜌 differ by 2𝜋, and we choose the
branch which assignes the minimal positive length out of these options. The reason that the values
differ by 2𝜋 is that a Dehn twist by the geodesic around the compression disc adds 2𝜋 to the length.

We give another characterisation of 𝐿𝑝/𝑞 in terms of the bending measure on the pleated surface
(c.f. [62, Proposition 6.7 and the preceeding discussion]). View pl(𝜌) as the pleating lamination
without any measure structure; use 𝛽𝜌 to denote the usual bending measure on pl(𝜌). We define a
new transverse measure, the pleating measure 𝜋𝜌, to be the transverse measure on pl(𝜌) given by

∫
𝐼

𝑓𝑑𝜋𝜌 ≔ ∫
𝐼

𝑓𝑑 (
𝛽𝜇

𝑖(𝛾(∞), 𝛽𝜇)
)

for measured intervals 𝐼 on the surface.

7.4.8 Proposition. Define the pleating length function 𝑃𝐿 ∶ ℛ𝑎,𝑏 → ℝ by

𝑃𝐿(𝜌) = 𝑙𝜌(𝜋𝜌)

where, as in Theorem 3.6.15, we have identified the pleating locus pl(𝜌)with its standard bending meas-
ure 𝛽𝜌, and where 𝑙𝜌 is the lamination length as in Theorem 3.6.14. Then 𝑃𝐿 is continuous on ℛ𝑎,𝑏,
and

𝑃𝐿(𝜌) = 𝐿𝑎,𝑏𝑝/𝑞(𝜌)

for all 𝜌 ∈ ℛ𝑎,𝑏.

Proof. The equality is evident by definition of the normalised complex length; the main thing to note
is that the map 𝜌 ↦ 𝜋𝜌 is continuous by Theorems 3.6.15 and 3.6.16 and then 𝑃𝐿 is continuous by
Theorem 3.6.14. ▮

In order to check that the irrational limit is meaningful, we recall from [108, Definition 14.5] the
following definitions.

7.4.9 Definition. Let 𝑈 ⊆ ℂ be a connected and simply connected domain, and let 𝔉 be a family
of holomorphic functions 𝑈 → ℂ. The family 𝔉 is said to be normal if every sequence (𝑓𝑛) in 𝔉
contains a subsequence which converges uniformly on every compact subset of 𝑈 .

The following standard theorem is then found as [108, Theorem 14.5].

7.4.10 Theorem. A sufficient condition for the family𝔉 of holomorphic functions𝑈 → ℂ to be normal
in the region 𝑈 is that ℱ be uniformly bounded on each compact subset of 𝐾. ▮
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That this condition is met by the family of complex pleating length functions follows from the
following lemma, which may be proved by following exactly the recipe of Section A.4 of [62, pp. 748–
749]; we do not need the precise details of the bound so we do not give the details.

7.4.11 Lemma. The coefficients ofΦ𝑎,𝑏
𝑝/𝑞 are uniformly bounded by a quantity depending only on 𝑞. ▮

Applying Lemma 7.4.11 and Theorem 7.4.10, we see that the family {𝐿𝑎,𝑏𝑝/𝑞} of functionsℛ → ℂ is
a normal family onℛ.

The final ingredient in our proof that there are well-defined limits of the rational normalised
complex lengthswill be the following lemma about convergence of the real part of the complex length
(following the analogous [62, Lemma 6.8]).

7.4.12 Lemma. Suppose that 𝑝𝑛/𝑞𝑛 → 𝜆 ∈ ℝ and that 𝜌0 ∈ 𝒫𝑎,𝑏
𝜆 . Then the real translation lengths

converge to the irrational lamination length:

ℜ𝐿𝑝𝑛/𝑞𝑛(𝜌0) → 𝑃𝐿(𝜌0).

Proof. Let 𝑙 be a leaf of |𝜋𝜆|; for every 𝜀 > 0, there exists some 𝑁 such that for all 𝑛 ≥ 𝑁, there is a
leaf 𝑙𝑛 of ||𝜋𝑝𝑛/𝑞𝑛 ||within distance 𝜀 of 𝑙. Indeed (following the proof of [124, Proposition 8.10.3]), let 𝛼
be a short arc transverse to 𝑙 at some point, then 𝜋𝜆 acts as a measure on the space 𝑇 of unit tangent
vectors on 𝛼. Let 𝑥 be the unit tangent vector at the intersection 𝛼∩𝑙, and let𝑈 be a 𝜀-neighbourhood
of 𝑥 in the space 𝑇. By the convergence 𝑝𝑛/𝑞𝑛 → 𝜆, there must be 𝑁 large enough that for 𝑛 > 𝑁,
𝜋𝑝𝑛/𝑞𝑛 assigns positive measure to 𝑈 ; in particular, 𝑈 must intersect ||𝜋𝑝𝑛/𝑞𝑛 ||.

Since the rational laminations are supported on geodesics, each leaf 𝑙𝑛 has a lift ̃𝑙𝑛 into ℍ3 pre-
served by some loxodromic 𝑔𝑛, a conjugate of the Farey word Word(𝑝𝑛/𝑞𝑛). Let 𝑆 be the quotient
surface 𝒮(Γ𝑎,𝑏𝜌0 ); the leaf 𝑙 is in the pleating locus of 𝑆, and so 𝑙 lifts to a geodesic in ℍ3; since the
leaves 𝑙𝑛 converge to 𝑙, we may pick the lifts compatibly so that ̃𝑙𝑛 → ̃𝑙 and hence the fixed points
of the 𝑔𝑛 (the endpoints of the ̃𝑙𝑛) converge to the endpoints of ̃𝑙. In particular, the axes of the 𝑔𝑛
converge to ̃𝑙. and the axes of the 𝑔𝑛 and the geodesic lifts ̃𝑙𝑛 both tend to the same curve. Replacing
the axes with their projections onto 𝜕 h.convΛ(Γ𝑎,𝑏𝜌0 ) does not change this, so (taking lengths after
projecting to the quotient)ℜ trlen(𝑔𝑛) tends to the same value as 𝑙𝜌0(𝑙𝑛). Normalising by dividing by
𝑖(𝛾(∞), 𝛾(𝑝𝑛/𝑞𝑛)), the latter clearly tends to 𝑙𝜌0(𝜋𝜆) = 𝑃𝐿(𝜌0); the former is just ℜ𝐿𝑝𝑛/𝑞𝑛(𝜌0). ▮

We now deduce the existence of normalised complex length functions for irrational laminations,
following Theorem 6.9 of [62]. If 𝑈,𝑉 ⊆ ℂ are open, write 𝐻(𝑈, 𝑉) for the space of holomorphic
functions 𝑈 → 𝑉 with the topology of uniform convergence on compact subsets.

7.4.13 Proposition. The family {𝐿𝑎,𝑏𝑝/𝑞}𝑝/𝑞∈ℚ of holomorphic functions ℛ → ℂ extends to a family of
holomorphic functions {𝐿𝑎,𝑏𝜆 }𝜆∈ℝ, such that 𝐿𝜆(𝜌) = 𝑃𝐿(𝜌) for each 𝜌 ∈ 𝒫𝜆 and such that the map
ℝ → 𝐻(ℛ𝑎,𝑏, ℂ) defined by 𝜆 ↦ 𝐿𝜆 is continuous.

Proof. Let (𝑝𝑛/𝑞𝑛) be a sequence in ℚ with lim𝑛→∞ 𝑝𝑛/𝑞𝑛 = 𝜆. We wish to show that the sequence
of functions 𝑓𝑛 ≔ 𝐿𝑝𝑛/𝑞𝑛 converges uniformly on compact subsets to a function 𝑓 ∶ ℛ𝑎,𝑏 → ℂwhich
agrees with 𝑃𝐿 on 𝒫𝜆 and which is independent of the choice of sequences. Since the family indexed
on ℚ is a normal family, we may replace (𝑓𝑛) with a subsequence convergent on compact subsets
of ℛ𝑎,𝑏; define 𝑓 to be the limit of this sequence. Pick 𝜌∞ ∈ 𝒫𝜆. By Lemma 7.4.12, ℜ𝑓𝑛(𝜌∞) →
𝑃𝐿(𝜌∞) and so the functions ℜ𝑓 and 𝑃𝐿 agree on 𝒫𝜆. It is easy to see that 𝒫𝜆 is uncountable: the
rational pleating rays are clearly uncountable, so we may do an argument similar to that in the proof
of Theorem 7.3.4: pick an uncountable sequence on two rational pleating rays bounding 𝒫𝜆 (say, two
from the sequence (𝑝𝑛/𝑞𝑛)), ordered to be monotone increasing; for each pair join them by an arc;
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Figure 7.15: Pleating rays have uncountably many points.

Figure 7.16: The ‘cut sets’ L𝑝/𝑞 and R𝑝/𝑞 in ℍ+, from the proof of Theorem 7.4.14.

by continuity each of these arcs must intersect 𝒫𝜆 (Figure 7.15). Since all of the functions we are
dealing with are holomorphic, we see that knowing ℜ𝑓 on this uncountable subset determines 𝑓
everywhere up to a constant (by the Cauchy-Riemann equations); since 𝑃𝐿 is clearly independent of
any kind of sequence (𝑝𝑛/𝑞𝑛), so too is this determination of 𝑓 up to a constant. We finally check
that 𝑓 is real-valued at 𝜌∞, which removes this dependence on a constant. By Lemma 7.4.6, there is
a sequence of points 𝜌𝑛 ∈ 𝒫𝑝𝑛/𝑞𝑛 tending to 𝜌∞. Since 𝑓𝑛(𝜌𝑛) ∈ ℝ for each 𝑛 and 𝑓𝑛 → 𝑓 uniformly
around 𝜌∞, 𝑓(𝜌∞) ∈ ℝ. ▮

We now prove the main result of this subsection, an extension of Theorem 7.3.4 to include all
pleating rays, whether rational or irrational. We follow the proof of [62, Theorem 7.2], adapted for
the Riley slices as indicated in Theorem 5.3 of [63]. The proof goes via a Dedekind-cut-like argument
(c.f. [70]).

7.4.14 Theorem. The pleating ray 𝒫𝜆 is a union of two complex-conjugate connected components of
the real locus of the complex pleating length 𝐿𝜆 in ℛ𝑎,𝑏. This component contains no singularities and
is asymptotic to the line of slope 𝜋𝑘 as |𝜌| → ∞.

Proof. As above, we work inℍ+ and the corresponding statement for the component inℍ− is proved
in exactly the same way (c.f. the discussion of [66]).

A. Rational pleating rays cut the upper slice into two components. If 𝑝/𝑞 ∉ {0/1, 1/1} then
ℍ+ ⧵ 𝒫𝑝/𝑞 is split into two connected components; call these L𝑝/𝑞 (the left component, bounded by
𝒫1/1) and R𝑝/𝑞 (the right component, bounded by 𝒫0/1). See Figure 7.16.
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Figure 7.17: Irrational pleating rays lie on exactly one side of every rational ray.

We now claim that every 𝒫+
𝜆 (𝜆 ≠ 𝑝/𝑞) lies on exactly one side of 𝒫𝑝/𝑞. More precisely, fix 𝜆 ∈ ℝ,

such that 𝜆 > 𝑝/𝑞; we claim that 𝒫+
𝜆 ⊆ L𝑝/𝑞. The proof is illustrated in Figure 7.17. The claim is

easily shown for 𝜆 ∈ ℚ, since asymptotically 𝒫+
𝜆 lies in L𝑝/𝑞 and cannot cross 𝒫+

𝑝/𝑞 or 𝒫1/1. If 𝜆 ∈ ℝ,
suppose for contradiction that there is some 𝑥 ∈ 𝒫+

𝜆 ∩R𝑝/𝑞. By Lemma 7.4.6, we can find a sequence
of rational pleating rays containing points tending to 𝑥, with monotone decreasing slope; but R𝑝/𝑞
is open, so one of these rays, say of slope 𝑟/𝑠, must intersect a small neighbourhood of 𝑥 in R𝑝/𝑞; by
the rational case we see 𝑟/𝑠 < 𝑝/𝑞 but 𝒫+

𝑟/𝑠 intersectsR𝑝/𝑞 giving the desired contradiction. The same
argument shows that 𝜆 < 𝑝/𝑞 implies that 𝒫+

𝜆 ⊆ R𝑝/𝑞.

B. Irrational pleating rays cut the upper slice into two components. We now define these
cut sets for irrational 𝜆. If 𝜆 ∈ ℝ define

L𝜆 ≔ ⋃
1>𝑟/𝑠>𝜆

L𝑟/𝑠 and R𝜆 ≔ ⋃
𝜆>𝑟/𝑠>0

R𝑟/𝑠.

Immediately from the definition and the previous discussion these sets are disjoint. In addition,
𝒫+
𝜆 = (ℛ𝑎,𝑏 ∩ ℍ+) ⧵ (ℒ𝜆 ∪ ℛ𝜆): one inclusion follows because 𝒫+

𝜆 is disjoint from both ℒ𝜆 and ℛ𝜆;
now let 𝑥 ∈ (ℛ𝑎,𝑏 ∩ ℍ+), 𝑥 lies on some pleating ray 𝒫+

𝜇 ; suppose 𝜇 ≠ 𝜆, then there exists some
rational 𝑝/𝑞 between 𝜇 and 𝜆 in ℝ, and so 𝑥must lie in either ℒ𝜆 or ℛ𝜆 according to whether 𝑝/𝑞 is
greater or less than 𝜆. We see therefore that (ℛ𝑎,𝑏∩ℍ+) ⧵𝒫+

𝜆 has exactly two connected components,
ℒ𝜆 andℛ𝜆. In fact, we have shown that 𝒫+

𝜆 is connected, and a curve.

C. Completing the proof. Through any point of 𝒫+
𝜆 (𝜆 ∈ ℝ) there must be an arc in the set 𝒫+

𝜆
along which the normalised complex length 𝐿𝜆 is monotone. More precisely, there is a maximal
curve 𝜌 ∶ (0, 1) → 𝒫+

𝜆 such that 𝐿𝜆 ∘ 𝜌 is monotone. Since 𝒫+
𝜆 is closed in the Riley slice (by B.), the

limits of 𝐿𝜆 ∘ 𝜌(𝑡) as 𝑡 → 0 or 𝑡 → 1 lie in the Riley slice exterior ℂ̂ ⧵ ℛ𝑎,𝑏.
Let𝜋 be the projection to the quotient space ℂ̂/ ∼, where∼ is the equivalence relation identifying

the points in ℂ̂ ⧵ ℛ𝑎,𝑏 together to form a point 𝜉 ∈ ℂ̂/ ∼. Then ℂ̂/ ∼ is a sphere with two poles
identified (Figure 7.18) and 𝜋 ∘ 𝜌 is a curve in the quotient extending to a Jordan curve (which we
denote by the same symbols) by adding two identified endpoints at 𝜉.2 Thus𝜋∘𝜌 separates the portion

2Keen and Series cite Lemma 15.6 of Milnor’s original preprint for Dynamics in one complex variable as the inspiration for
this argument; for convenience, this is Lemma 17.6 in the third edition [92].
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Figure 7.18: The quotient surface from part C. of the proof of Theorem 7.4.14.

of ℂ̂/ ∼ between the projections of 𝒫0/1 and 𝒫/1/1 into two components, and 𝜌 separates ℛ𝑎,𝑏 ∩ ℍ+

into two components. Suppose that 𝒫+
𝜆 contained a singularity; then it has a different branch which

must also separate ℛ𝑎,𝑏 ∩ ℍ+ into two different components; but we have already checked that 𝒫+
𝜆

splitsℛ𝑎,𝑏 ∩ ℍ+ into exactly two components.
Finally, the statement about the asymptotic angle is obvious once we know the ray is a smooth

curve: it can be approximated on both sides by a sequence of smooth curves with asymptotic slopes
approaching 𝜋𝜆 (by Lemma 7.4.6 again) so has asymptotic slope 𝜋𝜆. ▮

7.4C The pleating ray coordinate system for ℛ
We now proceed to follow [63, §5] and [62, §§6–7] in order to prove the following result, giving a
coordinate system on the Riley slices. The proof is exactly that given on p.743 of [62] but with some
additional detail.

7.4.15 Theorem. The map
Π𝑎,𝑏 ∶ ℛ𝑎,𝑏 → ℝ/2ℤ × ℝ>0.

defined by
Π𝑎,𝑏(𝜌) = (pl(𝜌), 𝐿pl(𝜌)(𝜌)

is a homeomorphism.

See Figure 1.2 for a simplified schematic depiction of this system of coordinates, and the picture
due to David Wright found as Figure 1 of [63].

Proof. Surjectivity is immediate. Injectivity follows from the fact that no𝒫𝜆 can contain critical points
and so the normalised length functions are monotone on each ray (Theorem 7.4.14). In addition,
continuity follows from continuity of pl (Theorem 3.6.15 and of the assignment of normalised length
functions (Proposition 7.4.13). It remains to prove that the map is open; the reader might find it
helpful to view the schematic Figure 7.19 to see the objects we use in the proof.

Since Π is bijective it has an inverse. Let 𝑈 ⊆ ℛ𝑎,𝑏 be an open disc, and fix (𝜆, 𝑐) ∈ Π(𝑈); since
𝑈 is open and the normalised complex length functions are analytic (so open) there exists an 𝜀 > 0
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Figure 7.19: Objects in the proof of Theorem 7.4.15.

such that (𝜆, 𝑐 ± 𝜀/2) ∈ Π(𝑈). Let the two points 𝑐 ± 𝜀/2 be labelled 𝑐1 and 𝑐2 (𝑐1 > 𝑐2), and draw
two arcs 𝜎1, 𝜎2 in𝑈 , transverse to𝒫𝜆 at 𝑐1, 𝑐2 respectively, with the endpoints chosen on two pleating
rays 𝒫𝜆1 and 𝒫𝜆2 ( 𝜆1 > 𝜆 > 𝜆2) with the property that |𝑃𝐿(𝜇) − 𝑐1| < 𝜀/8 and |𝑃𝐿(𝜇) − 𝑐2| < 𝜀/8 on
𝜎1 and 𝜎2 respectively. This is possible by continuity of 𝑃𝐿.

Let 𝑊 be the quadrilateral subset of ℂ bounded between the arcs 𝜎1, 𝜎2 and the pleating rays
𝒫𝜆1 , 𝒫𝜆2 . This is contained entirely in 𝑈 , since 𝑈 is simply connected. We now show that Π(𝑊)
contains (𝜆, 𝑐) within its interior; more precisely, we show that Π(𝑊) contains the set 𝐾 = [𝜆1, 𝜆2] ×
[𝑐 − 𝜀/4, 𝑐 + 𝜀/4] which is a compact set containing (𝜆, 𝑐); thus ∫𝐾 is an open subset of ℝ/2ℤ × ℝ>0
which is contained in Π(𝑈).

To see that 𝐾 ⊆ Π(𝑊), suppose 𝑡 ∈ [𝜆1, 𝜆2]. By a similar ‘betweeness’ argument to those used
in the previous proofs (i.e. continuity of pl and the intermediate value theorem), 𝒫𝑡 intersects both
𝜎1 and 𝜎2. By construction of 𝜎1 and 𝜎2, if 𝜇 ∈ 𝜎1 then 𝑃𝐿(𝜇) > 𝑐 + 3𝜀/8; and if 𝜇 ∈ 𝜎2, then
𝑃𝐿(𝜇) < 𝑐−3𝜀/8. Because the pleating rays are disjoint and 𝑃𝐿 is monotone on each pleating ray, we
see that Π−1(𝑡, 𝜇) ∈ 𝑊 for all 𝑡 ∈ [𝜆1, 𝜆2] and all 𝜇 ∈ [𝑐 − 𝜀/4, 𝑐 + 𝜀/4], which is what we wanted to
show. ▮

Remark. Really, Theorem 7.4.15 is just a concrete version of the ending lamination conjecture for
the quasi-Fuchsian groups in the Riley slice, and of the construction of the Thurston boundary of
quasi-Fuchsian space which agrees in this special case with the Bers boundary (c.f. Section 5.11.2 of
[79] and the references in the introductory paragraph to Section 3.6E). We conjecture that the Keen–
Series theory will generalise quite easily to the case of general geometrically finite groups; see the
disussion around Problem 10.1.2.
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Chapter 8

Neighbourhoods of pleating rays

In this chapter, we show that, for every cusp 𝜁 on the parabolic Riley slice boundary 𝜕ℛ∞,∞, there
exists an open neighbourhood of the rational pleating ray 𝒫(𝑝/𝑞) ending at 𝜁 which consists of a
connected component of (Φ∞,∞

𝑝/𝑞 )−1(ℋ) where

ℋ = {𝑧 ∈ ℂ ∶ ℜ𝑧 < −2}

is the half-plane of ℂ to the left of the vertical line through−2. Since the boundary of this neighbour-
hood is smooth, we get some information about the shape of the Riley slice boundary around cusp
points. We will prove a similar result holds for elliptic Riley slices in our upcoming joint paper [42].

