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WARNINGS

This talk will necessarily be sketchy.
We always assume (usually without explicit statement) that
the objects are ‘nice enough to make the theorems true’.
Usually this means all varieties are complete and smooth
over ℂ.
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LINE BUNDLES

Line bundle over 𝑋: A space E with a map 𝜋 ∶ E → 𝑋 such that
𝜋−1(𝑥) is a 1-dimensional vector space for all 𝑥 ∈ 𝑋, and
around each 𝑥 ∈ 𝑋 there is a neighbourhood 𝑈 such that
𝜋−1(𝑈) is isomorphic (as a vector space) to 𝑈 × ℝ in a way
compatible with the two projections 𝜋 and 𝑈 × ℝ → 𝑈.
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THE NATURAL LINE BUNDLE ON ℙ𝑛

The tautological line bundle 𝜋 ∶ ℙ𝑛 × ℂ𝑛+1 → ℙ𝑛 with 𝜋−1(𝑥) the
line in ℂ𝑛+1 defining 𝑥. The local trivialisation cover can be
chosen to be the usual open cover of ℙ𝑛 by 𝑛 + 1 affine spaces.
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INVERTIBLE SHEAVES

Let E be a line bundle over 𝑋. Let (𝑈𝑖) be an open cover
giving a local trivialisation.
For each 𝑈𝑖 set E(𝑈𝑖) to be the set of continuous sections of
E over 𝑈𝑖, i.e. the set of maps 𝜙 ∶ 𝑈𝑖 → E such that 𝜋𝜙 = id.
If 𝑋 is actually a variety then we replace ‘continuous’ with
‘polynomial’ and take lines to be 1D over ℂ, so E becomes a
subsheaf of O𝑋 .
The sheaves associated to line bundles are called invertible
sheaves.
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WEIL DIVISORS AND LINE BUNDLES

Suppose L is a line bundle whose associated sheaf has
global sections generated by 𝑠0, ..., 𝑠𝑛.
Then there is a natural Weil divisor associated to L, namely
the union of the zeros of the 𝑠𝑖.
Conversely, if 𝐷 = ∑𝑎𝑖𝐷𝑖 is a Weil divisor then we can
associate an invertible sheaf L(𝐷), namely the ‘sheaf whose
sections are functions who locally have poles at of order at
worst −𝑎𝑖.
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THE DUAL BUNDLE: THE SERRE TWISTING SHEAF

The dual vector bundle to the tautological bundle is the
bundle O(1) whose fibre over 𝑥 is the set of hyperplanes in
ℂ𝑛+1 orthogonal to the line defining 𝑥 (i.e. the 1-dimensional
vector space of linear functionals on ℂ𝑛+1 which kill the line).
Let 𝑓 ∶ ℙ𝑛 → ℂ be a global section of O(1); then 𝑓 is a
polynomial map ℙ𝑛 → Hom(ℂ𝑛+1, ℂ) ≃ ℂ; this map has to
behave linearly when passing between the affine open
subsets and so must be of degree 1.
Thus the global sections of O(1) are the linear forms on ℙ𝑛.
Hence there is a global set of section generators for O(1),
the coordinate forms 𝑥0, ..., 𝑥𝑛.
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PROJECTIVE VARIETIES

Let 𝑋 be a smooth variety over ℂ. Let 𝜑 ∶ 𝑋 → ℙ𝑛 be a
morphism.
The pullback 𝜑∗O(1) entirely determines 𝑋, since points in
ℙ𝑛 are determined by the set of hyperplanes through them
(= the fibres of 𝜑∗O(1)).
The invertible sheaf 𝜑∗O(1) has an associated Weil divisor:
the intersection of 𝜑(𝑋) with the standard coordinate
hyperplanes of ℙ𝑛 (= the individual zero sets of the global
generators of the pullback sheaf).
Theorem. Conversely, if L is an invertible sheaf on 𝑋 and if
𝑠0, ..., 𝑠𝑛 generate L(𝑋), then there exists a unique morphism
𝜑 ∶ 𝑥 → ℙ𝑛 such that L ≃ 𝜑∗O(1) and 𝑠𝑖 = 𝜑∗(𝑥𝑖) for each 𝑖.
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PROJECTIVE VARIETIES
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VOLUME POLYNOMIALS

The choice of embedding 𝜑 ∶ 𝑋 → ℙ𝑛 has an associated
degree deg𝜑.
ℤ>0-linear combinations of divisors which give embeddings
also give embeddings.
Question. What is deg(𝜆1𝜑1 + ⋯ + 𝜆𝑘𝜑𝑘)?
Answer. It is a homogeneous polynomial in the variables
𝜆1, ..., 𝜆𝑘, called the volume polynomial of 𝜑1, ..., 𝜑𝑘.
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TORIC VARIETIES

Toric variety: a variety 𝑉/ℂ which contains an open
subvariety isomorphic to (ℂ∗)𝑛 such that the action of (ℂ∗)𝑛
on itself by multiplication extends algebraically to the
entirety of 𝑉 .
Examples. 𝔸𝑛; ℙ𝑛 (the torus is the projection of (ℂ∗)𝑛+1); the
cusped cubic Z(𝑌2 − 𝑋3).