The majority of this chapter is adapted from Sections 4 and 5 of the preprint [39].

8.1 The main result and a sketch of the proof
We begin by stating our main result, and then providing some motivation for the proof.

8.1.1 Theorem (Existence of open neighbourhoods). LetΦ𝑝/𝑞 be a Farey polynomial. Then there is a
branch Φ−1

𝑝/𝑞 of the inverse of Φ𝑝/𝑞 such that

Φ−1
𝑝/𝑞(ℋ), whereℋ = {ℜ𝑧 < −2},

is an open subset ofℛ∞,∞

The bounds given in the theorem are illustrated in Figure 8.1.
The idea behind Theorem 8.1.1 is very simple: the Keen–Series theory of [63] which we discussed

in Chapter 7 depends on the existence of round discs (the F-peripheral discs of Definition 7.2.1) in
the ordinary sets of Riley groups which glue up along their edges to form the quotient surface 𝑆0,4;
the pleating rays are arcs in the Riley slice such that deforming the groups along these arcs preserves
the ‘roundness’ of a given set of these peripheral discs (this was Lemma 7.2.2). In order to find
neighbourhoods of these rays, we simply allow deformations in both dimensions, rather than simply
the direction of the pleating ray. Of course, deformations off the pleating ray do not preserve the
roundness of the F-peripheral discs; but we claim that the quasidiscs (that is, quasiconformal images
of discs) obtained still ‘glue up’ correctly, and limits of them continue to be quasidiscs (rather than the
boundary becoming space-filling)—this last property (Lemma 8.3.16) allows us to prove an analogue
of Lemma 7.3.13, which is important because our proof follows a similar thread to the arguments of
the previous chapter: we define a certain subset of ℂ, namely the set 𝒩𝑝/𝑞 of 𝜌 ∈ ℂ which admit

103
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Figure 8.1: The Riley slice with neighbourhoods for our pleating ray values illustrated.

‘canonical peripheral quasidiscs of slope 𝑝/𝑞’ in analogy to the non-conjugate pairs of F-peripheral
discs; we then prove that any group in some𝒩𝑝/𝑞 lies in the Riley slice (this is Lemma 8.3.14 below,
the analogue of Lemma 7.2.10 above); and then, via an open-closed argument like Proposition 7.3.14,
we see that𝒩𝑝/𝑞 is precisely the set of Theorem 8.1.1.

In order to carry out this procedure, we need some information about the precise nature of the
action of the quasiconformal deformations on the discs: more precisely, we will need to know that
the combinatorial properties of the round peripheral discs are preserved even when we deform off
the pleating ray and they turn into quasidiscs. Recall that the Riley sliceℛ (which in this chapter will
always beℛ∞,∞) is topologically a punctured disc in the plane (Corollary 5.1.6), and as such admits
a hyperbolic metric which we denote by distℛ ∶ ℛ × ℛ → [0,∞).

8.1.2 Theorem. Let 𝛼 be a curve in ℛ which lies a bounded hyperbolic distance from a pleating ray
(that is, there exists an𝑀 < ∞ such that for each 𝜌 ∈ 𝛼 there is some 𝜈 ∈ 𝒫𝑝/𝑞 with distℛ(𝜌, 𝜈) ≤ 𝑀).
Then the quasiconformal map conjugating Γ𝜌 to Γ𝜈 has distortion no more than 𝑒𝑀 .

Proof. Let 𝜌 ∈ 𝛼 and 𝜈 ∈ 𝒫𝑝/𝑞 and let𝑀 ≔ distℛ(𝜌, 𝜈). Let 𝜋 ∶ 𝔹2 → ℛ be the hyperbolic universal
covering map with 𝜋(0) = 𝜌 and 𝜋(tanh(𝑀/2)) = 𝜈. The holomorphically parameterised family
of discrete groups {ΓΦ(𝑧) ∶ 𝑧 ∈ 𝔹2} induces an equivariant ambient isotopy of ℂ̂ by Theorem 3.6.9,
following Proof Schema 3.6.11. If we move 𝜌 in ℛ then the motion of the fixed point set extends to
a holomorphically parameterised quasiconformal ambient isotopy, equivariant with respect to the
groups Γ𝜌, of the whole Riemann sphere. By part (3) of Theorem 3.6.8, the distortion of this ambient
isotopy is exactly the exponential of the hyperbolic distance between the start (at 0) and finish (at
tanh(𝑀/2)), that is 𝑒𝑀 . ▮

Consider deforming a point 𝜌 ∈ ℛ towards the Riley slice boundary along a curve 𝛼 which lies a
bounded distance away from a pleating ray 𝒫𝑝/𝑞. Theorem 8.1.2 shows that if 𝜈 ∈ 𝒫𝑝/𝑞 is the hyper-
bolic projection of 𝜌 onto the pleating ray then the combinatorial properties of circles in the limit set
of Γ𝜈 transfer directly to combinatorial properties of quasicircles in the limit set of Γ𝜌, since there is a
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uniformly bounded distortion mapping one to the other. These quasicircles bound what we will call
the F-peripheral quasidiscs of the group Γ𝜈.

Most of the information that the Keen–Series theory provides is topological and their arguments
could be used almost directly if we knew these uniform bounds. However, there is no way that we
can compute or even estimate the hyperbolic metric of the Riley slice near the boundary to identify
a curve such as 𝛼 for every rational pleating ray. What we do is guess (motivated by examining a lot
of examples on the computer) that such a curve is 𝛼 = (Φ∞,∞

𝑝/𝑞 )−1({𝑧 = −2 + 𝑖𝑡 ∶ 𝑡 > 0}), where we
take the branch of the inverse of Φ∞,∞

𝑝/𝑞 with the correct asymptotic behaviour.
An important point that we need to take into account whenwemodify the proof of Theorem 7.3.4

is that, as mentioned above, the peripheral quasicircles could become quite entangled and eventu-
ally become space filling curves. We avoid this situation by modifying the peripheral quasidiscs as
we move, so they have large scale “bounded geometry” (though the small scale geometry is uncon-
trolled). An important observation is that along the rational pleating ray the isometric circles of the
Farey word Word(𝑝/𝑞) are disjoint. We deform in such a way that this property is preserved, and it
is for this reason that we choose the setℋ in the theorem statement: we will prove that Word(𝑝/𝑞)
has disjoint isometric discs when its trace lies in this region (Lemma 8.3.3), though we believe that
this region can even be enlarged (see Section 8.2). Further, if we do not move too far away from the
pleating ray these isometric circles do not start spinning around one another. This information al-
lows us to construct a “nice” precisely invariant set stabilised by 𝑋 andWord(𝑝/𝑞)—this turns out to
be one of the peripheral quasidiscs which does have bounded geometry. Existence of this peripheral
quasidisc (which we call a canonical peripheral quasidisc) guarantees we have the correct quotient
from the action of Γ𝜌 on the ordinary set; and then the open-closed argument carries through.

8.2 An aside: Lyndon and Ullman’s results
Here, we recall themain result of a paper of Lyndon andUllman [74] and examine it in the context of
our pleating neighbourhoods. In the process wewill make some conjectures about improvements we
think are possible to make to Theorem 8.1.1. In particular, we believe that the setℋ in the theorem
can be enlarged to a cone with angle 4𝜋/3.

8.2.1 Theorem (Theorem 3, [74]). Let 𝐾 denote the Euclidean convex hull of the set 𝐵 ∪ {±4} (𝐵 here
is the disc of radius 2 about 0). Then ℂ ⧵ ℛ ⊆ 𝐾. ▮

See Figure 8.2 for a depiction of this bound; as a consequence, the Riley slice ℛ is contained
within a conic region with apex at−4, bounded by two rays tangent to the disc 𝐵. Since the two lines
are orthogonal to the radii of the circle, a simple trigonometric calculation shows that the cone angle
is 𝜋/3, and so the interior of the cone is the set

𝒲 = {𝑧 ∈ ℂ ∶ −𝜋
6 < arg(𝑧 + 4) < 𝜋

6 }.

Let 𝜑 be the branch of 𝑧 ↦ −(−𝑧 − 4)3/5 − 4 conformally mapping ℂ ⧵𝒲 to the half-space 𝐻 = {𝑧 ∶
ℜ𝑧 < −4} (here, 3/5 = 𝜋/(2𝜋 − 𝜋/3)). Then 𝐻 ⊆ ℂ ⧵𝒲, and 𝜑(𝐻) is the sector

{𝑧 ∈ ℂ ∶ 5𝜋
6 < arg(𝑧 + 4) < 7𝜋

6 }.

Because 𝜑 is conformal it is now straightforward to see that the distance in the hyperbolic metric of
ℂ⧵𝒲 between the line ℓ1 = −4+𝑖ℝ and the rational pleating ray ℓ2 = (−∞,−4] (which are parallel
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Figure 8.2: The convex hull of 𝐵 ∪ {±4} contains ℂ ⧵ ℛ.

since they meet at the same point at infinity) is

distℂ⧵𝒲(ℓ1, ℓ2) =
3𝜋/10

∫
0

𝑑𝜃
cos(𝜃) =

1
2 ln [5 + 2√5] ≈ 1.1241.

From Theorem 8.1.2 we now have the following corollary.

8.2.2 Corollary. Let 𝜈 ∈ −4 + 𝑖ℝ. Then there is 𝜌 ∈ (−∞,−4], the rational pleating ray 𝒫1/1, so that
Γ𝜈 and Γ𝜌 are 𝐾-quasiconformally conjugate for some deformation 𝐾 satisfying

𝐾 ≤ √5 + 2√5 ≈ 3.077… .

Proof. The only thing left to observe is that the contraction principle for the hyperbolic metric shows
that the hyperbolic metric ofℛ is smaller than the hyperbolic metric of ℂ ⧵𝒲; in particular,

distℛ(𝜌, 𝜈) ≤ dist𝒲(𝜌, 𝜈) = 1
2 ln [5 + 2√5]

for the point 𝜌 closest to 𝜈, and hence by Theorem 8.1.2

𝐾 ≤ 𝑒distℛ(𝜌,𝜈) ≤ √5 + 2√5.

This proves the corollary. ▮

We believe these estimates for larger neighbourhoods of the (−∞,−4] pleating ray persist in gen-
eral in the parabolic case (namely, take preimages of this cone rather than of𝒲), but proving this
adds additional complications in the construction we give as the isometric circles of Word(𝑝/𝑞)may
no longer be disjoint. We offer Figure 8.3, which is a slight modification of Figure 8.1, as computa-
tional support for this conjecture. Instead of looking at the branch of the inverse of Φ𝑝/𝑞 defined on
{ℜ𝑧 < −4}, to produce this image we compute the preimages of the conic region of opening 𝜋

3
given

by Theorem 8.2.1.
In the elliptic case, additional difficulty arises in finding an analogue for Theorem 8.2.1 in order

to even ‘guess’ the right cone to pull back to a neighbourhood. We will discuss this further in our
upcoming joint paper [42].
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Figure 8.3: Preimages of the sector {arg(𝑧) = −𝜋
6
} ∪ {arg(𝑧) = 𝜋

6
}.

8.3 Proof of the main theorem
In this section, we carry out the proof sketch that we gave in Section 8.1. It may be useful to have a ref-
erence to a specific example. Figure 8.4 shows pictures of the geometric objects we will be interested
in for two specific cusp groups.

8.3A Products of parabolics
As noted earlier (Lemma 6.1.7), an important property of a Farey word Word(𝑝/𝑞) is that it can be
written as a product of parabolic elements in two essentially different ways. For 𝜌 ∈ ℛ there are
only two conjugacy classes of parabolics, those represented by 𝑋 and 𝑌 [83, VI.A]. As explained
above in Chapter 7, this is just a reflection of the fact that the deletion of a non-boundary-parallel
curve on the 4-punctured sphere leaves two doubly punctured discs. To find these parabolics we just
look for a couple of conjugates of 𝑋 and 𝑌 whose product is Word(𝑝/𝑞). Keen and Series studied
the set of all such pairs (this is the data encoded in the circle chain sets 𝒰𝑝/𝑞 of Definition 7.2.4); in
our analysis, we will only look closely at the pair {𝑋, 𝑋−1Word(𝑝/𝑞)}. The group ⟨𝑋,Word(𝑝/𝑞)⟩ =
⟨𝑋, 𝑋−1Word(𝑝/𝑞)⟩ is generated by two parabolics, and so can therefore only be discrete and free on
its generators if

tr(𝑋𝑋−1Word(𝑝/𝑞)) − 2 = tr(Word(𝑝/𝑞)) − 2 ∈ ℛ
(since a group generated by two parabolics is discrete and free iff it is conjugate to a group in the
Riley slice or its boundary; the Riley parameter 𝜌 of a group generated by two parabolics 𝐴 and 𝐵 is
just tr𝐴𝐵 − 2, since 𝜌 + 2 = tr𝑋𝑌𝜌.). If tr(Word(𝑝/𝑞)) ∈ ℝ, then the traces of 𝑋 , 𝑋−1Word(𝑝/𝑞),
and Word(𝑝/𝑞) are real (the first two are ±2) and so ⟨𝑋,Word(𝑝/𝑞)⟩ is Fuchsian by Lemma 7.3.11.
It is groups of this form (and their conjugates) which produce the round 𝐹-peripheral circles of [63]
which we studied in Chapter 7.

That it suffices to only look at {𝑋, 𝑋−1Word(𝑝/𝑞)} is a consequence of the following general result:

8.3.1 Lemma. Suppose that 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ PSL(2, ℂ) are parabolics such that tr𝑢1𝑢2 = tr 𝑣1𝑣2. Then
the two groups ⟨𝑢1, 𝑢2⟩ and ⟨𝑣1, 𝑣2⟩ are conjugate in PSL(2, ℂ).

The upshot of this lemma is that if we were to pick a different pair whose product wasWord(𝑝/𝑞)
then we get exactly the same geometry, up to a well-defined conjugation in ℂ̂. We give a proof that
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Figure 8.4: Geometric objects in the limit sets of the 3/4-cusp group (left) and the 4/5-cusp group
(right). The isometric circles of Word(𝑝/𝑞) are shaded grey; their images under the involution
Φ ∶ 𝑧 ↦ 1/(𝜌𝑧) are shaded green. This involution defines the non-conjugate peripheral disc
⟨𝑌 , ΦWord(𝑝/𝑞)Φ−1⟩. The non-conjugate peripheral discs are shaded in red (one is a lower half
plane). Fixed points of the involution and its action are also illustrated.

provides slightly more information; an elementary proof that proves exactly the statement given is
easy to write down (the groups can be conjugated to Γ𝜇 and Γ𝜇′ , then the indicated traces are 2 + 𝜇
and 2 + 𝜇′ respectively so the groups themselves are conjugate to each other).

Proof of Lemma 8.3.1. There are involutions𝜙𝑢, 𝜙𝑣 ∈ PSL(2, ℂ) so that𝜙𝑢𝑢1𝜙−1𝑢 = 𝑢2 and𝜙𝑣𝑣1𝜙−1𝑣 =
𝑣2.

tr2 𝜙𝑢 = tr2 𝜙𝑣 = 0 and tr2 𝑢1 = tr2 𝑣1 = 4.
Also,

tr[𝑢1, 𝜙𝑢] = tr𝑢1𝜙𝑢𝑢−11 𝜙−1𝑢 = tr𝑢1𝑢−12 = tr𝑢1 tr𝑢2 − tr𝑢1𝑢2 and
tr[𝑣1, 𝜙𝑣] = tr 𝑣1𝜙𝑣𝑣−11 𝜙−1𝑣 = tr 𝑣1𝑣−12 = tr 𝑣1 tr 𝑣2 − tr 𝑣1𝑣2;

the two right-hand sides are equal (since tr𝑢𝑖 = tr 𝑣𝑗 for all 𝑖, 𝑗, and the product traces are equal
by assumption) so tr[𝑢1, 𝜙𝑢] = tr[𝑣1, 𝜙𝑣]. In [49] it is shown that any pair of two-generator groups
with the same trace square of the generators and the same trace of the commutators are conjugate in
PSL(2, ℂ). Thus ⟨𝑣1, 𝜙𝑣⟩ and ⟨𝑢1, 𝜙𝑢⟩ are conjugate and so are their subgroups ⟨𝑢1, 𝑢2⟩ and ⟨𝑣1, 𝑣2⟩. ▮

8.3B Rotation angles and isometric discs
Let 𝑓 ∈ PSL(2, ℂ)with tr𝑓 = −2+𝑡𝑖 (𝑡 ∈ ℝ). Then 𝑓 has complex translation length 𝜏𝑓+𝑖𝜃𝑓, where
𝜏𝑓 and 𝜃𝑓 are respectively the real translation length and the rotation angle 𝑓 given by the formulae

𝜏𝑓
2 = ℜ[sinh−1 ( 𝑖2√𝑡(4𝑖 + 𝑡))] and

𝜃𝑓
2 = ℑ [sinh−1 ( 𝑖2√𝑡(4𝑖 + 𝑡))]

We also have the following asymptotics.

As 𝑡 → 0, {
𝜏𝑓
√2𝑡

→ 1,
𝜃𝑓
√2𝑡

→ −1.
For 0 < 𝑡 < 1, {

1 ≤ 𝜏𝑓
√2𝑡

≤ 1.03642...,
−1 ≤ 𝜃𝑓

√2𝑡
≤ −0.954… .
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In addition, 𝜃𝑓 → −𝜋 as 𝑡 → ∞.

Suppose that 𝑓 is represented by the matrix [𝑎 𝑏
𝑐 𝑑]. Then the isometric discs of 𝑓 are the two

discs 𝐷1 and 𝐷2 given by

𝐷1 = {𝑧 ∈ ℂ ∶ ||𝑧 −
𝑎
𝑐
|| ≤

1
|𝑐| } , 𝐷2 = {𝑧 ∈ ℂ ∶ |||𝑧 +

𝑑
𝑐
||| ≤

1
|𝑐| }

The isometric circles are the boundaries of these two discs. We say that 𝑓 has disjoint isometric
discs if these discs have disjoint interior. This is clearly equivalent to the condition |𝑎 + 𝑑| ≥ 2.

The mapping 𝑓 pairs these discs in the sense that

𝑓(𝐷1) = ℂ̂ ⧵ 𝐷2.

Thus ℂ̂⧵𝐷1 ∪ 𝐷2 is a fundamental domain for the action of 𝑓 on ℂ̂. Notice that when 𝑐 ≠ 0, 𝑓(∞) = 𝑎
𝑐

and that 𝑓−1(∞) = −𝑑
𝑐
are the centers of the isometric discs.

We now specialise to the case that 𝑓 is the Farey wordWord(𝑝/𝑞). Label the entries of the matrix
representing Word(𝑝/𝑞)(𝜌) as follows:

Word(𝑝/𝑞)(𝜌) = (𝑎𝑝/𝑞(𝜌) 𝑏𝑝/𝑞(𝜌)
𝑐𝑝/𝑞(𝜌) 𝑑𝑝/𝑞(𝜌)

) 𝑎𝑝/𝑞𝑑𝑝/𝑞 − 𝑏𝑝/𝑞𝑐𝑝/𝑞 = 1.

We first observe that the entries of the matrix are not independent. Indeed:

8.3.2 Lemma. 𝑄𝑝/𝑞(𝜌) = 𝑎𝑝/𝑞(𝜌) + 𝑑𝑝/𝑞(𝜌) − 2 = 𝑐𝑝/𝑞(𝜌).

Proof. Using Lemma 6.1.7 we will show this reduces to the well known Fricke identity in PSL(2, ℂ)
(see Formula (3.15) of [76]),

tr[𝐴, 𝐵] = tr2 𝐴 + tr2 𝐵 + tr2 𝐴𝐵 − tr𝐴 tr𝐵 tr𝐴𝐵 − 2.

We put 𝐴 = 𝑋−1 and 𝐵 = Word(𝑝/𝑞). Note that, by Lemma 6.1.7 and the conjugacy invariance
of trace, tr𝑋−1Word(𝑝/𝑞) is either tr(𝑋) or tr(𝑌) depending on whether 𝑞 is even or odd (compare
with the discussion in Chapter 9). In our situation both of these traces are 2. Thus, supposing 𝑞 is
odd (the result if 𝑞 is even follows with a similar calculation),

𝑐2𝑝/𝑞 = tr[𝑋,Word(𝑝/𝑞)] − 2 = tr[𝑋−1,Word(𝑝/𝑞)] − 2
= tr2(𝑋−1) + tr2(Word(𝑝/𝑞)) + tr2(𝑌) − tr(𝑋−1) tr(Word(𝑝/𝑞)) tr(𝑌) − 4
= 4 + (𝑎𝑝/𝑞 + 𝑑𝑝/𝑞)2 − 4 tr(𝑎𝑝/𝑞 + 𝑑𝑝/𝑞)
= (𝑎𝑝/𝑞 + 𝑑𝑝/𝑞 − 2)2

Thus 𝑐𝑝/𝑞 = ±(𝑎𝑝/𝑞 + 𝑑𝑝/𝑞 − 2). When 𝜌 = 1, the positive square root occurs. Since the identity is
continuous in 𝜌, it follows that the positive square root is the correct choice for all 𝜌. ▮

8.3.3 Lemma. Letℜ(𝜌) ≤ −2. Then the Farey wordWord(𝑝/𝑞)(𝜌) has disjoint isometric discs.

Proof. The isometric circles of Word(𝑝/𝑞) are the two discs

(8.3.4) 𝐷1 = 𝐵 (
𝑎𝑝/𝑞(𝜌)
𝑐𝑝/𝑞(𝜌)

, 1
||𝑐𝑝/𝑞(𝜌)||

) and 𝐷2 = 𝐵 (
−𝑑𝑝/𝑞(𝜌)
𝑐𝑝/𝑞(𝜌)

, 1
||𝑐𝑝/𝑞(𝜌)||

) .
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Figure 8.5: The isometric circles of Word(3/4) when trWord(3/4) = −2 + 𝑖 (in grey) and their trans-
lates (in red).

We now compute with the identity of Lemma 8.3.2 that

(8.3.5)
𝑎𝑝/𝑞(𝜌)
𝑐𝑝/𝑞(𝜌)

+
𝑑𝑝/𝑞(𝜌)
𝑐𝑝/𝑞(𝜌)

=
2 + 𝑐𝑝/𝑞(𝜌)
𝑐𝑝/𝑞(𝜌)

= 1 + 2
𝑐𝑝/𝑞(𝜌)

.

Now suppose that tr(Word(𝑝/𝑞)) = −2 + 𝑖𝑡; then ||𝑎𝑝/𝑞 + 𝑑𝑝/𝑞|| = √4 + 𝑡2 > 2, so along the path
tr(Word(𝑝/𝑞)) = −2 + 𝑖𝑡 we have that the Farey word Word(𝑝/𝑞) has disjoint isometric discs. ▮

Lemma 8.3.2 and Equation (8.3.5) together have the following consequence.

8.3.6 Corollary. Let tr(Word(𝑝/𝑞)) = −𝑥 + 𝑖𝑡 for 𝑥 ≥ 2 and 𝑡 ∈ ℝ. Then the group ⟨𝑋,Word(𝑝/𝑞)⟩ is
discrete and free on the indicated generators.

Proof. For clarity we drop the subscript 𝑝/𝑞 as it is fixed. Let 𝑆 be the vertical strip of width one given
by

{𝑧 ∈ ℂ ∶ 1
2 (ℜ (𝑎(𝜌) − 𝑑(𝜌)

𝑐(𝜌) ) − 1) < 𝑧 < 1
2 (ℜ(𝑎(𝜌) − 𝑑(𝜌)

𝑐(𝜌) ) + 1)} .

Using the notation of Lemma 8.3.3 for the isometric discs of Word(𝑝/𝑞), set 𝐷1 = 𝐷1 − 1 and 𝐷2 =
𝐷2 + 1 so each 𝐷𝑖 is a translate of the respective 𝐷𝑖 (to the left and right respectively; see Figure 8.5).
Essentially following the construction on pp.1392–1393 of [74], define ̃𝑆 by

(8.3.7) ̃𝑆 = (𝑆 ∪ 𝐷1 ∪ 𝐷2) ⧵ (𝐷1 ∪ 𝐷2) .

Lemma 8.3.2 implies that the discs 𝐷1 and 𝐷2 are tangent. Two things now follow. Firstly, the
translates of ̃𝑆 by 𝑛 ∈ ℤ fill the plane. Secondly, ̃𝑆 contains the isometric circles of Word(𝑝/𝑞). The
Klein combination theorem [83, Theorem VII.A.13] or an argument like that in Proposition 3.5.2
now implies the result since ℂ̂ ⧵ (𝐷1 ∪ 𝐷2) is a fundamental domain for the action of Word(𝑝/𝑞). ▮

There is one further piece of information we would like out of Corollary 8.3.6: that the point of
tangency of the isometric discs and their translates is a parabolic fixed point. To save space, write
ℎ = ℎ𝑝/𝑞 for the function on ℂ̂ corresponding to the action of Word(𝑝/𝑞). The point of tangency can
be calculated to be

𝑧∞ ≔ 𝑎 − 𝑑
2𝑐 − 1

2 =
𝑎 − 𝑑 − 𝑐

2𝑐 = 1 − 𝑑
𝑐 .
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(where we continue to use 𝑎, 𝑏, 𝑐, 𝑑 for the entries of a matrix representing Word(𝑝/𝑞)). Then

ℎ(𝑧∞) =
𝑎𝑧∞ + 𝑏
𝑐𝑧∞ + 𝑑 =

𝑎 1−𝑑
𝑐
+ 𝑏

𝑐 1−𝑑
𝑐
+ 𝑑

= 1 + 𝑐 − 𝑑
𝑐 = 𝑧∞ + 1

and so with 𝑓 representing 𝑋 we have shown 𝑓−1ℎ(𝑧∞) = 𝑧∞ so 𝑧∞ is a fixed point of 𝑓−1ℎ. Since
𝑋−1Word(𝑝/𝑞) is parabolic as previously observed we have proved the following lemma.

8.3.8 Lemma. The point 1−𝑑
𝑐

∈ 𝜕 ̃𝑆 (with ̃𝑆 defined by Equation (8.3.7)), a point of tangency of the
isometric discs ofWord(𝑝/𝑞) and their unit translates, is a parabolic fixed point. ▮

8.3C Canonical peripheral quasidiscs
In this section we show that the geometry of the peripheral quasicircles is controlled by the pairing
of the isometric circles of𝑊𝑝/𝑞. We begin by studying the geometry for 𝜌 ∈ 𝒫𝑝/𝑞, and then we allow
𝜌 to move holomorphically off the pleating ray, inducing a quasiconformal deformation of the limit
set and hence the peripheral discs, with a quasiconformality constant that we can explicitly bound.

Fix 𝜌 ∈ 𝒫𝑝/𝑞, and as above we write ℎ𝑝/𝑞(𝜌) for theMöbius transformation represented by𝑊𝑝/𝑞(𝜌)
which maps 𝜕𝐷2 onto 𝜕𝐷1 (c.f. Equation (8.3.4)). Let 𝑧0 ∈ 𝜕𝐷2 be the unique closest point of 𝜕𝐷2 to
𝜕𝐷1. Since ℎ𝑝/𝑞(𝜌) is hyperbolic (its trace is real, since 𝜌 is on the 𝑝/𝑞-pleating ray) it maps 𝑧0 to the
point of 𝜕𝐷1 which is closest to 𝜕𝐷2. Let 𝐿(𝜌) be the Euclidean line segment joining 𝑧0 to ℎ𝑝/𝑞(𝜌)(𝑧0).

We now allow 𝜌 tomove off the pleating ray; more precisely, we choose a holomorphicmotionΦ ∶
𝔻×𝐴 → 𝐴 such that𝐴 is a sufficiently small neighbourhood of the pleating ray (really the point is that
we can choose 𝐴 to be the neighbourhood which we claim the existence of in Theorem 8.1.1 without
moving out of the Riley slice) and then take ̃𝜌 = Φ(𝜆, 𝜌) for some 𝜆 ∈ 𝔹2. After this deformation,
𝐿( ̃𝜌) is still a line segment joining two points on the boundaries of 𝜕𝐷1( ̃𝜌) and 𝜕𝐷2( ̃𝜌) such that the
endpoint 𝑧0( ̃𝜌) on 𝜕𝐷2( ̃𝜌) is mapped by ℎ𝑝/𝑞( ̃𝜌) onto the other endpoint of 𝐿( ̃𝜌); but now the line
segment itself does not form the projection of the axis of ℎ𝑝/𝑞( ̃𝜌) (though the projection of the orbit
is symmetric with respect to 𝐿( ̃𝜌)) and 𝑧0( ̃𝜌) and ℎ𝑝/𝑞( ̃𝜌)(𝑧0( ̃𝜌)) are not the closest points of the two
circles.

The line segment𝐿𝑝/𝑞( ̃𝜌)will lie entirely in ̃𝑆 provided that ̃𝜌 is close enough to𝜌 that the isometric
discs have not twisted too far around. In particular, it is enough if the absolute value of the difference
between the real parts of the centers of the isometric discs exceeds twice the radius of the isometric
discs. That is, if

|||ℜ
𝑎𝑝/𝑞( ̃𝜌) + 𝑑𝑝/𝑞( ̃𝜌)

𝑐𝑝/𝑞( ̃𝜌)
||| ≥

2
||𝑐𝑝/𝑞( ̃𝜌)||

.

Using Lemma 8.3.2, we calculate that

ℜ
𝑎𝑝/𝑞( ̃𝜌) + 𝑑𝑝/𝑞( ̃𝜌)

𝑐𝑝/𝑞( ̃𝜌) = ℜ
𝑐𝑝/𝑞( ̃𝜌) + 2
𝑐𝑝/𝑞( ̃𝜌) = 1 + ℜ 2

𝑐𝑝/𝑞( ̃𝜌)

= 1 + 2
||𝑐𝑝/𝑞( ̃𝜌)||2

ℜ𝑐𝑝/𝑞( ̃𝜌);

thus we are requiring
||||𝑐𝑝/𝑞( ̃𝜌)||2 + 2ℜ𝑐𝑝/𝑞( ̃𝜌)|| ≥ 2||𝑐𝑝/𝑞( ̃𝜌)||.

This is true if ℜ𝑐𝑝/𝑞( ̃𝜌) ≤ −4, so under these conditions the line segment 𝐿𝑝/𝑞( ̃𝜌) has the property
that it lies entirely in ̃𝑆 with its endpoints on 𝜕 ̃𝑆; and as wementioned above the endpoints of 𝐿𝑝/𝑞( ̃𝜌)
are identified by ℎ𝑝/𝑞( ̃𝜌).
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For convenience, introduce now the notation Γ𝑝/𝑞( ̃𝜌) = ⟨𝑓, ℎ𝑝/𝑞( ̃𝜌)⟩ where 𝑓 and ℎ𝑝/𝑞( ̃𝜌) are the
Möbius transformations with respective matrices 𝑋 and𝑊𝑝/𝑞( ̃𝜌). We have identified a fundamental
domain ̃𝑆 for the action of Γ𝑝/𝑞( ̃𝜌) on Ω(Γ𝑝/𝑞( ̃𝜌)). The quotient

Ω(Γ𝑝/𝑞( ̃𝜌))/Γ𝑝/𝑞( ̃𝜌)

is the four-times punctured sphere 𝑆0,4, since

Γ𝑝/𝑞( ̃𝜌) = ⟨𝑓, ℎ𝑝/𝑞( ̃𝜌)⟩ = ⟨𝑓, 𝑓−1ℎ𝑝/𝑞( ̃𝜌)⟩

is a circle-pairing group generated by two parabolics. The line segment 𝐿𝑝/𝑞( ̃𝜌) projects to a simple
closed curve (though not a geodesic in general) in the homotopy class of ℎ𝑝/𝑞( ̃𝜌) and separates one
pair of punctures from another. We remark that the projection of 𝐿𝑝/𝑞( ̃𝜌) is smooth away from one
corner (namely, the point of projection of the segment endpoints) and the angle at that corner tends
to 𝜋 as ℑ ̃𝜌 → 0. The Schottky lift (that is, the lift into ℂ̂ induced by viewing 𝑆0,4 as a quotient of
ℂ̂ by a Schottky-type group) of the projection of 𝐿𝑝/𝑞( ̃𝜌) into 𝑆0,4 is a quasiline through∞ (we have
no control on the distortion here, even though we expect that we are a bounded hyperbolic distance
from a Fuchsian group on the rational pleating ray 𝒫𝑝/𝑞, so there is a nice quasiline which must pass
through the midpoint of 𝐿𝑝/𝑞( ̃𝜌) for reasons of symmetry). This quasiline must be

ℒ𝑝/𝑞( ̃𝜌) = ⋃
𝑔∈⟨𝑓,ℎ𝑝/𝑞( ̃𝜌)⟩

𝑔(𝐿𝑝/𝑞( ̃𝜌)).

It consists of the translates of 𝐿𝑝/𝑞( ̃𝜌) by 𝑓𝑛, 𝑛 ∈ ℤ, together with images which lie in the union of
the two isometric circles of ℎ𝑝/𝑞 and their integer translates. We note that

ℎ𝑝/𝑞( ̃𝜌)(∞) =
𝑎𝑝/𝑞( ̃𝜌)
𝑐𝑝/𝑞( ̃𝜌) and ℎ𝑝/𝑞( ̃𝜌)−1(∞) = −

𝑑𝑝/𝑞( ̃𝜌)
𝑐𝑝/𝑞( ̃𝜌)

and these are parabolic fixed points on ℒ𝑝/𝑞( ̃𝜌) (conjugates of the fixed points of 𝑓) as well as being
the centers of the isometric circles. The parabolic fixed point we earlier identified in Lemma 8.3.8,
𝑧∞ = 1−𝑑

𝑐
, also lies in ℒ𝑝/𝑞( ̃𝜌) and is not a conjugate of a fixed point of 𝑓 (since it is not conjugate

in the abstract group ⟨𝑋, 𝑌⟩ from which the rational words come, a consequence of the fact that they
represent simple closed curves on the four-times punctured sphere.) The translates of the endpoints
of 𝐿𝑝/𝑞( ̃𝜌) under ⟨ℎ𝑝/𝑞( ̃𝜌)⟩ lie on a log-spiral connecting the fixed points of ℎ𝑝/𝑞( ̃𝜌). This is illustrated
in the examples of Figure 8.6.

If we denote by 𝐻±
𝑝/𝑞( ̃𝜌) the components of ℂ ⧵ ℒ𝑝/𝑞( ̃𝜌), then

𝐻±
𝑝/𝑞( ̃𝜌)/Γ𝑝/𝑞( ̃𝜌)

is a twice punctured disc with boundary given by a projection of 𝐿𝑝/𝑞( ̃𝜌).
We can give some bounds on the position of the invariant quasiline; in particular, this shows that

it has bounded large-scale geometry (as we discussed in Section 8.1).

8.3.9 Lemma. The invariant quasiline ℒ𝑝/𝑞 lies in the strip

{𝑧 ∈ ℂ ∶ ℑ(
𝑎𝑝/𝑞
𝑐𝑝/𝑞

) + 1
||𝑐𝑝/𝑞||

≤ ℑ𝑧 ≤ ℑ(−
𝑑𝑝/𝑞
𝑐𝑝/𝑞

) − 1
||𝑐𝑝/𝑞||

}

(where all objects are taken with respect to Γ ̃𝜌).
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Figure 8.6: A log-spiral connecting the fixed points of ℎ3/4( ̃𝜌), the Möbius transformation represent-
ing𝑊3/4( ̃𝜌). Red lines connect the isometric circle centers, and the spirals connect the fixed points
of ℎ3/4( ̃𝜌). Here, ̃𝜌 is chosen such that tr(𝑊3/4) = −2 + 𝑖𝑡 where the values of 𝑡 shown from left to
right are 𝑡 = 2, 𝑡 = 0.5, and 𝑡 = 0.1.

Proof. By construction ℓ𝑝/𝑞 lies in, and separates ̃𝑆. Its translates together with the translates of
the isometric discs of 𝑊𝑝/𝑞 separate both the ordinary set of ⟨𝑓, ℎ𝑝/𝑞⟩ and the plane into two parts.
The strip is the smallest horizontal strip containing the isometric circles of𝑊𝑝/𝑞. Note that ℑ

𝑎𝑝/𝑞
𝑐𝑝/𝑞

>

ℑ− 𝑑𝑝/𝑞
𝑐𝑝/𝑞

) and that both are negative. This particular fact holds if we choose, as we may, 𝜌 to be in the
positive quadrant of ℂ. ▮

Our computational investigations suggest that in fact the width of this strip can be improved to
where the spiral “turns over”. This appears proportional to the difference of the imaginary parts of
the fixed points. A consequence would be that asℑ ̃𝜌 → 0 the strip turns into a line and the quasilines
ℒ𝑝/𝑞( ̃𝜌) converge to the line through the fixed points of ℎ𝑝/𝑞( ̃𝜌), which is a line in the limit set of the
cusp group.

8.3.10 Definition. By analogy with Keen and Series, we call the component 𝐻𝑝/𝑞( ̃𝜌) of ℂ ⧵ ℒ𝑝/𝑞( ̃𝜌)
which does not contain 0 a canonical peripheral quasidisc if

1. Λ(Γ𝑝/𝑞( ̃𝜌)) = 𝐻𝑝/𝑞( ̃𝜌) ∩ Λ(Γ ̃𝜌), and

2. tr(𝑊𝑝/𝑞(( ̃𝜌))) ∈ {𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ ∶ 𝑥 < −2}.

Notice that if ̃𝜌 ∈ ℛ, then there exists some slope 𝑝/𝑞 such that Γ ̃𝜌 admits the canonical peri-
pheral quasidisc 𝐻𝑝/𝑞( ̃𝜌), since each such group is quasiconformally conjugate to one on a pleating
ray where there is such a peripheral circle. There seems to be no way of guaranteeing that the large
scale geometry of the boundary quasiline is bounded, but we do know that the geometry is bounded
for the special case of ℒ𝑝/𝑞( ̃𝜌).

8.3D Completing the proof
We now give a series of lemmata imitating the proofs given for the case of a pleating ray in Chapter 7
following [63]. Set 𝑆∗𝑝/𝑞 = ̃𝑆 ∩ 𝐻𝑝/𝑞; this is a fundamental domain of Γ𝑝/𝑞 defined by the isometric
circles of ℎ𝑝/𝑞 and the line segment ℓ𝑝/𝑞. Recall the parabolic cusp point given by Lemma 8.3.8 in
𝜕𝐻𝑝/𝑞 (and also in 𝑆∗𝑝/𝑞). The following lemma is immediately clear from construction.
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8.3.11 Lemma. An𝐹-peripheral disc in the sense of Definition 7.2.1 is a canonical peripheral quasidisc.
▮

In fact, in this case ℎ𝑝/𝑞 is hyperbolic, with disjoint isometric discs and ℓ𝑝/𝑞 is a segment of the
line through its fixed points (and also through isometric circles) and orthogonal to them.

Recall that in the Keen–Series theory it was important that the F-peripheral discs moved con-
tinuously with 𝜌; since the defining points of 𝐿𝑝/𝑞 move continuously with 𝜌, the analogous result is
true:

8.3.12 Lemma. Fix a rational slope 𝑝/𝑞. The quasiline 𝐿𝑝/𝑞 moves continuously with 𝜌 and the data
𝑎𝑝/𝑞, 𝑏𝑝/𝑞, 𝑐𝑝/𝑞 and 𝑑𝑝/𝑞, as does the associated fundamental domain 𝑆∗𝑝/𝑞. ▮

Remark. In fact, the defining points (vertices of 𝑆∗𝑝/𝑞) move holomorphically, but as a set 𝑆∗𝑝/𝑞 does
not.