1 2 3 4

-5

5
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TORIC VARIETIES AND FANS

The toric variety structure is determined locally (on
torus-invariant open sets) by the semigroup of characters
𝜒 ∶ (ℂ∗)𝑛 → ℂ∗ which extend regularly to the whole open set. The
gluing of the open sets to form the variety is reflected in the
gluing of the character semigroups into a polyhedral fan.
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VOLUME POLYNOMIALS IN THE TORIC CASE

Let 𝑋 = 𝑋Σ for some fan Σ over 𝑀. The divisor class group of
𝑋Σ is generated by the characters 𝜒𝑚.
Let 𝐷 be a torus-invariant divisor of 𝑋Σ. Then 𝐷 is the closure
of an orbit corresponding to one of the rays of Σ. The group
of torus-invariant divisors is ⟨𝐷𝜏 ∶ 𝜏 ∈ Σ(1)⟩.
Lemma. Div 𝜒𝑚 = ⟨𝑚, 𝑢𝜏⟩𝐷𝜏 where 𝑢𝜏 is a minimal ray
generator for 𝜏.
Theorem. If 𝐷 = ∑𝑎𝜏𝐷𝜏 then 𝜒𝑚 ∈ L(𝐷)(𝑋Σ) iff ⟨𝑚, 𝑢𝜏⟩ ≥ −𝑎𝜏 for
all 𝜏.
Corollary. The set of torus-invariant Weil divisors of 𝑋Σ is in
bijection with the set of polyhedra.
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VOLUME POLYNOMIALS OF TORIC VARIETIES

Theorem
Let 𝐷1, ..., 𝐷𝑘 be torus-invariant (ample) divisors on a toric 𝑋Σ of
(complex) dimension 𝑛 with corresponding embeddings 𝜑𝑖 and
polyhedra 𝑃𝑖. Then

Vol(𝜆1𝜑1 + ⋯ + 𝜆𝑘𝜑𝑘) = (𝜆1𝐷1 + ⋯ + 𝜆𝑘𝐷𝑘)⋅𝑛 = 𝑘! Vol(𝜆1𝑃1 + ⋯ + 𝜆𝑘𝑃𝑘).

Matching coefficients:

Corollary
𝑉(𝑃1, ..., 𝑃𝑛) =

1
𝑘! (𝐷1 ⋅ … ⋅ 𝐷𝑛).
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KÄHLER MANIFOLDS

Suppose 𝑋 is a complex manifold. There is an induced vector
bundle isomorphism 𝐼 ∶ 𝑇𝑋 → 𝑇𝑋 with 𝐼2 = −1 given locally by
multiplication by 𝑖 in each dimension separately; this is called a
almost complex structure. A Riemannian metric 𝑔 on 𝑋 is
Hermitian if 𝑔𝑥(𝐼(⋅), 𝐼(⋅)) = 𝑔𝑥(⋅, ⋅) on 𝑇𝑥𝑋. The fundamental form
associated to the triplet (𝑋, 𝑔, 𝐼) is the differential 2-form given
locally by

𝜔 ≔ 𝑔(⋅, 𝐼(⋅)).
The manifold 𝑋 is called a Kähler manifold if the fundamental
form 𝜔 is closed; 𝜔 is called a Kähler form and the Lefschetz
operator is

𝐿 ∶
𝑘

⋀ 𝑋 →
𝑘+2

⋀ 𝑋
𝛼 ↦ 𝛼 ∧ 𝜔
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HODGE DECOMPOSITION

Write Ω1,0 for the space of 1-forms 𝑓 such that 𝑓(𝐼(𝑣)) = 𝑖𝑓(𝑣) for
tangent vectors 𝑣 (i.e. the form is a combination of differential
forms that look like 𝑑𝑧), and write Ω0,1 for the space of 1-forms 𝑓
such that 𝑓(𝐼(𝑣)) = −𝑖𝑓(𝑣) (a combination of differential forms that
look like 𝑑𝑧).
Then the space of forms of type (𝑝, 𝑞) is