Next the analogue of Lemma 7.2.2.

8.3.13 Lemma. Fix a rational slope 𝑝/𝑞. The set

{𝜌 ∶ Γ𝜌 admits the canonical peripheral quasidisc𝐻𝑝/𝑞}

is open.

Proof. By definition tr(Word(𝑝/𝑞)) ∈ {ℜ𝑧 < −2}. Choose a small neighbourhood of 𝜌 so that this
remains true. That is, tr(Word(𝑝/𝑞)(𝜌′)) ∈ {ℜ𝑧 < −2} for 𝜌′ close to 𝜌. Each Γ𝜌 is geometrically finite
(see the discussion immediately preceeding Theorem 5.2.4), and therefore each parabolic fixed point
is doubly cusped (Lemma 3.3.4). Let 𝑈 be a horodisc neighbourhood of the parabolic fixed point in
𝜕𝑆∗𝑝/𝑞 (not∞). As ℓ𝑝/𝑞 ∈ 𝜕𝐻𝑝/𝑞 is in the domain of discontinuity for Γ𝑝/𝑞 it is in the ordinary set of Γ𝜌
and projects to a loop bounding a doubly punctured disc in 𝑆0,4. It follows that 𝑆∗𝑝/𝑞 ⧵𝑈 is compactly
supported away fromΛ(Γ𝜌). This limit set moves holomorphically and so for small time 𝑡 the varying
(𝑆∗𝑝/𝑞)𝑡 ⧵ 𝑈𝑡 lie in the ordinary set of Γ𝜌𝑡 . The images of (𝑆∗𝑝/𝑞)𝑡 ⧵ 𝑈𝑡 under (Γ𝑝/𝑞)𝑡 tessellate (𝐻𝑝/𝑞)𝑡,
apart from the deleted cusp neighbourhoods which we now put back to find a canonical peripheral
quasidisc (𝐻𝑝/𝑞)𝑡. ▮

For 𝑝/𝑞 ∈ ℚ, let𝒩𝑝/𝑞 be the set defined by

𝒩𝑝/𝑞 ≔ {𝜌 ∈ ℂ ∶ Γ𝜌 admits a canonical peripheral quasidisc 𝐻𝑝/𝑞}.

We prove a version of Lemma 7.2.10, for𝒩𝑝/𝑞 rather than the pleating ray 𝒫𝑝/𝑞.

8.3.14 Lemma. Fix a rational slope 𝑝/𝑞. If 𝜌 ∈ 𝒩𝑝/𝑞, then 𝜌 ∈ ℛ.

Proof. We have Γ𝑝/𝑞 = ⟨𝑓, ℎ𝑝/𝑞⟩ = ⟨𝑓, 𝑓−1ℎ𝑝/𝑞⟩. As described earlier there is another group Γ′𝑝/𝑞
generated by two parabolics in Γ𝜌 whose product is also ℎ𝑝/𝑞. These groups are not conjugate in Γ𝜌
but are conjugate when the ℤ2 symmetry that conjugates 𝑋 to 𝑌 is added. This symmetry leaves
the limit set set-wise invariant. Hence both groups are quasi-Fuchsian with canonical peripheral
quasidiscs. The remainder of the argument is as in Lemma 7.2.10. Briefly, both of the sets

𝐻𝑝/𝑞/Γ𝑝/𝑞 = 𝐻𝑝/𝑞/Γ𝜌 and 𝐻′
𝑝/𝑞/Γ′𝑝/𝑞 = 𝐻′

𝑝/𝑞/Γ𝜌

are two different twice punctured discs in the quotient glued along a commonboundary (a translation
arc of 𝑓 which lies in 𝐻𝑝/𝑞 ∩ 𝐻′

𝑝/𝑞). Then the quotient is 𝑆0,4 and hence 𝜌 ∈ ℛ by definition. ▮

The following technical lemma will be used in the proof of Lemma 8.3.16.
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8.3.15 Lemma. Let Γ𝜌 be discrete and 𝜌 ≠ 0. Then for all rational slopes 𝑝/𝑞,

||Φ𝑝/𝑞(𝜌) − 2|| ≥ 1

unless Φ𝑝/𝑞(𝜌) = 2.

Remark. This estimate is actually sharp, by considering the figure-8 knot complement group [39,
Lemma 4]. It also admits a strengthening: the union of all of the inverse images of the unit disc
under the polynomials Φ𝑝/𝑞 − 2 fills the Riley slice complement [75, Lemma 3].

Proof of Lemma 8.3.15. Label the entries of the matrix of Word(𝑝/𝑞) by (𝑎 𝑏
𝑐 𝑑). Suppose first that

𝑐 ≠ 0. Then the Shimitzu–Leutbecher inequality (Corollary 3.1.11) applied to the discrete group
⟨𝑋,Word(𝑝/𝑞)⟩ gives

1 ≤ tr[𝑋,Word(𝑝/𝑞)] − 2 = |𝑐|2 = |𝑎 + 𝑑 − 2|2

which is the desired result by Lemma 8.3.2. If 𝑐 = 0, then ℎ𝑝/𝑞 is parabolic and also fixes∞. ▮

It is in the proof of the next lemma (the analogue of Lemma 7.3.13) where we use the fact that the
quasidiscs 𝐻𝑝/𝑞 have bounded geometry. Without this, the invariant quasicircles for the peripheral
discs could either become space-filling curves or collapse entirely. This indeed happens in general
with the formation of B-groups, or the geometrically infinite groups on the boundary ofℛ.

8.3.16 Lemma. Fix a rational slope𝑝/𝑞. Suppose thatΓ𝜌𝑗 admits canonical peripheral quasidiscs𝐻
𝑗
𝑝/𝑞,

and that tr(Word(𝑝/𝑞)𝑗) → 𝑧0 with ℜ(𝑧0) < −2. Then there is a subsequence 𝜌𝑗𝑘 which converges to
some 𝜌 ∈ ℛ such that Γ𝜌 admits a canonical peripheral quasidisc of the same slope.

Proof. That tr(𝑊 𝑗
𝑝/𝑞) → 𝑧0 whereℜ(𝑧0) < −2means that 𝑎𝑝/𝑞, 𝑏𝑝/𝑞, 𝑐𝑝/𝑞 and 𝑑𝑝,𝑞 all have finite limits

and that 𝑐𝑝/𝑞↛0 by Lemma 8.3.15 and Lemma 8.3.2; therefore we can apply Lemma 8.3.9 to conclude
that the invariant lines bounding 𝐿𝑝/𝑞 also have a limiting height above and below. It follows that
there is a non-empty open set 𝑈 such that, for 𝑗 sufficiently large, 𝑈 ⊂ 𝐻𝑗

𝑝/𝑞. Each of the groups
Γ𝜌𝑗 is discrete (and free) and, after passing to a subsequence if necessary, the limit group Γ𝜌 is also
discrete (and free). Thus the ordinary set of Γ𝜌 must contain 𝑈 . By Lemma 8.3.14 we have 𝜌𝑗 ∈ ℛ
and hence 𝜌 ∈ ℛ. If 𝜌 ∈ ℛ we are done. Otherwise 𝜌 ∈ 𝜕ℛ, and Γ𝜌 has nonempty ordinary set
Ω𝜌 = ℂ̂ ⧵ Λ(Γ𝜌). Since 𝜌 lies in the boundary of ℛ the quotient surface Ω/Γ𝜌 can support no moduli.
The group Γ𝜌 is torsion-free with non-empty ordinary set (it contains 𝑈), so the quotient is a union
of triply punctured spheres and the point 𝜌 must be a cusp group (these results are all found in the
paper [87]). Notice that ℎ𝑝/𝑞 will have its fixed points in the boundary of a component of the ordinary
set, which are now round circles. Thus Γ𝑝/𝑞 is Fuchsian (since it is a priori quasi-Fuchsian and has
limit set dense in a round circle), tr(ℎ𝑝/𝑞) is real and therefore tr(ℎ𝑝/𝑞) ∈ (−∞,−2). But these groups
lie on the pleating ray inℛ and so have 𝐹-peripheral discs. This completes the proof. ▮

We now complete the proof of Theorem 8.1.1. Consider the set 𝒵𝑝/𝑞 defined by

𝒵𝑝/𝑞 = {𝜌 ∈ ℛ ∶ ℜΦ𝑝/𝑞(𝜌) < −2}.

We show that𝒩𝑝/𝑞 is a connected component of 𝒵𝑝/𝑞, by showing (as in the proof of Theorem 7.3.4)
that𝒩𝑝/𝑞 is a non-empty clopen subset of 𝒵𝑝/𝑞.

By Lemma 8.3.14,𝒩𝑝/𝑞 ⊆ ℛ.
We make four observations.
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1. 𝒩𝑝/𝑞 ⊆ 𝒵𝑝/𝑞 since, by Definition 8.3.10, ℜ trWord(𝑝/𝑞)(𝜌) < −2 for 𝜌 ∈ 𝒩𝑝/𝑞;

2. Note that𝒩𝑝/𝑞 is closed in 𝒵𝑝/𝑞 by Lemma 8.3.16.

3. By definition, 𝒵𝑝/𝑞 is open in ℂ (it is the inverse image of an open set); since𝒩𝑝/𝑞 is also open
in ℂ (Lemma 8.3.13) it is open in 𝒵𝑝/𝑞.

4. Finally,𝒩𝑝/𝑞 ≠ ∅ since (by Lemma 8.3.11) it contains the (non-empty) 𝑝/𝑞 pleating ray.

Thus𝒩𝑝/𝑞 is a union of non-empty connected components of𝒵𝑝/𝑞 contained inℛ. By theKeen–Series
theory, there are at most two such connected components, namely the components corresponding
to the pleating rays of asymptotic slopes ±𝜋𝑝/𝑞 (Theorem 7.3.4); and clearly we hit both of these
components. In any case, picking a branch of the inverse of Φ𝑝/𝑞 corresponding to these arguments
will give a connected component of𝒩𝑝/𝑞, and such a component is the desired neighbourhood of the
cusp lying inside the Riley slice.



Chapter 9

The combinatorics of the Farey
polynomials

In this chapter we will give some combinatorial results on the Farey polynomials. In particular, we
will give a recursion formula for the Farey polynomials and a closed form formula for certain se-
quences of parabolic Farey polynomials.

9.1 A recursion formula to generate Farey polynomials
Recall from Section 6.3 that we say that 𝑝/𝑞 and 𝑟/𝑠 are Farey neighbours if 𝑝𝑠 − 𝑞𝑟 = ±1 (so if
𝑝/𝑞 < 𝑟/𝑠 then 𝑝𝑠−𝑞𝑟 = 1); if 𝑝/𝑞 and 𝑟/𝑠 are such then write 𝑝/𝑞⊕𝑟/𝑠 for themediant (𝑝+𝑟)/(𝑞+𝑠).
It will be convenient also to have the notation 𝑝/𝑞⊖ 𝑟/𝑠 for the fraction (𝑝 − 𝑟)/(𝑞 − 𝑠); we shall only
use this when it is known that (𝑝 − 𝑟)/(𝑞 − 𝑠) and 𝑟/𝑠 are Farey neighbours (it is easy to check that
if 𝑝/𝑞 and 𝑟/𝑠 are neighbours then so are (𝑝 − 𝑟)/(𝑞 − 𝑠) and 𝑟/𝑠) and that 𝑞 − 𝑠 ≠ 0. The graph of
Figure 9.2 shows the fractions in [0, 1] of low denominator, with directed edges from 𝑝/𝑞 and 𝑟/𝑠 to
𝑝/𝑞 ⊕ 𝑟/𝑠.
Notation. In this chapter, because we will give a lot of combinatorial formulae, it will be convenient
to shorten Word(𝑝/𝑞) to 𝑊𝑝/𝑞. We also slightly modify the conventions of Figure 6.5. Consider the
same labelled tiling of ℝ2 which we repeat in Figure 9.1, and let 𝐿𝑝/𝑞 be the line through (0, 0) of
slope 𝑝/𝑞; now define 𝑆𝑝/𝑞 = 𝐿𝑝/𝑞∩2ℤ2. Then the Farey word𝑊𝑝/𝑞, is the word of length 2𝑞 such that
the 𝑖th letter is the label on the right-hand side of the 𝑖th vertical line segment crossed by 𝐿𝑝/𝑞 (i.e.
the label to the right of the point (𝑝/𝑞)𝑖); if (𝑝/𝑞)𝑖 is a lattice point then this definition is ambiguous
and by convention we take the label on the north-west side. In other words, the 𝑖th letter of 𝑊𝑝/𝑞
is determined by the parity of ceil(𝑝/𝑞)𝑖 with the convention that ceil𝑛 = 𝑛 + 1 for integral 𝑛. In
Figure 9.1 we give the example of𝑊1/2 to compare with Figure 6.5. The advantage of this definition
is that we have normalised the ‘problem’ vertex of the triangle with vertices 𝑝/𝑞, 𝑟/𝑠, and (𝑝/𝑞)⊕(𝑟/𝑠)
(Figure 9.3 below) to be at an integer point, which simplifies the analysis.

One might guess, e.g. by analogy with the Maskit slice [94, p. 277], that𝑊𝑝/𝑞𝑊𝑟/𝑠 = 𝑊𝑝/𝑞⊕𝑟/𝑠. Let
us check:

9.1.1 Example. We use the convention 𝑥 ≔ 𝑋−1, 𝑦 ≔ 𝑌−1:

• 𝑊1/2 = 𝑦𝑥𝑌𝑋 ,𝑊1/1 = 𝑌𝑋 ,𝑊1/2𝑊1/1 = 𝑦𝑥𝑌𝑋𝑌𝑋 , and𝑊1/2⊕1/1 = 𝑦𝑥𝑦𝑋𝑌𝑋 .
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Figure 9.1: The cutting sequence of the 1/2 Farey word, with a slightly different convention to Fig-
ure 6.5.

Figure 9.2: The Farey addition graph.
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• 𝑊1/3 = 𝑦𝑋𝑌𝑥𝑌𝑋 ,𝑊2/5 = 𝑦𝑋𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑋 ,𝑊1/3𝑊2/5 = 𝑦𝑋𝑌𝑥𝑌𝑋𝑦𝑋𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑋 , and

𝑊1/3⊕2/5 = 𝑊3/8 = 𝑦𝑋𝑌𝑥𝑌𝑋𝑦𝑥𝑌𝑥𝑦𝑋𝑦𝑥𝑌𝑋.

This example shows that our guess is almost correct; the corrected statement is:

9.1.2 Lemma. Let 𝑝/𝑞 and 𝑟/𝑠 be Farey neighbours with 𝑝/𝑞 < 𝑟/𝑠. Then𝑊𝑝/𝑞⊕𝑟/𝑠 is the word𝑊𝑝/𝑞𝑊𝑟/𝑠
with the sign of the (𝑞 + 𝑠)th exponent swapped.

Proof. The situation is diagrammed in Figure 9.3 for convenience. To simplify notation, in this proof
we write ℎ(𝑖) for the height (𝑝

𝑞
⊕ 𝑟

𝑠
)𝑖. Observe that ℎ(𝑖) is integral only at 𝑖 = 0 and 𝑖 = 2𝑞 + 2𝑠 (at

both positions trivially the letters in 𝑊 (𝑝/𝑞)⊕(𝑟/𝑠) and 𝑊𝑝/𝑞𝑊𝑟/𝑠 are identical) and at 𝑖 = 𝑞 + 𝑠. The
lemma will follow once we check that that at the positions 𝑖 ∉ {0, 2𝑞 + 2𝑠},

(9.1.3) if 0 < 𝑖 ≤ 2𝑞 then (𝑝/𝑞)𝑖 < ℎ(𝑖) < ceil(𝑝/𝑞)𝑖

and

(9.1.4) if 0 < 𝑖 < 2𝑠 then (𝑟/𝑠)𝑖 + 2𝑞 < ℎ(𝑖 + 2𝑝) < ceil[(𝑟/𝑠)𝑖 + 2𝑝] ∶

indeed, these inequalities show that at every integral horizontal distance the height of the line cor-
responding to 𝑊𝑝/𝑞⊕𝑟/𝑠 is meeting the same vertical line segment as the line corresponding to 𝑊𝑝/𝑞
or 𝑊𝑟/𝑠, and so the letter chosen is the same except at 𝑖 = 𝑞 + 𝑠 since at this position the height of
the line of slope (𝑝/𝑞)⊕ (𝑟/𝑠), being integral, is rounded up to ℎ(𝑖) + 1while the height of the line of
slope 𝑟/𝑠 is non-integral so is rounded up to the integer ℎ(𝑖).

Observe now that the inequalities Equations (9.1.3) and (9.1.4) are equivalent to the following:
there is no integer between (𝑝/𝑞)𝑖 and (𝑝/𝑞 ⊕ 𝑟/𝑠)𝑖 (exclusive) if 0 < 𝑖 ≤ 2𝑞, and there is no integer
between (𝑟/𝑠)𝑖 + 2𝑞 and ℎ(𝑖 + 2𝑝) if 0 < 𝑖 < 2𝑠. But these follow from Lemma 6.3.1. Indeed, the
lemma shows that no integer lies between 𝑝/𝑞 and (𝑝/𝑞) ⊕ (𝑟/𝑠); suppose 𝑎/𝑏 is a rational between
(𝑝/𝑞)𝑖 and ℎ(𝑖), then 𝑎 = 𝑖(𝜆𝑝 + 𝜇(𝑝 + 𝑟)) and 𝑏 = (𝜆𝑞 + 𝜇(𝑞 + 𝑠)) for some positive 𝜆, 𝜇; suppose
𝑎/𝑏 ∈ ℤ, so 𝜆𝑞 + 𝜇(𝑞 + 𝑠) divides 𝑖(𝜆𝑝 + 𝜇(𝑝 + 𝑟)). By the case 𝑖 = 1, 𝜆𝑝 + 𝜇(𝑝 + 𝑟) and 𝜆𝑞 + 𝜇(𝑞 + 𝑠)
are coprime, so 𝜆𝑞 + 𝜇(𝑞 + 𝑠) divides 𝑖; but 𝜆𝑞 + 𝜇(𝑞 + 𝑠) ≥ 2𝑞. The case of (𝑟/𝑠)𝑖 + 2𝑞 and ℎ(𝑖 + 2𝑝)
is proved in a similar way. ▮

Notation. We adopt the convention that, if we fix the Riley slice ℛ𝑎,𝑏, then we write 𝛼 and 𝛽 for
exp(𝜋𝑖/𝑎) and exp(𝜋𝑖/𝑏) respectively.

9.1.5 Lemma. Let 𝑝/𝑞 and 𝑟/𝑠 be Farey neighbours with 𝑝/𝑞 < 𝑟/𝑠. Then the following trace identity
holds:

tr𝑊𝑝/𝑞𝑊𝑟/𝑠 + tr𝑊𝑝/𝑞⊕𝑟/𝑠 = {
2 + 𝛼2 + 1

𝛼2
if 𝑞 + 𝑠 is even,

𝛼𝛽 + 𝛼
𝛽
+ 𝛽

𝛼
+ 1

𝛼𝛽
if 𝑞 + 𝑠 is odd.

Proof. Trace is invariant under cyclic permutations, thus (applying Lemma 9.1.2) we can write

tr𝑊𝑝/𝑞𝑊𝑟/𝑠 = tr𝐴𝐵 and tr𝑊𝑝/𝑞⊕𝑟/𝑠 = tr𝐴𝐵−1,

where 𝐵 is the (𝑞+𝑠)th letter of𝑊𝑝/𝑞𝑊𝑟/𝑠 and 𝐴 is the remainder of the word but with the final letters
cycled to the front. Nowwe know that tr𝐴𝐵 = tr𝐴 tr𝐵− tr𝐴𝐵−1 (see the useful list of trace identites
found in Section 3.4 of [76]), so it suffices to check that tr𝐴 tr𝐵 = 2 + 𝛼2 + 1

𝛼2
if 𝑞 + 𝑠 is even and

𝛼𝛽 + 𝛼
𝛽
+ 𝛽

𝛼
+ 1

𝛼𝛽
otherwise.
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q 2q q + s 2q + s 2q + 2s

Figure 9.3: Farey addition versus word multiplication for𝑊𝑝/𝑞 (red) and𝑊𝑟/𝑠 (green).

Case I. 𝑞 + 𝑠 is even. Observe now that 𝐵 is 𝑋±1 if 𝑞 + 𝑠 is even; then tr𝐵 = 2ℜ𝛼. The identity
to show is therefore tr𝐴 = (2 + 𝛼2 + 1

𝛼2
)/(2ℜ𝛼); recalling that |𝛼| = 1 and using the double angle

formulae we have

2
2ℜ𝛼 + 𝛼2

2ℜ𝛼 + 𝛼−2
2ℜ𝛼 = 1

cos 𝜃 + (𝛼 − 1
2 cos 𝜃 ) + (𝛼 − 1

2 cos 𝜃 ) = 2 cos 𝜃

where 𝜃 = Arg𝛼. Thus we actually just need to show tr𝐴 = 2 cos 𝜃. As an aside, this shows that 𝐴 is
parabolic if 𝑋 is, and is elliptic if 𝑋 is.

Case II. 𝑞 + 𝑠 is odd. In this case, 𝐵 is 𝑌±1 and so tr𝐵 = 2ℜ𝛽; we therefore wish to show that
tr𝐴 = (𝛼𝛽 + 𝛼

𝛽
+ 𝛽

𝛼
+ 1

𝛼𝛽
)/(2ℜ𝛽); again using trigonometry we may simplify the right side,

𝛼𝛽
2ℜ𝛼 + 𝛼/𝛽

2ℜ𝛼 + 𝛽/𝛼
2ℜ𝛼 + 1/(𝛼𝛽)

2ℜ𝛽 = 2 cos 𝜃

and so again we need only show that tr𝐴 = 2 cos 𝜃 where 𝜃 = Arg𝛼.
Both cases then reduce to the identity tr𝐴 = tr𝑋 . It will be enough to show that 𝐴 is conjugate to

𝑋 ; by construction of𝐴, this is equivalent to showing that in𝑊𝑝/𝑞⊕𝑟/𝑠 the (𝑞+𝑠+1)th to (2𝑞+2𝑠−1)th
letters are obtained from the first 𝑞 + 𝑠 − 1 letters by reversing the order and swapping the case. But
this is just Lemma 6.1.7. ▮

In the case that 𝑋 and 𝑌 are parabolics and 𝛼 = 𝛽 = 1, the two formulae unify to become:

tr𝑊𝑝/𝑞𝑊𝑟/𝑠 = 4 − tr𝑊𝑝/𝑞⊕𝑟/𝑠.

We may similarly prove the following lemma:

9.1.6 Lemma. Let 𝑝/𝑞 and 𝑟/𝑠 be Farey neighbours with 𝑝/𝑞 < 𝑟/𝑠. Then the following trace identity
holds:

tr𝑊𝑝/𝑞𝑊−1
𝑟/𝑠 + tr𝑊𝑝/𝑞⊖𝑟/𝑠 = {

2 + 𝛽2 + 1
𝛽2

if 𝑞 − 𝑠 is even,

𝛼𝛽 + 𝛼
𝛽
+ 𝛽

𝛼
+ 1

𝛼𝛽
if 𝑞 − 𝑠 is odd.
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Proof. We begin by setting up notation. By Lemma 6.1.7 we may write𝑊𝑝/𝑞 = 𝑈𝐴𝑢𝑋 with 𝐴 = 𝑋±1

if 𝑞 is even and 𝐴 = 𝑌±1 if 𝑞 is odd; similarly, write𝑊𝑟/𝑠 = 𝑉𝐵𝑣𝑋 with 𝐵 one of 𝑋±1 or 𝑌±1. Then

𝑊𝑝/𝑞𝑊−1
𝑟/𝑠 = 𝑈𝐴𝑢𝑋𝑥𝑉𝑏𝑣 = 𝑈𝐴𝑢𝑉𝑏𝑣;

by Lemma 9.1.2, we have also that𝑊𝑟/𝑠𝑊𝑝/𝑞⊖𝑟/𝑠 is𝑊𝑝/𝑞 with the sign of the exponent of the 𝑞th letter
swapped; explicitly,

𝑊𝑝/𝑞⊖𝑟/𝑠𝑉𝐵𝑣𝑋 = 𝑈𝑎𝑢𝑋 ⟹ 𝑊𝑝/𝑞⊖𝑟/𝑠 = 𝑈𝑎𝑢𝑋𝑥𝑉𝑏𝑣 = 𝑈𝑎𝑢𝑉𝑏𝑣.
Our goal is therefore to compute tr𝑈𝐴𝑢𝑉𝑏𝑣+tr𝑈𝑎𝑢𝑉𝑏𝑣; performing a cyclic permutation again,

this is equivalent to tr𝐴(𝑢𝑉𝑏𝑣𝑈) + tr 𝑎(𝑢𝑉𝑏𝑣𝑈). In this form, this becomes
tr𝐴(𝑢𝑉𝑏𝑣𝑈) + tr 𝑎(𝑢𝑉𝑏𝑣𝑈) = tr𝐴 tr𝑢𝑉𝑏𝑣𝑈 = tr𝐴 tr 𝑏.

Consider now the cases for the product tr𝐴 tr 𝑏:
𝑞 odd 𝑞 even

𝑠 odd tr2 𝑌 tr𝑋 tr𝑌
𝑠 even tr𝑋 tr𝑌 tr2 𝑋 .

If 𝑝/𝑞, 𝑟/𝑠 are Farey neighbours then it is not possible for both 𝑞 and 𝑠 to be even since 𝑝𝑠−𝑟𝑞 ≡ 1
(mod 2). Further, 𝑞 − 𝑠 is odd iff exactly one of 𝑝 and 𝑞 is odd, otherwise 𝑞 − 𝑠 is even. Thus we see
that if 𝑞 − 𝑠 is even then

tr𝑊𝑝/𝑞𝑊−1
𝑟/𝑠 + tr𝑊𝑝/𝑞⊖𝑟/𝑠 = tr2 𝑌 = (𝛽 + 1/𝛽)2

and if 𝑞 − 𝑠 is odd then
tr𝑊𝑝/𝑞𝑊−1

𝑟/𝑠 + tr𝑊𝑝/𝑞⊖𝑟/𝑠 = tr𝑋 tr𝑌 = (𝛼 + 1/𝛼)(𝛽 + 1/𝛽)
which are the claimed formulae. ▮

9.1.7 Theorem. Let 𝑝/𝑞 and 𝑟/𝑠 be Farey neighbours. If 𝑞 + 𝑠 is even, then

(9.1.8) Φ𝑝/𝑞Φ𝑟/𝑠 + Φ𝑝/𝑞⊕𝑟/𝑠 + Φ𝑝/𝑞⊖𝑟/𝑠 = 4 + 1
𝛼2 + 𝛼2 + 1

𝛽2 + 𝛽2.

Otherwise if 𝑞 + 𝑠 is odd, then

(9.1.9) Φ𝑝/𝑞Φ𝑟/𝑠 + Φ𝑝/𝑞⊕𝑟/𝑠 + Φ𝑝/𝑞⊖𝑟/𝑠 = 2 (𝛼𝛽 + 𝛼
𝛽 + 𝛽

𝛼 + 1
𝛼𝛽) .

Proof. Suppose 𝑞 + 𝑠 is even; then 𝑞 − 𝑠 is also even, so
Φ𝑝/𝑞Φ𝑟/𝑠 + Φ(𝑝+𝑟)/(𝑞+𝑠) + Φ(𝑝−𝑟)/(𝑞−𝑠) = tr𝑊𝑝/𝑞 tr𝑊𝑟/𝑠 + tr𝑊𝑝/𝑞⊕𝑟/𝑠 + tr𝑊𝑝/𝑞⊖𝑟/𝑠

= tr𝑊𝑝/𝑞𝑊𝑟/𝑠 + tr𝑊𝑝/𝑞𝑊−1
𝑟/𝑠 + tr𝑊𝑝/𝑞⊕𝑟/𝑠 + tr𝑊𝑝/𝑞⊖𝑟/𝑠

= 2 + 𝛼2 + 1
𝛼2 + 2 + 𝛽2 + 1

𝛽2
where in the final step we used Lemma 9.1.5 and Lemma 9.1.6. Similarly, when 𝑞−𝑠 is odd then 𝑞+𝑠
is also odd and

Φ𝑝/𝑞Φ𝑟/𝑠 + Φ(𝑝+𝑟)/(𝑞+𝑠) + Φ(𝑝−𝑟)/(𝑞−𝑠) = tr𝑊𝑝/𝑞 tr𝑊𝑟/𝑠 + tr𝑊𝑝/𝑞⊕𝑟/𝑠 + tr𝑊𝑝/𝑞⊖𝑟/𝑠

= tr𝑊𝑝/𝑞𝑊𝑟/𝑠 + tr𝑊𝑝/𝑞𝑊−1
𝑟/𝑠 + tr𝑊𝑝/𝑞⊕𝑟/𝑠 + tr𝑊𝑝/𝑞⊖𝑟/𝑠

= 𝛼𝛽 + 𝛼
𝛽 + 𝛽

𝛼 + 1
𝛼𝛽 + 𝛼𝛽 + 𝛼

𝛽 + 𝛽
𝛼 + 1

𝛼𝛽
as desired. ▮
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Figure 9.4: The induced colouring of the Stern-Brocot tree.

Again in the parabolic case the two formulae unify and the recursion identity becomes

(9.1.10) Φ𝑝/𝑞Φ𝑟/𝑠 + Φ(𝑝+𝑟)/(𝑞+𝑠) + Φ(𝑝−𝑟)/(𝑞−𝑠) = 8.
We observe as an aside that if we just draw the edges of the Farey graph corresponding to Farey

neighbourswhich appear as products in some iterate of the recursion, thenwe obtain a nice colouring
of the Stern-Brocot tree (Figure 9.4).

Based on the recurrence, we make the following useful convention/definition:
9.1.11 Definition. Observe that 0/1 and 1/0 are Farey neighbours in ℚ̂ = ℚ ∪ {∞}. Thus, applying
Equation (9.1.8) formally to the diamond

1/0

1/2

0/1 1/1

we obtain
Φ0/1Φ1/1 + Φ1/0 + Φ1/2 = 4 + 1

𝛼2 + 𝛼2 + 1
𝛽2 + 𝛽2;

substituting for Φ1/1, Φ1/2, and Φ0/1 from Table 6.2 we get the following expression for Φ1/0, which
we henceforth take to be a definition:

Φ1/0 = 4 + 1
𝛼2 + 𝛼2 + 1

𝛽2 + 𝛽2 − (𝛼𝛽 + 𝛽
𝛼 − 𝑧) (𝛼𝛽 + 1

𝛼𝛽 + 𝑧) − 2 − (𝛼𝛽 − 𝛼
𝛽 − 𝛽

𝛼 + 1
𝛼𝛽) 𝑧 − 𝑧2

= 2.

Observe that Φ−1
1/0 ((−∞,−2]) = ∅, so this is compatible with the Keen–Series theory; it is also a

polynomial of degree 𝑞 (here, 𝑞 = 0) with constant term 2, which all agrees with the properties of the
higher-degree polynomials. On the other hand, it is not monic!

We also define Φ𝑝/𝑞 for all 𝑝/𝑞 ∈ ℚ via this method.
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9.2 Some properties of the recurrence
Recall that the Chebyshev polynomials (of the first kind) are the family of polynomials 𝑇𝑛 defined
via the recurrence relation

𝑇0(𝑥) = 1
𝑇1(𝑥) = 𝑥

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥).
It is well-known that these polynomials satisfy the product relation

2𝑇𝑚(𝑥)𝑇𝑛(𝑥) = 𝑇𝑚+𝑛(𝑥) + 𝑇|𝑚−𝑛|(𝑥)
for 𝑚, 𝑛 ∈ ℤ≥0. Compare this relation with the relation Equation (9.1.10) developed above for the
parabolic Farey polynomials (but note that the Chebyshev product rule holds for all 𝑚, 𝑛 and the
identities for the Farey polynomials hold only for Farey neighbours).

We may apply the theory of ‘Farey recursive functions’ [30, 31] in order to explain this analogy;
in a following section, we will give a generalisation to the elliptic case. The following diagram may
be useful for translating the notation of that paper (right) into the notation we use here (left):

𝛽 ⊖ 𝛼

𝛽 ⊕ 𝛼

𝛼 𝛽

𝛾

𝛾 ⊕2 𝛼

𝛼 𝛾 ⊕ 𝛼

9.2.1 Definition (Definition 3.1 of [31]). Let𝑅 be a (commutative) ring, and suppose 𝑑1, 𝑑2 ∶ ℚ̂ → 𝑅.
A function ℱ ∶ ℚ̂ → 𝑅 is a (𝑑1, 𝑑2)-Farey recursive function if, whenever 𝛼, 𝛽 ∈ ℚ̂ are Farey
neighbours,

(9.2.2) ℱ(𝛽 ⊕ 𝛼) = −𝑑1(𝛼)ℱ(𝛽 ⊖ 𝛼) + 𝑑2(𝛼)ℱ(𝛽).
Observe that the relation Equation (9.1.10) looks essentially of this form; to make this clearer, we

rewrite it slightly as

(9.2.3) Φ(𝛽 ⊕ 𝛼) = 8 − Φ(𝛽 ⊖ 𝛼) − Φ(𝛼)Φ(𝛽)
(where we set 𝛽 = 𝑝/𝑞, 𝛼 = 𝑟/𝑠, and changed from subscript notation to functional notation). In our
case, then, 𝑑1(𝛼) is constantly 1 and 𝑑2 = −Φ. Note also that our relation is not homogeneous. We
therefore adapt the definition of [31] to the following:
9.2.4 Definition. Let 𝑅 be a (commutative) ring, and suppose 𝑑1, 𝑑2, 𝑑3 ∶ ℚ̂ → 𝑅. A function
ℱ ∶ ℚ̂ → 𝑅 is a (𝑑1, 𝑑2)-Farey recursive function if, whenever 𝛼, 𝛽 ∈ ℚ̂ are Farey neighbours,

(9.2.5) ℱ(𝛽 ⊕ 𝛼) = −𝑑1(𝛼)ℱ(𝛽 ⊖ 𝛼) + 𝑑2(𝛼)ℱ(𝛽) + 𝑑3(𝛼).
If 𝑑3 is the zero function, we say that the relation of Equation (9.2.5) is homogeneous, otherwise it
is non-homogeneous.

The relevant generalisations of the existence-uniqueness results of [31, Section 4] follow easily
(the same proofs work, with the usual property that the space of non-homegenous solutions is the
sum of a particular solution and the space of homogeneous solutions).

In our case, there is an obvious explicit solution to the non-homogeneous Farey polynomial re-
cursion, Equation (9.2.3): namely, the map Φ which sends every 𝛼 ∈ ℚ to the constant polynomial
2 ∈ ℤ[𝑧]. It therefore remains to solve the corresponding homogeneous equation.
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Table 9.1: Selected homogeneous Farey polynomials Φℎ of slope 𝑝/𝑞 for small 𝑞, with the initial
values as given.

𝑝 𝑞 Φℎ
𝑝/𝑞

1 0 2
0 1 −𝑧 + 2
1 1 𝑧 + 2
1 2 𝑧2 − 6
1 3 𝑧3 − 2𝑧2 − 7𝑧 + 10
2 3 −𝑧3 − 2𝑧2 + 7𝑧 + 10
1 4 𝑧4 − 4𝑧3 − 4𝑧2 + 24𝑧 − 14
3 4 𝑧4 + 4𝑧3 − 4𝑧2 − 24𝑧 − 14
1 5 𝑧5 − 6𝑧4 + 3𝑧3 + 34𝑧2 − 55𝑧 + 18
2 5 −𝑧5 + 2𝑧4 + 13𝑧3 − 22𝑧2 − 41𝑧 + 58
3 5 𝑧5 + 2𝑧4 − 13𝑧3 − 22𝑧2 + 41𝑧 + 58
4 5 −𝑧5 − 6𝑧4 − 3𝑧3 + 34𝑧2 + 55𝑧 + 18
1 6 𝑧6 − 8𝑧5 + 14𝑧4 + 32𝑧3 − 119𝑧2 + 104𝑧 − 22
1 7 𝑧7 − 10𝑧6 + 29𝑧5 + 10𝑧4 − 186𝑧3 + 308𝑧2 − 175𝑧 + 26
1 8 𝑧8 − 12𝑧7 + 48𝑧6 − 40𝑧5 − 220𝑧4 + 648𝑧3 − 672𝑧2 + 272𝑧 − 30
1 9 𝑧9 − 14𝑧8 + 71𝑧7 − 126𝑧6 − 169𝑧5 + 1078𝑧4 − 1782𝑧3 + 1308𝑧2 − 399𝑧 + 34
1 10 𝑧10 − 16𝑧9 + 98𝑧8 − 256𝑧7 + 35𝑧6 + 1456𝑧5 − 3718𝑧4 + 4224𝑧3 − 2343𝑧2 + 560𝑧 − 38

9.2A A Fibonacci-like subsequence of the homogeneous Farey polyno-
mials

In Table 9.1, we list the first few homogeneous Farey polynomials for a particular set of seed
values: that is, the polynomials Φℎ which solve the homogeneous recursion relation

(9.2.6) Φℎ(𝛽 ⊕ 𝛼) = −Φℎ(𝛽 ⊖ 𝛼) − Φℎ(𝛼)Φℎ(𝛽)

with the initial values Φℎ(0/1) = 2 − 𝑧, Φℎ(1/0) = 2, and Φℎ(1/1) = 2 + 𝑧.
The polynomials with numerator 1 listed in the table have very nice properties: immediately one

sees that the constant terms alternate in sign and increase in magnitude by 4 each time; also, we
have that Φℎ

1/𝑞(1) cycles through the values 3, −5, 2, Φℎ
1/𝑞(2) cycles through the values 4, −2, −4, 2;

and when we evaluate at 3 and 4 we get a 6-cycle and an arithmetic sequence of step 4 respectively.
When we consider Φℎ(1/𝑞)(5), though, we obtain more interesting behaviour: this is OEIS sequence
A1005451 and satisfies the Fibonacci-type relation

Φℎ
1/𝑞(5) = 3Φℎ

1/(𝑞−1)(5) − Φℎ
1/(𝑞−2)(5) with Φℎ

1/1(5) = 7, Φℎ
1/2(5) = 19.

Of course, from the way that we defined the Φℎ such types of relations ought to be expected. In
this section, we use the standard diagonalisation technique to explain the behaviour of the sequence
𝑎𝑞 ≔ Φℎ(1/𝑞)(𝑧) for fixed 𝑧 ∈ ℂ. From Equation (9.2.6), we have that

(9.2.7) 𝑎𝑞 = −(2 − 𝑧)𝑎𝑞−1 − 𝑎𝑞−2.

We may rewrite this equation in matrix form as the following:

(9.2.8) [ 0 1
−1 𝑧 − 2] [

𝑎𝑞−2
𝑎𝑞−1

] = [𝑎𝑞−1𝑎𝑞
] .

1http://oeis.org/A100545

http://oeis.org/A100545
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One easily computes that the eigenvalues of the transition matrix are

𝜆± = 𝑧 − 2 ± 𝛼
2

(where 𝛼 = √𝑧2 − 4𝑧) with respective eigenvectors

𝑣± = [𝑧 − 2 ∓ 𝛼
2 ]

(note the alternated sign). Thus the transition matrix may be diagonalised as

(9.2.9) −1
2𝛼 [𝑧 − 2 − 𝛼 𝑧 − 2 + 𝛼

2 2 ] [
𝑧−2+𝛼

2
0

0 𝑧−2−𝛼
2

] [ 2 2 − 𝑧 − 𝛼
−2 𝑧 − 2 − 𝛼]

and so 𝑎𝑞 is the first coordinate of

−1
2𝛼 [𝑧 − 2 − 𝛼 𝑧 − 2 + 𝛼

2 2 ] [
(𝑧−2+𝛼

2
)
𝑞

0
0 (𝑧−2−𝛼

2
)
𝑞] [ 2 2 − 𝑧 − 𝛼

−2 𝑧 − 2 − 𝛼] [
𝑎0
𝑎1
] ;

expanding out, we get

(9.2.10) 𝑎𝑞 =
2−1−𝑞 ((𝑎0(𝑧 − 2 + 𝛼) − 2𝑎1)(𝑧 − 2 − 𝛼)𝑞 + (𝑎0(2 − 𝑧 + 𝛼) + 2𝑎1)(𝑧 − 2 + 𝛼)𝑞)

𝛼 .