Ω𝑝,𝑞 =
𝑝

⋀Ω1,0 ∧
𝑞

⋀Ω0,1.
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HODGE DECOMPOSITION

Theorem
Let 𝑋 be a compact Kähler manifold. There is a vector space
decomposition

𝐻𝑘(𝑋, ℂ) = 𝐻𝑘(𝑋, ℝ) ⊗ ℂ = ⨁
𝑝+𝑞=𝑘

𝐻𝑝,𝑞(𝑋)

where 𝐻𝑝,𝑞(𝑋) is the set of cohomology classes representable by a
closed form of type (𝑝, 𝑞).
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GENERAL SITUATION

Theorem (Hodge index theorem)
Let 𝑋 be a compact Kähler surface (e.g. a projective surface over
ℂ, with Kähler structure induced by pulling back the Serre
twisting sheaf). Then the standard middle cohomology pairing

𝐻2(𝑋, ℝ) × 𝐻2(𝑋, ℝ) → 𝐻4(𝑋, ℝ) ≃ ℝ

(𝛼, 𝛽) ↦ ⟨𝛼, 𝛽⟩ ≔ ∫
𝑋
𝛼 ∧ 𝛽

satisfies ⟨𝛼, 𝛼⟩ < 0 if 𝛼 is taken in 𝐻1,1(𝑋) ∩ 𝐻2(𝑋, ℝ), the
orthogonal complement of the space of cohomology classes
satisfying ⟨𝛽, 𝛽⟩ > 0. mAk

Then 𝐷1.𝐷2 = ⟨𝑐1(𝐷1), 𝑐1(𝐷2)⟩ is the usual intersection product.
This generalises to give information about the middle
cohomology product of higher-dimensional Kähler
manifolds. 17 22



GENERAL SITUATION
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ALEXANDROV-FENCHEL INEQUALITY

Corollary
If 𝐷1, 𝐷2 are divisors on 𝑋, and 𝐷1, 𝐷1 > 0, then
(𝐷1 ⋅ 𝐷2)2 ≥ (𝐷1 ⋅ 𝐷1)(𝐷2 ⋅ 𝐷2).

Now let 𝑃1 and 𝑃2 be full-dimensional lattice polyhedra in ℝ𝑛
and let 𝐷1, 𝐷2 be corresponding divisors giving toric embeddings.

𝑉(𝑃1, 𝑃2)2 =
1
4(𝐷1 ⋅ 𝐷2)

2 ≥ 14(𝐷1 ⋅ 𝐷1)(𝐷2 ⋅ 𝐷2) = 𝑉(𝑃1, 𝑃1)𝑉(𝑃2, 𝑃2).

A similar argument gives the full Alexandrov-Fenchel inequality
for 𝑘 polyhedra.
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REMARKS

In general if the relevant divisors are ample then the volume
polynomial

Vol(∑𝜆𝑖𝜑𝑖)
is strictly Lorentzian.1 In fact, one can prove a ‘Hodge index
theorem’ over arbitrary loopless matroids and deduce that
arbitrary Lorentzian polynomials satisfy the corresponding
symmetry results.

1A Lorentzian polynomial is a limit of strictly Lorentzian polynomials, and so
if you replace ampleness with a the relevant weakened positivity criterion,
nefness — roughly, a divisor is nef if it is a limit of ample divisors — you get
Lorentzian polynomials.
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ADVERTISEMENT

Reading Group:
Positivity in Intersection Theory

We will take a very geometric approach
to a very geometric subject:

divisors with positive intersection numbers.

We will be interested particularly in concrete 
examples and classical geometric problems (e.g. 

volume calculation).

We will be reading Positivity in Algebraic Geometry 
by Robert Lazarsfeld.

Rough background required:
basic algebraic geometry (as found in 
Hartshorne chapters I and II) and differential 
topology (e.g. as found in Bott/Tu). We will 
take time to deal with detailed background as 
needed.

Tentative start date & time:
Wed. 27 Jan, 2021 @ 2pm, location tbd

Please email aelz176@aucklanduni.ac.nz to express interest.

~Alex Elzenaar (masters student)
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FURTHER READING

Robert Lazarsfeld, Positivity in Algebraic Geometry (Springer)
William Fulton, Introduction to Toric Varieties (Princeton)
Claire Voisin, Hodge Theory and Complex Algebraic Geometry
(Cambridge)
Daniel Huybrechts, Complex Geometry (Springer)
Yuriĭ D. Burago and Viktor A. Zalgaller, Geometric Inequalities
(Springer)
Matthew Baker, “Hodge Theory in Combinatorics” (survey
article, https://arxiv.org/abs/1705.07960)
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