Wemay also characterise the 𝑧 for whichΦℎ
1/𝑞(𝑧) is cyclic: this occurs precisely when the diagonal

matrix of Equation (9.2.9) is of finite order, i.e. whenever both (𝑧 − 2 ± 𝛼)/2 are roots of unity.
As an application of the theory above, we have seen that the Chebyshev polynomials also satisfy

a second-order recurrence relation with transition matrix

[ 0 1
−1 2𝑥] .

If we set 𝑧 = 2𝑥+2, then we get back our transitionmatrix from Equation (9.2.8). Thus our sequence
Φℎ
1/𝑞(𝑧) for fixed 𝑧 is of the form𝑊𝑞(

𝑧−2
2
)where𝑊𝑞 is the 𝑞th Chebyshev polynomial in the sequence

beginning with𝑊0 = 2𝑥 and𝑊1 = 2𝑥 + 4.
Finally, we consider the solution of the non-homogeneous equation forΦ1/𝑞. Above, we observed

that there is a constant solution to the global recursion relation on the entire Stern-Brocot tree; we
therefore guess that there is a similar solution to this recursion. Such a solution 𝑓 will satisfy

8 = 𝑓(𝑧) + (2 − 𝑧)𝑓(𝑧) + 𝑓(𝑧)
and arithmetic gives 𝑓(𝑧) = 8/(4 − 𝑧). Combining this with Equation (9.2.10) above gives us the
following general solution to the non-homogeneous relation:

𝑎𝑞 =
8

4 − 𝑧 +
2−1−𝑞 ((𝜆(𝑧 − 2 + 𝛼) − 2𝜇)(𝑧 − 2 − 𝛼)𝑞 + (𝜆(2 − 𝑧 + 𝛼) + 2𝜇)(𝑧 − 2 + 𝛼)𝑞)

𝛼 .

In our case, we have 𝑎0 = Φ1/0(𝑧) = 2 and 𝑎1 = Φ1/1(𝑧) = 2 + 𝑧. Solving the resulting system of
equations gives

(𝜆, 𝜇) = ( 2𝑧
𝑧 − 4 ,

2𝑧 − 𝑧2
𝑧 − 4 )

and hence
𝑎𝑞 =

8
4 − 𝑧 +

2−𝑞𝑧
𝑧 − 4 ((−2 + 𝑧 − √𝑧2 − 4𝑧)𝑞 + (−2 + 𝑧 + √𝑧2 − 4𝑧)𝑞)
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9.2B Solving the homogeneous recursion relation in general
In the previous section, we computed a closed form formula for Φℎ

1/𝑞(𝑛) using standard techniques
from the theory of second-order linear recurrences. We now tackle the general problem of finding a
closed-form formula for Φℎ

𝑝/𝑞(𝑛); in order to do this, we use the theory of Section 6 of [31] but with
a slight modification: in that paper, the authors define a special case of Farey recursive function, a
Farey recursive function of determinant 𝑑 (where 𝑑 ∶ ℚ̂ → 𝑅), to be a Farey recursive function
ℱ with 𝑑1 = 𝑑 and 𝑑2 = ℱ. That is, they replace the recurrence of Equation (9.2.2) with

ℱ(𝛽 ⊕ 𝛼) = −𝑑(𝛼)ℱ(𝛽 ⊖ 𝛼) + ℱ(𝛼)ℱ(𝛽).

This is very similar to our situation, except that instead of 𝑑2 = ℱ we have 𝑑2 = −ℱ. To reflect this,
we shall call a Farey recursive function satisfying a relation of the form

(9.2.11) ℱ(𝛽 ⊕ 𝛼) = −𝑑(𝛼)ℱ(𝛽 ⊖ 𝛼) − ℱ(𝛼)ℱ(𝛽).

a Farey recursive function of anti-determinant 𝑑. We shall work for the time being in this setting
(i.e. we shall work with the general function ℱ rather than the particular example Φ) in order to
restate in sufficient generality the theorem which we need (Theorem 6.1 of [31]).

Let 𝛼 ∈ ℚ. The boundary sequence 𝜕(𝛼) is defined inductively by the process of ‘continuing to
expand down the Farey graph by constant steps’. More precisely, let 𝛽⊕𝑘 𝛾 denote ((𝛽⊕𝛾) ⊕⋯) ⊕ 𝛾⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑘 iterates
for 𝛽, 𝛾 ∈ ℚ̂ and let 𝛾𝐿, 𝛾𝑅 be the unique Farey neighbours such that 𝛼 = 𝛾𝐿 ⊕ 𝛾𝑅; then we set

𝜕(𝛼) ≔ {𝛾𝐿 ⊕𝑘 𝛼 ∶ 𝑘 ∈ ℤ≥0} ∪ {𝛾𝑅 ⊕𝑘 𝛼 ∶ 𝑘 ∈ ℤ≥0}.

If we allow the Farey graph to embed in the Euclidean upper halfplane by sending ℚ ∋ 𝑝/𝑞 ↦
(𝑝/𝑞, 1/𝑞) ∈ ℍ2, then except for the exceptional cases 𝛼 = 1/0 and 𝛼 = 𝑛/1 for 𝑛 ∈ ℤ the subgraph
spanned by 𝜕(𝛼) corresponds to a Euclidean triangle containing 𝛼 in its interior, see Figure 9.5 and
Figure 3 of [31]; for example, the triangle spanned by 𝜕(1/𝑛) is the trianglewith vertices 0, (1/2, 1/2), 1.

It will be useful to have specific names for the terms in each of the two subsequences and so we
set, for 𝑘 ∈ ℤ,

(9.2.12) 𝛽𝑘 ≔
⎧⎪
⎨⎪
⎩

𝛾𝐿 ⊕−𝑘−1 𝛼 if 𝑘 < −1
𝛾𝐿 if 𝑘 = −1
𝛾𝑅 if 𝑘 = 0
𝛾𝑅 ⊕𝑘 𝛼 if 𝑘 > 0.

For every 𝛼 ∈ ℚ, define

(9.2.13) 𝑀𝛼 = [ 0 1
−𝑑(𝛼) ℱ(𝛼)] .

Given any Farey neighbour 𝛽 of 𝛼, we have

𝑀𝑛
𝛼 [
ℱ(𝛾 ⊕0 𝛼)
ℱ(𝛾 ⊕1 𝛼)] = [ ℱ(𝛾 ⊕𝑛 𝛼)

ℱ(𝛾 ⊕𝑛+1 𝛼)]

and so the recursion Equation (9.2.11) is equivalent to a family of second-order linear recurrences,
one down 𝜕(𝛼) for each 𝛼.

We may now state the following theorem:
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Figure 9.5: An embedding of the Farey graph into ℍ2. (By Hyacinth—Own work, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=63343697.)

9.2.14 Theorem (Adaptation of Theorem 6.1 of [31]). Let 𝑑 ∶ ℚ̂ → 𝑅 be a multiplicative function
(in the sense that 𝑑(𝛾 ⊕ 𝛽) = 𝑑(𝛾)𝑑(𝛽) for all pairs of Farey neighbours 𝛽, 𝛾 ∈ ℚ) to a commutative
ring 𝑅, such that 𝑑(ℚ̂) contains no zero divisors. Suppose that ℱ is a Farey recursive function with anti-
determinant 𝑑. Given 𝛼 ∈ ℚ, define𝑀𝛼 as in Equation (9.2.13) and (𝛽𝑘)𝑘∈ℤ as in Equation (9.2.12).

Then, for all 𝑛 ∈ ℤ,

𝑀𝑛
𝛼 [
ℱ(𝛽0)
ℱ(𝛽1)

] =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

[ ℱ(𝛽𝑛)
ℱ(𝛽𝑛+1)

] 𝑛 ≥ 0,

[
1

𝑑(𝛽−1)
ℱ(𝛽−1)

ℱ(𝛽0)
] 𝑛 = −1, and

[
1

𝑑(𝛽−1)𝑑−𝑛−1𝛼
ℱ𝛽𝑛

1
𝑑(𝛽−1)𝑑−𝑛−2𝛼

ℱ𝛽𝑛+1
] 𝑛 < −1.

Weproceed to prove Theorem 9.2.14 by exactly the same argument as given in [31]. The key point
is the following lemma, which is the analogue of the discussion directly preceeding the statement of
Theorem 6.1 in that paper.

9.2.15 Lemma. With the setup of Theorem 9.2.14, we have

𝑀−1
𝛼 [ℱ(𝛽0)ℱ(𝛽1)

] = [
𝑑(𝛽0)
𝑑(𝛼)

ℱ(𝛽−1)
ℱ(𝛽0)

]

𝑀−2
𝛼 [ℱ(𝛽0)ℱ(𝛽1)

] = [
1

𝑑(𝛼)𝑑(𝛽−1)
ℱ(𝛽−2)

1
𝑑(𝛽−1)

ℱ(𝛽−1)
]

https://commons.wikimedia.org/w/index.php?curid=63343697
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Proof. The formula involving 𝑀−1
𝛼 comes directly from computing the product on the left via the

definition and simplifying with the formula

ℱ(𝛽1) = −𝑑(𝛽0)ℱ(𝛽−1) − ℱ(𝛼)ℱ(𝛽0)

which is almost exactly the same as Equation (8) of [31]—the single sign change cancels exactly with
the sign change between ‘determinant’ and ‘anti-determinant’ recurrences so we get the same overall
formula for the𝑀−1

𝛼 product as they do in Equation (11) of their paper.
The formula for𝑀−2

𝛼 comes from applying the analogues of Equations (9) and (10) of their paper,

ℱ(𝛽−2) = −𝑑(𝛽−1)ℱ(𝛽0) − ℱ(𝛼)ℱ(𝛽−1)
𝑑(𝛼) = 𝑑(𝛽−1)𝑑(𝛽0)

and simplifying; again the minus signs cancel and we get the same formula. ▮

Proof of Theorem 9.2.14. The formula for 𝑛 ≥ 0 holds for all Farey recursive formulae as noted above;
the formulae for 𝑛 = −1 and 𝑛 = −2 are just the formulae of Lemma 9.2.15; and we proceed to prove
the formula for 𝑛 < −2 by induction. Assume that the formula holds for some fixed 𝑛 ≤ −2; then
from the definitions we have

ℱ(𝛽𝑛−1) = −ℱ(𝛼)ℱ(𝛽𝑛) − 𝑑(𝛼)ℱ(𝛽𝑛+1)

and so we can compute

𝑀𝑛−1
𝛼 [𝐹(𝛽0)𝐹(𝛽1)

] = 𝑀−1
𝛼 𝑀𝑛

𝛼 [
𝐹(𝛽0)
𝐹(𝛽1)

]

= 1
𝑑(𝛼) [

−ℱ(𝛼) −1
𝑑(𝛼) −0] [

1
𝑑(𝛽−1)𝑑(𝛼)−𝑛−1

𝐹(𝛽𝑛)
1

𝑑(𝛽−1)𝑑(𝛼)−𝑛−2
𝐹(𝛽𝑛+1)

]

= 1
𝑑(𝛼) [

− 1
𝑑(𝛽−1)𝑑(𝛼)−𝑛−1

(ℱ(𝛼)ℱ(𝛽𝑛) + 𝑑(𝛼)ℱ(𝛽𝑛+1))
1

𝑑(𝛽−1)𝑑(𝛼)−𝑛−2
ℱ(𝛽𝑛)

]

= [
− 1
𝑑(𝛽−1)𝑑(𝛼)−𝑛

ℱ(𝛽𝑛−1)
1

𝑑(𝛽−1)𝑑(𝛼)−𝑛−1
ℱ(𝛽𝑛)

]

which is the desired result. ▮

9.2.16 Corollary (Adaptation of Corollary 6.2 of [31]). Let Φℎ be a family of homogeneous Farey
polynomials (i.e. a family solving Equation (9.2.6) for some starting values). Then, for some 𝛼 ∈ ℤ, if
𝑀𝛼 is the matrix

[ 0 1
−1 Φℎ(𝛼)]

and if (𝛽𝑘)𝑘∈ℤ are the boundary values about 𝛼 as in Equation (9.2.12), then for all 𝑛 ∈ ℤ we have

𝑀𝑛
𝛼 [
Φℎ(𝛽0)
Φℎ(𝛽1)

] = [ Φℎ(𝛽𝑛)
Φℎ(𝛽𝑛+1)

] .

Proof. This follows directly from Theorem 9.2.14 with the observation that the anti-determinant of
Φℎ is the constant function 𝑑(𝛾) = 1 for all 𝛾 ∈ ℚ. ▮
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Thus to determineΦℎ
𝛼 for all 𝛼 ∈ ℚ it suffices to compute and diagonalise the𝑀𝛼 matrices, using

the techniques of Section 9.2A. (Of course, we need to diagonalise in the ring of rational functions
overℚ rather than the ring of polynomials overℤ.) More precisely, we need to compute𝑀𝛼𝑖 for some
family (𝛼𝑖) of rationals with the property that the boundary sets 𝜕(𝛼𝑖) cover ℚ. (In Section 9.2A, we
did this computation for 𝜕(0/1).)

In any case, from Corollary 9.2.16 we immediately have a qualitative result:

9.2.17 Theorem. For any 𝛾 ∈ ℚ, there exists a sequence ..., 𝛾−1, 𝛾0 = 𝛾, 𝛾1, 𝛾2, ... of rational numbers
such that Φℎ

𝛾𝑛(𝑧) is a sequence of Chebyshev polynomials 𝑊𝑛(Φℎ
𝛾(𝑧)/2). (Namely, let 𝛾−1 be a neigh-

bour in the Stern-Brocot tree of 𝛾 and take the sequence (𝛾𝑘) to be precisely the sequence (𝛽𝑘) of Equa-
tion (9.2.12) with 𝛼 ≔ 𝛾 ⊖ 𝛾−1.) ▮
Remark. Of course, the boundary sequence (𝛾𝑘) constructed here is just a geodesic line Λ in the
Stern-Brocot tree rooted at 𝛾, defined by choosing one vertical half-ray in the tree starting from 𝛾
(where ‘vertical’ refers to the embedding of Figure 9.4) and then extending that in the Farey graph
in the obvious way by repeated Farey arithmetic with the same difference. There are clearly two
such natural choices for Λ given a fixed 𝛾 (𝛾 has three neighbours, but two correspond to the same
geodesic), and a single natural choice is obtained by taking the unique neighbour of 𝛾 which lies
above.

We easily compute that the eigenvalues of𝑀𝛼 are

𝜆± = 1
2 (Φ

ℎ
𝛼 ±√(Φℎ𝛼)2 − 4) .

Let 𝑥 = Φℎ
𝛼 and 𝜅 = √𝑥2 − 4 (this is the analogue of the constant 𝛼 from Section 9.2A); then the

respective eigenvectors are

𝑣± = [𝑥 ∓ 𝜅
2 ] .

We therefore may diagonalise𝑀𝛼 as

𝑀𝛼 = − 1
4𝜅 [

𝑥 − 𝜅 𝑥 + 𝜅
2 2 ] [

1
2
(𝑥 + 𝜅) 0
0 1

2
(𝑥 − 𝜅)

] [ 2 −𝑥 − 𝜅
−2 𝑥 − 𝜅 ] ;

in particular, Φℎ(𝛽𝑛) is the first component of

𝑀𝑛
𝛼 [
Φℎ(𝛽0)
Φℎ(𝛽1)

] = − 1
4𝜅 [

𝑥 − 𝜅 𝑥 + 𝜅
2 2 ] [

1
2𝑛
(𝑥 + 𝜅)𝑛 0
0 1

2𝑛
(𝑥 − 𝜅)𝑛

] [ 2 −𝑥 − 𝜅
−2 𝑥 − 𝜅 ] [

Φℎ(𝛽0)
Φℎ(𝛽1)

]

computing this, we have

Φℎ(𝛽𝑛) =
(Φℎ(𝛽0)(𝑥 + 𝜅) − 2Φℎ(𝛽1))(𝑥 − 𝜅)𝑛 + (Φℎ(𝛽0)(𝜅 − 𝑥) + 2Φℎ(𝛽1))(𝑥 + 𝜅)𝑛

21+𝑛𝜅 .

In particular, we have proved the following quantitative improvement of Theorem 9.2.17:

9.2.18 Theorem. Let 𝛽0 and 𝛽1 be Farey neighbours, and let 𝛼 = 𝛽1⊖𝛽0. Then we have a closed form
formula for Φℎ(𝛽𝑛) (𝑛 ∈ ℤ), namely

Φℎ
𝛽𝑛 =

(Φℎ
𝛽0 (Φ

ℎ
𝛼 + 𝜅) − 2Φℎ

𝛽1) (Φ
ℎ
𝛼 − 𝜅)𝑛 + (Φℎ

𝛽0 (𝜅 − Φℎ
𝛼) + 2Φℎ

𝛽1) (Φ
ℎ
𝛼 + 𝜅)𝑛

21+𝑛𝜅 .

where 𝜅 = √(Φℎ𝛼)
2 − 4. ▮
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This gives a ‘local’ closed form solution for the recursion around any 𝛼 ∈ ℚ; a ‘global’ solution
corresponds to a collection of these solutions, each local to a particular geodesic in the graph and
which are compatible on intersections. Unfortunately, our original recurrence relied on knowning
only three initial values globally in the graph; while this local formula relies on knowing three initial
values which are local on the particular geodesic.

9.3 Approximating irrational pleating rays
Asmentioned in the introduction to [39], a version of this theory can be used to give approximations
to irrational pleating rays. In order to do this, wemust deal with the theory of infinite continued frac-
tions which we have danced around several times (c.f. Algorithm 4.1.2, Section 6.2, and Section 6.3).

It is well-known that every irrational 𝜆 ∈ ℝ ⧵ ℚ has a unique simple continued fraction approx-
imation of the form

𝜆 = [𝑎1, 𝑎2, ..., 𝑎𝑛, ...] = 𝑎1 +
1

𝑎2 +
1

⋱+ 1
𝑎𝑛+

1
⋱

(see, for example, §10.9 of [54]). We now show that this exhibits 𝜆 as a limit of a sequence of rationals
‘down the Farey tree’.

Recall from Proposition 6.2.1 that a rational number 𝑝/𝑞 ∈ ℚ has exactly two continued fraction
decompositions, of the forms [𝑎1, ..., 𝑎𝑁−1, 𝑎𝑁 , 1] and [𝑎1, ..., 𝑎𝑁−1, 𝑎𝑁 + 1].

𝑟1
𝑠1
= [𝑎1, ..., 𝑎𝑁−1, 𝑎𝑁] and

𝑟2
𝑠2
= [𝑎1, ..., 𝑎𝑁−1].

9.3.1 Proposition. With the notation displayed above, 𝑟1/𝑠1 and 𝑟2/𝑠2 are Farey neighbours and 𝑝/𝑞 =
(𝑟1/𝑠1) ⊕ (𝑟2/𝑠2).

Proof. That the Farey sum is as claimed follows from Theorem 149 of [54]: that is, if 𝑝𝑛/𝑞𝑛 =
[𝑎1, ..., 𝑎𝑛] then

𝑝𝑛 = 𝑎𝑛𝑝𝑛−1 + 𝑝𝑛−2 and 𝑞𝑛 = 𝑎𝑛𝑞𝑛−1 + 𝑞𝑛−2.
Indeed, take 𝑝/𝑞 = 𝑝𝑁+1/𝑞𝑁+1 = [𝑎1, ..., 𝑎𝑁−1, 𝑎𝑁 , 1], then 𝑎𝑁+1 = 1 so 𝑝𝑁+1 = 1𝑝𝑁 + 𝑝𝑁−1 and
𝑞𝑁+1 = 𝑞𝑁 + 𝑞𝑁−1.

That the two are Farey neighbours is exactly Theorem 150 of [54], which actually gives slightly
more information:

𝑝𝑁𝑞𝑁−1 − 𝑝𝑁−1𝑞𝑁 = (−1)𝑁−1. ▮

Earlier in this chapter, we indicated how to compute in closed form the sequence of Farey poly-
nomials corresponding to the Farey fractions

𝑝1
𝑞1
, 𝑝2𝑞2

= 𝑝1
𝑞1

⊕ (𝑝2𝑞2
⊖ 𝑝1

𝑞1
) ,… , 𝑝𝑛𝑞𝑛

= 𝑝1
𝑞1

⊕𝑛−1 (𝑝2𝑞2
⊖ 𝑝1

𝑞1
)

where 𝑝1/𝑞1 and 𝑝2/𝑞2 are Farey neighbours. That is, we gave a way to compute the Farey polyno-
mials down a branch of the Farey tree with constant difference (for instance, we gave the example
of Φ1/𝑞, where

1
𝑞
= 1

0
⊕𝑞 0

1
). The study of partial fraction decompositions here gives, in general, dif-

ferent sequences: the constant addition sequence rooted at an element 𝜉 in the tree is the sequence
which constantly chooses the left branch when moving down from 𝜉 (with respect to the embedding
of Figure 9.4), while the sequence corresponding to continually adding the previous two items in the
tree (and therefore building a continued fraction decomposition) corresponds to the sequence which



9.3. APPROXIMATING IRRATIONAL PLEATING RAYS 131

is eventually constantly moving rightwards. For this reason, we expect there to also exist a nice way
to compute closed-form expressions for sequences of Farey polynomials corresponding to finite con-
vergents of infinite continued fraction decompositions, and therefore for there to be a reasonable way
to approximate irrational pleating rays and attempt to compute expressions for the analytic functions
of which they are subsets of zero-sets.
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Chapter 10

Conjectures and open problems

In this chapter we list some conjectures, open problems, and other miscellaneous questions, which
we believe to be of varying levels of difficulty.

10.1 General problems
Our first conjecture asks for the relation between the parabolic and the elliptic Riley slices, as subsets
of ℂ.

10.1.1 Conjecture. (a) ℛ𝑎,𝑏 ⊇ ℛ∞,∞ for all𝑎 and 𝑏 after translating so that the centres of symmetry
coincide.

(b) Even stronger,ℛ∞,∞ = ⋂(𝑎,𝑏)∈ℕ2 ℛ𝑎,𝑏 after translating so that the centres of symmetry coincide.

(c) Stronger but orthogonal to (b), there exists a biholomorphic or quasiconformal map ℛ𝑎,𝑏 →
ℛ∞,∞, which is a contraction in ℂ and extends uniformly continously to the boundary.

(d) As a corollary of (c), from the fact that 𝜕ℛ∞,∞ is a Jordan curve (Theorem 5.2.6) we obtain the
same result for 𝜕ℛ𝑎,𝑏.

We share the belief of experts that the Keen–Series theory may be extended much further (see
e.g. the Remark added in press of [62, pp. 720–721]): the idea behind the Keen–Series theory extends
to other geometrically finite groups and the difficulty is in actually carrying out the concrete work
needed to check it. We state the following problem merely to sketch why the theory should extend,
and how it would be done. See the final remark of Section 7.1 for some examples of other papers
which use this method.

10.1.2 Problem. Fix a geometrically finite Kleinian group 𝐺, we study the geometry of QH(𝐺).
By the theory of boundary parabolics for geometrically finite Kleinian groups [85, 95] (see also [15,

Theorem 11]), whenever 𝑎1, ..., 𝑎𝑛 is a system of simple disjoint non-boundary-parallel curves on the
surface of𝐺 wemay find a loxodromic group element 𝑔𝑖 representing 𝑎𝑖 for each 𝑖 and wemay pinch
𝑎𝑖 to a puncture by deforming 𝑔𝑖 to parabolicity. Observe that 𝑎1, ..., 𝑎𝑛 is exactly giving a maximal
geodesic lamination on the surface (c.f. [79, p. 166] or [124, Definition 8.7.5 and Proposition 8.7.6]).
Fix some such system of geodesics 𝑇, and define the 𝑇-rational pleating ray pl(𝑇) to be the set of
𝐺′ in QH(𝐺) such that the pleating locus of the convex core of 𝐺′ is exactly 𝑇. Then the definition of
a 𝑇-circle chain𝑈𝑇 should be something along the lines of ‘the set of F-peripheral subgroups 𝐹 < 𝐺
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Figure 10.1: A portion of the Riley slice exterior.

such that (1) the quotient of the hyperbolic dome above the peripheral disc of 𝐹 is homeomorphic
to one of the subsets of 𝒮(𝐺) obtained by cutting along the curves of 𝑇, (2) 𝐹 is generated by elliptics
or parabolics representing punctures or cone points in that surface, and (3) the curves bounding the
surface in 𝒮(𝐺) are represented by appropriate products of these generators.’

Now pl(𝑇) should laminate QH(𝐺); and a group lies on pl(𝑇) iff it contains a system of non-
conjugate subgroups in 𝑈𝑇 , one for each of the surfaces obtained by cutting 𝒮(𝐺) along 𝑇. Taking
the completion of this lamination we should obtain a homeomorphismΠ ∶ QH(𝐺) → ℳℒ(𝐺)𝑥ℝ𝑛

>0
defined by the completion of the map sending any 𝐺′ on a 𝑇-rational pleating ray to

(pl(𝑇), 𝐿(𝑎1), ..., 𝐿(𝑎𝑛))

where the 𝑎𝑖 are the curves of 𝑇 realised in the complex structure from 𝐺′ and where 𝐿 is a suitable
normalised complex length function like that discussed above in Section 7.4B. Of course the details
require some non-trivial argument in each specific case.

10.2 The structure of the Riley slice exterior
Let us next consider the picture of the Riley slice exterior which was included as Figure 4.8. This plot
is the set of points 𝑧 such that Φ𝑝/𝑞(𝑧) = −2, where 𝑞 ≤ 80. By McMullen’s theorem [90], a subset of
these points are dense in the boundary of the Riley slice. In fact:

10.2.1 Theorem. Let 𝑧 ∈ ℂ satisfy Φ𝑝/𝑞(𝑧) = −2 for some slope 𝑝/𝑞. Then 𝑧 ∈ ℂ ⧵ ℛ.

A proof of Theorem 10.2.1 follows the same ideas as the arguments of Section 3 of our paper [39],
where we show that the semigroup under composition generated by the polynomials𝑄𝑝/𝑞 ≔ Φ𝑝/𝑞−2
preserves the set ℂ ⧵ ℛ—this is a similar result but allowing boundary points.

We conjecture based on a large number of numerical calculations that Theorem 10.2.1 can be
strengthened:

10.2.2 Conjecture. The set {𝑧 ∈ ℂ ∶ there exists 𝑝/𝑞 ∈ ℚ such that Φ𝑝/𝑞(𝑧) = −2} is dense inℛ.

In the following, we define the reducedFarey polynomial of slope𝑝/𝑞 by𝜙𝑝/𝑞(𝑧) ≔ Φ𝑝/𝑞(𝑧)+2.
The approximations to the Riley slice exterior have some rather intricate structure. In Figure 10.1

we showa viewof such an approximation (this time producedwith polynomials of slope denominator
≤ 500), zoomed in around the 1/2-cusp. Define the extended pleating ray of slope 𝑝/𝑞 to be the
preimage of ℝ defined by the same branch of the inverse of the Farey polynomial. We use ℰ𝒫𝑝/𝑞 to
denote this curve. One sees immediately that there appears to be clustering around extensions of the
pleating rays into the exterior; it is known that all discrete hyperbolic two-bridge knot complement
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groups lie on these extensions [5, 6] and at least one paper on the patterns visible has appeared [51]—
in that paper, the groups we see in the exterior were called parabolic dust by Gilman.

Our interest here lies in the following property: the extended pleating rays appear to be paired
together across a central neighbour to form a smooth curve. We list some problems which might be
interesting to study, related to this observation.

10.2.3 Problem. • What is the relationship between the two ‘paired’ rays? (Experimentation
shows that the relationship is not that they are Farey neighbours.) For‘ the time being call
such a pair a Riley pair.

• Suppose 𝑝/𝑞 and 𝑟/𝑠 form a Riley pair. Conjecture: There exists an analytic curve ℰ𝒫𝑝/𝑞⟛𝑟/𝑠
such that ℰ𝒫𝑝/𝑞⟛𝑟/𝑠 ∩ (ℂ⧵ℛ) = 𝒫𝑝/𝑞 ∪𝒫𝑟/𝑠. (We cannot even guess what operation 𝑝/𝑞⟛ 𝑟/𝑠
might represent.)

• Conjecture: The curve ℰ𝒫𝑝/𝑞⟛𝑟/𝑠 meets the extension of 𝒫(𝑝+𝑟)/2(𝑞+𝑠) at a single point.
It is known that theRiley slice admits a natural hyperbolicmetric that agreeswith theTeichmüller

metric.

10.2.4 Question. Are the pleating rays geodesics in this metric?

Thiswill be true if themappingΠ of the Riley slice to the annulusℳℒ(𝑆)×ℝ>0 of Theorem7.4.15
is sufficiently nice (and the picture due to David Wright found as Figure 1 of [63] seems to back this
up: it appears that the map is conformal, at least away from the boundary, though a search of the
literature has not revealed any statements either way). In this direction, a broader question is:

10.2.5 Question. How does the coordinate system Π relate to the canonical isometric map ℛ →
{𝑧 ∈ ℂ ∶ |𝑧| > 2}.

More natural questions arise if we consider the analytic interpretation of Teichmüller geodesics,
which we briefly recall from [46, §11.4]. Suppose that 𝑅 is a Riemann surface and 𝑋 ∈ Teich(𝑅); pick
a measured foliationℱ on 𝑋 which comes from some holomorphic quadratic differential 𝑞 on 𝑋 . For
every 𝑘 ∈ (0,∞) there exists some 𝑋𝑘 ∈ Teich(𝑅), some quadratic differential 𝑞𝑘 on 𝑋𝑘, and some
Teichmüller map 𝑓 ∶ 𝑋 → 𝑋𝑘 with initial differential 𝑞, terminal differential 𝑞𝑘, and horizontal
stretch factor 𝑘; this map corresponds to taking themetric on 𝑋 and locally deforming it, stretching it
by a factor of 𝑘 along the leaves of 𝐹 and shrinking by a factor of 𝑘 along the transverses of the leaves.
With this setup, the set 𝑋𝑘 ∶ 𝑥 ∈ [0,∞) is a geodesic ray in Teich(𝑅).

Now suppose that we naïvely try to answer Question 10.2.4 in the affirmative. Let 𝑆 be a 4-times
punctured sphere, and pick a non-boundary-parallel simple closed curve 𝛾(𝑝/𝑞) on 𝑆. There is a
natural extension of 𝛾(𝑝/𝑞) to a foliation ℱ(𝑝/𝑞) on 𝑆, given by lifting 𝛾(𝑝/𝑞) to a line of slope 𝑝/𝑞
(as in Chapter 6), taking the foliation on ℝ2 of all parallel lines to this lift, and projecting back down.
Now consider the Teichmüller geodesic corresponding to shrinking along ℱ(𝑝/𝑞) and expanding
along transverses to ℱ(𝑝/𝑞).
10.2.6 Question. Does the resulting foliation ℱ(𝑝/𝑞) arise as the trajectory structure of a holo-
morphic quadratic differential?

It is known that there is a holomorphic quadratic differential with trajectory structure homotopic
to this, at least. Perhaps this is good enough to make the argument go through since we should be
able to modify the original curve 𝑘 by homotopies without changing anything except the ability to
extend to a foliation via the process we outlined. In any case:

10.2.7 Question. What is the holomorphic quadratic differential with trajectory structure homo-
topic to (or equal to) the foliation coming from 𝛾(𝑝/𝑞)?
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Suppose now that 𝑠 ∈ 𝒫𝑝/𝑞, and that we havemanaged to find a quadratic differential with traject-
ory structure ‘close enough’ to 𝛾(𝑝/𝑞) as discussed above. It is intuitive now that deforming along the
Teichmüller geodesic is precisely the same process as deforming the surface so as to travel down the
pleating ray. (Yes, when we deform down the geodesic we are pinching curves other than 𝛾(𝑝/𝑞); but
these curves are ‘closer to the punctures’ so shrink in length less than 𝛾(𝑝/𝑞) and so shouldn’t pinch
to a point in the limit—their pinching corresponds to the fact that you get a cusp neighbourhood on
the pair of 3-punctured spheres where you have a series of curves ‘parallel’ to the puncture which
shrink in size as you go towards the puncture).

In any case, we pose the following question which relates these Teichmüller metric problems to
the problem of ‘paired’ extended pleating rays.

10.2.8 Problem. Suppose 𝑝/𝑞 and 𝑟/𝑠 form a Riley pair. Define a suitable geometry on ℛ such that
there is a natural involutive isometry ofℛ swapping𝒫𝑝/𝑞 and𝒫𝑟/𝑠, fixing the conjectured ray𝒫𝑝/𝑞⟛𝑟/𝑠
pointwise.

We guess that, if all of the above is correct, a suitable candidate for this geometry is the Teich-
müller geometry, and that 𝜌 may be chosen to be the reflection across the conjectured geodesic ray
𝒫𝑝/𝑞⟛𝑟/𝑠.

10.3 Some computational problems
The Keen–Series definition of the pleating rays in [63] is difficult to compute with: since it depends
on behaviour near infinity, it is difficult to apply locally at points in the Riley slice. This complicates
computational study of the Keen–Series foliation. David Wright has given computational methods
for computing the positions of cusp points in the Maskit and Riley slices [127]. We list some similar
problems which might be amenable to study, perhaps using the Farey polynomial formulae from
Chapter 9 as a start.

10.3.1 Problem. Given a point 𝜌 ∈ ℛ:
(a) Determine whether 𝜌 lies on a rational pleating ray.

(b) If 𝜌 is known to lie on some rational pleating ray, determine which pleating ray it lies on.

(c) If 𝜌 ∈ 𝒫𝑝/𝑞, determine the tangent line to 𝒫𝑝/𝑞 at 𝜌.
An answer to (c) of Problem 10.3.1 might lead to a nice solution to the problem of efficiently

computing pleating rays. The Keen–Series theory tells us that𝒫𝑝/𝑞 is a connected component of ℋ̃𝑝/𝑞
with certain asymptotic properties; these properties are not amenable to computation. (When 𝑞 is
low, we have used MATLAB to determine a sequence of points on 𝒫𝑝/𝑞 in order to animate the limit
set of Γ𝜌 as 𝜌 heads to the cusp down the pleating ray;1 however, without some further numerical
analysis, we were unable to produce a useable general algorithm for producing such sequences as 𝑞
becomes large.) Really, we would like to:

10.3.2 Problem. Determine other characterisations of rational pleating rays, amenable to computa-
tion.

(a) A purely algebraic or combinatorial characterisation, like that of [127].

(b) A dynamical characterisation (that is, given a point 𝜌 ∈ 𝒫𝑝/𝑞, determine a (computable) func-
tion 𝑓 such that 𝑓𝑛(𝜌) ∈ 𝒫𝑝/𝑞 and such that as 𝑛 → ∞, the behaviour of 𝑓 is monotone along
the ray).

1See https://aelzenaar.github.io/kg/animations/index.html for some of these animations.

https://aelzenaar.github.io/kg/animations/index.html
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Knowing the dynamical behaviour of pleating rays even into the exterior of the slice would be
very interesting, though of course losing discreteness makes the problem less likely to be tackleable
via combinatorics of limit sets. Some limited computational experiments seem to suggest that the
family of pleating ray extensions have some interesting dynamical properties

10.3.3 Conjecture. For each 𝑝/𝑞, define a function 𝑓𝑝/𝑞 ∶ ℝ → ℂ by the rule ‘𝑡 ↦ 𝜌, whereΦ𝑝/𝑞(𝜌) = 𝑡
and 𝜌 lies in the connected component ofΦ−1

𝑝/𝑞(ℝ) containing the 𝑝/𝑞 pleating ray’. Then 𝑓𝑝/𝑞(𝑡) = 𝑓𝑟/𝑠(𝑡)
if and only if 𝑝/𝑞 = 𝑟/𝑠. That is, the extended pleating rays do not collide in the slice exterior.

Finally, pictures like Figure 10.1 but for the inverse image of 0 rather than −2 seem to invite the
study of questions like the following:

10.3.4 Problem. A clumping point (for want of a better term) of the set of Farey polynomials is a
point 𝑧 ∈ ℂ such that Φ𝑟/𝑠(𝑧) = 0 for infinitely many 𝑟/𝑠 ∈ ℂ ∩ [0, 1]. Let 𝒞 be the set of all such
points.

(a) 𝒞 ⊆ ℝ

(b) 𝑧 ∈ 𝒞 iff 𝑧 is ‘algebraic of surprising lowdegree’, i.e. if there exists some 𝑟/𝑠 such thatΦ𝑟/𝑠(𝑧) = 0
but the degree of 𝑧 over ℤ is strictly less than 𝑠.

(c) ±2,±√2 ∈ 𝒞

(d) The clumping points are discrete on ℝ; an element 𝜉 ∈ ℝ is an accumulation point of the
space⋃𝑟/𝑠∈ℚ∩[0,1] Φ

−1
𝑟/𝑠(−2) iff 𝜉 ∈ 𝒞. (Observe that this cannot be true simultaneously with

Conjecture 10.2.2 above. Perhaps a better conjecture is that ℛ is dense ‘away from ℝ’ in some
sense.)

10.4 Factorisation properties of the Farey polynomials
We list in this section some properties of the Farey polynomials which we have determined by exper-
iment. We hope that Chapter 9 is a first step towards the solution of the following central problem:

10.4.1 Problem. Give a closed-form formula in 𝑟, 𝑠, 𝑎, 𝑏 for the coefficients of Φ𝑎,𝑏
𝑟/𝑠 , or just for the

polynomial itself.

Experimentation (Table 10.1) seems to show the following:

10.4.2 Conjecture. The coefficient [𝑧𝑑] Φ𝑎,𝑏
𝑟/𝑠 is piecewise polynomial in 𝑑 depending on the equivalence

class of 𝑠mod 2𝑟.

The factorisation properties of the polynomials would also be interesting to understand. For in-
stance, we believe that the following is true and might be fairly easy to check:

10.4.3 Conjecture. ForΦ∞,∞
𝑟/𝑠 to be reducible overℤ it is necessary (not sufficient) that 𝑠 = ±1 (mod 8)

and 𝑟 is even.

10.4.4 Problem. Determine necessary and sufficient conditions for Φ𝑎,𝑏
𝑟/𝑠 to factor over ℤ.

If we plot the zero set ofΦ∞,∞
𝑟/𝑠 (𝑧) as 𝑟/𝑠 varies overℚ from 0 to 1, it seems that the roots havemuch

more structure than one would naïvely expect a family of polynomials of different degree to have:
there appears to be a continuous flow of some sort.2 We therefore believe that the Farey polynomials

2See the animation at https://aelzenaar.github.io/kg/animations/farey_roots_ordered.mp4

https://aelzenaar.github.io/kg/animations/farey_roots_ordered.mp4
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Table 10.1: Coefficients of the 𝑟/𝑠 Farey polynomial.

[𝑧0] Φ𝑟/𝑠 = 2 for all 𝑟, 𝑠

[𝑧1] Φ1/𝑠 = {1 𝑠 ≡ 1 (mod 2)
0 𝑠 ≡ 0 (mod 2)

[𝑧1] Φ2/𝑠 = −1 for all 𝑠

[𝑧1] Φ3/𝑠 = {1 𝑠 ≡ ±1 (mod 6)
0 𝑠 ≡ ±2 (mod 6)

[𝑧1] Φ4/𝑠 = −1 for all 𝑠

[𝑧1] Φ5/𝑠 =
⎧⎪
⎨⎪
⎩

1 𝑠 ≡ ±1 (mod 10)
1 𝑠 ≡ ±3 (mod 10)
0 𝑠 ≡ ±2 (mod 10)
0 𝑠 ≡ ±4 (mod 10)

[𝑧1] Φ6/𝑠 = −1 for all 𝑠

[𝑧2] Φ1/𝑠 = {
𝑠2

4
𝑠 ≡ 0 (mod 2)

− (𝑠+1)(𝑠−1)
4

𝑠 ≡ 1 (mod 2)

[𝑧2] Φ2/𝑠 = {
𝑠−1
2

𝑠 ≡ 1 (mod 4)
− 𝑠+1

2
𝑠 ≡ −1 (mod 4)

[𝑧2] Φ3/𝑠 =

⎧⎪⎪
⎨⎪⎪
⎩

(𝑠−8)2

36
𝑠 ≡ 2 (mod 6)

(𝑠+8)2

36
𝑠 ≡ −2 (mod 6)

(𝑠+1)(𝑠+17)
36

𝑠 ≡ 1 (mod 6)
− (𝑠+1)(𝑠−19)

36
𝑠 ≡ −1 (mod 6)

[𝑧2] Φ4/𝑠 =

⎧
⎪
⎨
⎪
⎩

− 𝑠+1
2

𝑠 ≡ −1 (mod 8)
𝑠−1
2

𝑠 ≡ 1 (mod 8)
− 𝑠+7

2
𝑠 ≡ −3 (mod 8)

𝑠−7
2

𝑠 ≡ 3 (mod 8)

[𝑧2] Φ5/𝑠 =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

(𝑠+24)2

100
𝑠 ≡ −4 (mod 10)
𝑠 ≡ 4 (mod 10)
𝑠 ≡ −1 (mod 10)
𝑠 ≡ 1 (mod 10)
𝑠 ≡ −2 (mod 10)
𝑠 ≡ 2 (mod 10)
𝑠 ≡ −3 (mod 10)
𝑠 ≡ 3 (mod 10)

[𝑧3] Φ1/𝑠 = {
− 𝑠2(𝑠2−4)

48
𝑠 ≡ 1 (mod 2)

(𝑠2−1)(𝑠2−3)
48

𝑠 ≡ 0 (mod 2)

[𝑧3] Φ2/𝑠 = {
− (𝑠−1)(𝑠2−8𝑠+3)

48
𝑠 ≡ 1 (mod 4)

(𝑠+1)(𝑠2−4𝑠−9)
48

𝑠 ≡ −1 (mod 4)

[𝑧4] Φ1/𝑠 = {
(𝑠2−1)(𝑠2−9)(2𝑠2−5)

2880
𝑠 ≡ 1 (mod 2)

𝑠2(𝑠2−4)(2𝑠2−17)
2880

𝑠 ≡ 0 (mod 2)
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belong to some kind of nice algebraic family (and some experimental work with the coefficients of
Φ𝑎,𝑏
𝑟/𝑠 viewed as polynomials in 𝛼 = exp(𝜋𝑖/𝑎), 𝛽 = exp(𝜋𝑖/𝑏) serves only to invite further speculation)
We are actually interested in the real locus Φ−1

𝑝/𝑞(ℝ). This locus is precisely the zero set of the
polynomial 𝜙𝑝/𝑞(𝑥, 𝑦) = ℑΦ𝑝/𝑞(𝑥 + 𝑦𝑖) in the two real indeterminates 𝑥, 𝑦. In the parabolic case,
𝜙0/1(𝑥, 𝑦) = −𝑦, 𝜙1/1(𝑥, 𝑦) = 𝑦, and 𝜙1/2(𝑥, 𝑦) = 2𝑥𝑦. Note that 𝑦 divides each of these. We can
apply ℑ to both sides of our recurrence relation to get 𝜙𝑝/𝑞𝜙𝑟/𝑠 + 𝜙𝑝/𝑞⊕𝑟/𝑠 + 𝜙𝑝/𝑞⊖𝑟/𝑠 = 0. Thus if
some polynomial divides 𝜙𝑝/𝑞, 𝜙𝑟/𝑠, 𝜙𝑝/𝑞⊖𝑟/𝑠 then by induction it divides everything below that triple
in the Farey graph. In particular, 𝑦 divides every polynomial 𝜙𝑝/𝑞 (𝑝/𝑞 ∈ [0, 1]∩ℚ). Experimentation
shows that these polynomials actually seem to factor further in many cases. In fact, it looks like the
component corresponding to the pleating ray is always of even degree.

10.4.5 Problem. Determine the real algebraic geometry of the real variety ℑΦ𝑝/𝑞(𝑥 + 𝑦𝑖), and the
subset which forms the pleating way.
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Appendix A

Some remarks on computation

The author has developed, in the course of writing this thesis, some useful scripts in the computer
programming languages Mathematica and Python which can compute Farey polynomials (imple-
menting the recursive algorithm of Chapter 9) and draw nice limit sets. Many of these scripts may
be found on GitHub by following the citation [38].

In this appendix we give some simple examples of the usage. (For a list of computer prerequisites,
see the file README.md on the GitHub page.)

A.1 Farey words and polynomials
A.1.1 Example. In Section 1.1, we claimed that the figure 8 knot lies on the (extension of the) 3/5-
pleating ray. Recall fromEquation (4.1.4) that the figure 8 knot group is Γ∞,∞

−𝜔 , where𝜔 = exp(2𝜋𝑖/3).
We therefore need to check that Φ3/5(−𝜔) is real.

We use the following short script:

1 import farey
2 import mpmath as mp
3
4 # Compute the matrix of the 3/5 Farey word
5 # with alpha = beta = 1 and rho = -\omega
6 omega = mp.exp(2j*mp.pi/3)
7 M = farey.matrix(3,5,-omega,1,1).tolist()
8
9 # Print the imaginary part of the trace
10 print((M[0][0] + M[1][1]).imag)

Indeed, the output is mpf('0.0'). Of course, this is not a proof: one needs to check that it lies on the
right branch of the inverse, as well. In fact, if one replaces 3/5 with 2/5 then the Farey polynomial is
still real at −𝜔—we wonder if this is just an annoying coincidence, or if it is an indication of some
deeper phenomenon about the intersections of real locii (Figure A.1).

A.1.2 Example. In this example, we compute the LATEX code for Table 6.1, entirely automatically.

1 import farey
2 from math import gcd
3
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Figure A.1: The figure 8 knot (red) lies on the real locus of both the 2/5 (green) and 3/5 (blue) Farey
polynomials.

4 # LaTeX preamble
5 print(r'''\begin{table}
6   \centering
7   \caption{Farey words $ \Word(p/q) $ for small $ q $.
8            See \cref{ex:py_words}.\label{tab:words}}
9   \begin{tabular}{r|l}
10     $p/q$ &$\Word(p/q)$\\\hline''')
11
12 # Do the 0/1 and 1/1 cases separately.
13 print(f"    $0/1$ & ${''.join(farey.word(0,1))}$\\\\")
14 print(f"    $1/1$ & ${''.join(farey.word(1,1))}$\\\\")
15
16 # Now do the rest.
17 highest_q = 12
18 for q in range(2,highest_q+1):
19 for p in range(1,q):
20 if gcd(p,q) == 1:
21 print(f"    ${p}/{q}$ & ${str().join(farey.word(p,q))}$\\\\")
22
23 # End the LaTeX code.
24 print(r'''  \end{tabular}
25 \end{table}''')

A.1.3 Example. The following Mathematica script was used to produce Figure 4.10; it also provides
an example of the generation of Farey words via cutting sequences.

1 ClearAll["Global`*"];
2 lookupTable = {{X, x}, {y, Y}};
3 word[px_, qx_] := (
4 p = px/GCD[px, qx]; q = qx/GCD[px, qx];
5 length = 2 q;
6 wd = {};
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7 Do[(
8 height = i*p/q;
9 height = If[Ceiling[height] == height, height + 1/2, height];
10 AppendTo[wd,
11 lookupTable[[If[Mod[i, 2] == 1, 1, 2],
12 If[Mod[Ceiling[height], 2] == 1, 1, 2]]]];
13 ), {i, length}];
14 wd);
15
16 wordTable =
17 Table[Table[{{p, q}, word[p, q]}, {p,
18 Select[Range[q], GCD[#, q] == 1 &]}], {q, 20}];
19
20 wordList = Flatten[wordTable, 1];
21
22 indexWord[w_] :=
23 Map[First, Select[wordList, Function[l, l[[2]] == w]]];
24
25 matrixProducts =
26 Map[Function[w, Apply[Dot, w]], Map[Last, wordList]];
27
28 Map[Function[q, (
29 YY = {{Exp[ \[Pi] I/q], 0}, {\[Rho], Exp[- \[Pi] I/q]}};
30 yy = Inverse[YY];
31 Map[Function[p, (
32 XX = {{Exp[ \[Pi] I/p], 1}, {0, Exp[- \[Pi] I/p]}};
33 xx = Inverse[XX];
34 matrixProductsSubstituted =
35 matrixProducts /. {X -> XX, Y -> YY, x -> xx, y -> yy};
36 traces = Map[ Tr[N[#]] &, matrixProductsSubstituted];
37 zeros = Map[Function[t, NSolve[t + 2 == 0, \[Rho]]], traces];
38 plot =
39 ComplexListPlot[\[Rho] /. # & /@ Flatten[zeros],
40 PlotRange -> {{-4, 4}, {-2, 2}},
41 PlotMarkers -> {\[Bullet], 2},
42 PlotStyle -> Opacity[0.8, Black], PlotLabel -> p,
43 ImageSize -> 600];
44 Print[ToString@StringForm["new_riley_``_``.png", p, q]];
45 Export[ToString@StringForm["new_riley_``_``.png", p, q],
46 plot];
47 )], {2, 3, 4, 5, 6, Infinity}])], {2, 3, 4, Infinity}]

A.2 Limit sets
Two algorithms are included to compute limit sets, in the kleinian package. One is a depth-first
search, the other is a Markov search; see [94] for some pseudocode giving a simple implementation
of these algorithms. (The version here is slightly more complicated: it is optimised for use on a
computer with multiple CPUs, and has some other features like colouring.)
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A.2.1 Example. In this example, we plot the limit set of Figure 3.1d with some nice colours.
1 import mpmath as mp
2 import kleinian
3 import matplotlib.pyplot as plt
4
5 # Filename to save the final picture to
6 filename = 'riley2.png'
7
8 # A list of generators for the Kleinian group
9 generators = [mp.matrix([[1,1],[0,1]]),mp.matrix([[1,0],[1+2j,1]])]
10
11 # Compute the limit set, with the Markov algorithm, using words
12 # of maximum length 8; compute 100000 words altogether.
13 ls = kleinian.limit_set_markov(generators,mp.matrix([0]),8,100000)
14
15 # Crop to just -2 < x < 2
16 ls = [t for t in ls if t[0].real > -2 and t[0].real < 2]
17
18 # Plot the limit points, with colours according to the generators
19 # starting each word. Each point returned by limit_set_markov is
20 # actually a pair (A,B) where A is the actual point in $\C$ and
21 # B is a small integer giving the index of the first letter of the
22 # word giving that point in the generator matrix (or the negative
23 # of the index, if the word starts with an inverse matrix),
24 colours = {-2: 'r', -1:'b', 1:'g', 2:'y'}
25 plt.scatter([t[0].real for t in ls],
26 [t[0].imag for t in ls],
27 c=[colours[t[1]] for t in ls],
28 marker=".", s=0.1, linewidths=0)
29
30 plt.axis('equal')
31 plt.tight_layout()
32
33 plt.savefig(filename,dpi=500)
34 plt.show()

The naïve code of Example A.2.1 uses a lot of memory when the parameters are turned up high in
order to get a good picture: the parameters there are about the limit which a small laptop can handle.
We next give an example to show how this may be overcome.

A.2.2 Example. We use various high-powered Python data science libraries—for example, Dask
and Datashader—to ‘batch’ the limit set computations and avoid loading everything into memory
at once, evenwhenwe need to draw it. An introduction to the computer programming tools required
is the book by Wes McKinney [89]. This script will produce pictures like those in Figure 7.4.

1 import mpmath as mp
2 import kleinian
3 import riley
4 import farey
5 import datashader as ds



A.2. LIMIT SETS 145

6 import datashader.transfer_functions as tf
7 import pandas
8 import dask
9 import dask.dataframe as dd
10 from dask.delayed import delayed
11 from datashader.utils import export_image
12
13 import matplotlib.pyplot as plt
14 from datashader.mpl_ext import dsshow, alpha_colormap
15
16 # Orders of elliptics
17 p = 5
18 q = mp.inf
19
20 per_batch = 1000
21 batches = 200
22 depth = 30
23
24 mu = 1.5j
25
26 alpha = mp.exp(1j*mp.pi/p)
27 beta = mp.exp(1j*mp.pi/q)
28 X = mp.matrix([[1,1],[0,1]])
29 Y = mp.matrix([[1,0],[mu,1]])
30
31 seeds = [0]
32
33 print("Found fixed points.",flush=True)
34
35 # We are already running in parallel in each batch; if we don't do this then
36 # Dask launches many copies of one_batch() and we get killed by the OOM killer.
37 dask.config.set(scheduler='single-threaded')
38
39 def one_batch(batch):
40 print(f"Running batch {batch+1}/{batches}")
41 ls = kleinian.limit_set_markov([X,Y],seeds,depth,per_batch)
42 df = pandas.DataFrame(data=[(float(mp.re(point[0])),
43 float(mp.im(point[0])),
44 point[1]) for point in ls],
45 columns=['x','y','colour'], copy=False)
46 df['colour']=df['colour'].astype("category")
47 return df
48
49 dfs = [delayed(one_batch)(batch) for batch in range(batches)]
50 df = dd.from_delayed(dfs)
51 cvs = ds.Canvas(plot_width=4000, plot_height=4000,
52 x_range=(-4,4), y_range=(-3,3),
53 x_axis_type='linear', y_axis_type='linear')
54
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55 aggc = cvs.points(df,'x','y',ds.by('colour', ds.count()))
56 colours = {-2: 'red', -1:'blue', 1:'green', 2:'purple'}
57 img = tf.shade(aggc)
58
59 export_image(img, filename, background="white", export_path=".")
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𝜋𝜌, see pleating measure
pl(𝜌), 41, 85
𝜎𝜔, see Dehn half-twist
sing𝑂, see singular locus
spine(𝜎), see spine
𝜏𝜔, see Dehn twist
trg(𝜎), see ideal triangulation
trlen𝑓, see complex translation length
ℋ̃𝑎,𝑏

𝑝/𝑞, see hyperbolic locus
∘Ω(𝐺), see free regular set
2-bridge link, see two-bridge link

accidental parabolic, 39
admissable loop, 49
Ahlfors measure zero theorem, 58
Ahlfors’ finiteness theorem, 24
Alhfors-Bers Riemann mapping theorem, 35

Beltrami coefficient, 35
Beltrami equation, 35
bending line, 29
bending measure, 29
boundary hyperbolic element, 26
boundary sequence, 126
bounds a puncture, 24
braid region, 43

canonical Fricke polygon, 26
canonical peripheral quasidisc, 104, 105
Chebyshev polynomials, 123
circle chain, 82
clumping point, 137
complex translation length, 64
compressible surface, 17, 18
cone points, 24
conformal, 24
continued fraction decomposition, 45, 70, 130
convex core, 29
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convex set, 13
cusp group, 47, 49, 58

density of, 58
cusp manifold, 48
cusp orbifold, 51
cusp point

of a polyhedron, 16
cusp set, 86
cycle (of a facet-pairing structure), 14
cycle relation, 15
cyclic ridge cycle (of a facet-pairing structure), 15
cylinder, 26

deck transformation, 19
Dehn half-twist, 36
Dehn twist, 3, 36
Dehn’s lemma, 17
density conjecture, 58
determinant (of a Farey recursive function), 126
diagonal slice of Schottky space, 77
dihedral angle sum, 15
dihedral ridge cycle (of a facet-pairing structure),

14
discontinuous, 19
disjoint isometric discs, 109
doubly cusped region, 28

Earle embedding, 80
edge (of a polyhedron), 14
elliptic transformations, 11
ending lamination conjecture, 58, 133
Euler characteristic (orbifold), 13
extended rational pleating ray, 49
eye problem, 50

F-peripheral
disc, 80, 103
group, 76, 80
quasidiscs, 105

face, 14
facet (of a polyhedron), 14
facet-pairing structure, 14
facet-pairing transformation, 14

subproper, 15
Farey addition, 72
Farey neighbours, 72, 117
Farey polynomial, 49, 66

homogeneous, 124
Farey recursive function, 123

homogeneous, 123

non-homogeneous, 123
of anti-determinant 𝑑, 126
of determinant 𝑑, 126

Farey triangulation, 71
Farey word, 5, 49, 66
Fatou set, 5
figure 8 knot, 1, 45
flat piece (of a pleated surface), 29
fractional linear transformations, 10
free regular set, 20
freely discontinuous, 19
Fuchsian group, 25
fundamental group of a link, 43
fundamental polyhedron, 16

Gauss-Bonnet theorem (orbifold), 13
geodesic lamination, 29
geodesic line, 11
geodesic segment, 11
geometric manifold modelled on 𝑋 , 12
geometric space, 12
geometrically finite, 16

Heckoid group, 47, 48
Heckoid orbifold, 48
holomorphic motion, 39
holonomy, 64
hyperbolic halfspace, 13
hyperbolic hyperplane, 13
hyperbolic locus, 86
hyperbolic orbifold of 𝐺, 22
hyperbolic polyhedron, 13
hyperbolic space

ball model, 9
closure, 9
half-space model, 9

hyperbolic structure, 36
hyperbolic transformation, 11

ideal face (of a polyhedron), 14
ideal polygonal decomposition, 72
ideal triangulation, 72
incompressible surface, 17, 18
intersection number, 30
intervals of discontinuity, 25

Jørgensen’s inequality, 21

Kleinian group, 4, 20
elementary, 21
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of finite type, 24
Kleinian orbifold of 𝐺, 22
knot, 43

lamination length, 30
leaf (of a lamination), 29
length (of continued fraction decomposition), 70
limit set, 5, 21
link, 43
link complement manifold, 43
link of an ideal vertex, 16
link space of a cusp point, 16
loop theorem, 16
lower tunnel, 48
loxodromic transformations, 11

mapping class group, 36
marked points (on a Riemann surface), 24
marking (on a Riemann surface), 24
maximal (element in a group), 26
maximal dilatation, 35
measurable Riemann mapping theorem, 35
measured lamination, 29
mediant operation, 72

Nielsen region, 25
normal (family of functions), 96
normal form

see Schubert normal form, 44
normalised complex length, 95

orbifold
see (𝑋, 𝐺)-orbifold, 12

orbifold atlas, 12
orbifold fundamental group, 20
ordinary set, 5

paired (by a facet-pairing), see tiled adjacently (by
a facet-pairing)

parabolic dust, 135
parabolic transformations, 11
pleated surface, 29
pleating length, 96
pleating locus, 3, 29
pleating measure, 96
pleating ray, 92

irrational, 92
rational, 3, 85, 92

Poincaré extension, 10
Poincaré polyhedron theorem, 15

precisely invariant, 26

quasiconformal conjugate, 37
quasiconformal deformation space, 38
quasiconformal mapping, 35
quasiconformal representation space, 37

rational arc, 67
rational link, 43
rational pleating ray, 49
rational pleating rays, 5, 77
regular, 19
regular set, 19
related (by a facet-pairing), see tiled (by a facet-

pairing)
relative interior, 14
ridge (of a polyhedron), 14
ridge cycle (of a facet-pairing structure), 14
Riemann moduli space, 36
Riemann surface

analytically finite, 24
of 𝐺, 22
possibly disconnected, 22

Riley manifold, 49
Riley orbifold, 51
Riley pair, 135
Riley slice, 3, 49

coordinate system theorem, 100
elliptic, 52
parabolic, 49
parabolic literature, 50

roof, 29

Schottky group
classical, 30
generalised, 32

Schubert normal form, 3, 44
Shimizu-Leutbecher lemma, 21
side (of a polyhedron), 14
side-pairing relation, 15
Siegel area formula, 13
similarity, 12
simultaneous uniformisation theorem, 25
singular locus, 12
singular point of an orbifold, 12
slope

of a two-bridge knot, 45
sphere at infinity, 9
spine, 73
Stern-Brocot tree, 122
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strictly loxodromic transformation, 11
strongly F-peripheral, 80
supporting hyperplane, 14

tameness conjecture, 58
tangle, 43
Teichmüller map, 135
Teichmüller space

of Kleinian groups, 37
of Riemann surfaces, 36

Thurston compactification, 40
tiled (by a facet-pairing), 14
tiled adjacently (by a facet-pairing), 14
transverse measure, 29
trefoil knot, 46
tubular neighbourhood, 43
two-bridge link, 43

uniformisation of Riemann surfaces, 25
unknotting tunnel, 48
upper tunnel, 48

vertex (of a polyhedron), 14
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