V/ℂ

ALEX ELZENAAR

(MPI-MIS)

MAY 24, 2022

- This talk will necessarily be sketchy.
- We always assume (usually without explicit statement) that the objects are 'nice enough to make the theorems true'.
- Usually this means all varieties are complete and smooth over C.

LINE BUNDLES

Line bundle over X: A space \mathcal{E} with a map $\pi : \mathcal{E} \to X$ such that

- $\pi^{-1}(x)$ is a 1-dimensional vector space for all $x \in X$, and
- around each $x \in X$ there is a neighbourhood U such that $\pi^{-1}(U)$ is isomorphic (as a vector space) to $U \times \mathbb{R}$ in a way compatible with the two projections π and $U \times \mathbb{R} \to U$.

The natural line bundle on \mathbb{P}^n

The tautological line bundle $\pi : \mathbb{P}^n \times \mathbb{C}^{n+1} \to \mathbb{P}^n$ with $\pi^{-1}(x)$ the line in \mathbb{C}^{n+1} defining x. The local trivialisation cover can be chosen to be the usual open cover of \mathbb{P}^n by n + 1 affine spaces.

- Let *E* be a line bundle over *X*. Let (*U_i*) be an open cover giving a local trivialisation.
- For each U_i set $\mathcal{E}(U_i)$ to be the set of continuous sections of \mathcal{E} over U_i , i.e. the set of maps $\phi : U_i \to \mathcal{E}$ such that $\pi \phi = id$.
- If X is actually a variety then we replace 'continuous' with 'polynomial' and take lines to be 1D over \mathbb{C} , so \mathcal{E} becomes a subsheaf of \mathcal{O}_{χ} .
- The sheaves associated to line bundles are called invertible sheaves.

- Suppose \mathcal{L} is a line bundle whose associated sheaf has global sections generated by $s_0, ..., s_n$.
- Then there is a natural Weil divisor associated to *L*, namely the union of the zeros of the *s*_i.
- Conversely, if $D = \sum a_i D_i$ is a Weil divisor then we can associate an invertible sheaf $\mathcal{L}(D)$, namely the 'sheaf whose sections are functions who locally have poles at of order at worst $-a_i$.

The dual bundle: the Serre twisting sheaf

- The dual vector bundle to the tautological bundle is the bundle O(1) whose fibre over x is the set of hyperplanes in Cⁿ⁺¹ orthogonal to the line defining x (i.e. the 1-dimensional vector space of linear functionals on Cⁿ⁺¹ which kill the line).
- Let $f : \mathbb{P}^n \to \mathbb{C}$ be a global section of $\mathcal{O}(1)$; then f is a polynomial map $\mathbb{P}^n \to \text{Hom}(\mathbb{C}^{n+1}, \mathbb{C}) \simeq \mathbb{C}$; this map has to behave linearly when passing between the affine open subsets and so must be of degree 1.
- Thus the global sections of $\mathcal{O}(1)$ are the linear forms on \mathbb{P}^n .
- Hence there is a global set of section generators for $\mathcal{O}(1)$, the coordinate forms $x_0, ..., x_n$.

- Let X be a smooth variety over C. Let $\varphi : X \to \mathbb{P}^n$ be a morphism.
- The pullback $\varphi^* \mathcal{O}(1)$ entirely determines X, since points in \mathbb{P}^n are determined by the set of hyperplanes through them (= the fibres of $\varphi^* \mathcal{O}(1)$).
- The invertible sheaf $\varphi^* \mathcal{O}(1)$ has an associated Weil divisor: the intersection of $\varphi(X)$ with the standard coordinate hyperplanes of \mathbb{P}^n (= the individual zero sets of the global generators of the pullback sheaf).
- **Theorem.** Conversely, if \mathcal{L} is an invertible sheaf on X and if $s_0, ..., s_n$ generate $\mathcal{L}(X)$, then there exists a unique morphism $\varphi : x \to \mathbb{P}^n$ such that $\mathcal{L} \simeq \varphi^* \mathcal{O}(1)$ and $s_i = \varphi^*(x_i)$ for each i.

PROJECTIVE VARIETIES

- The choice of embedding $\varphi : X \to \mathbb{P}^n$ has an associated degree deg φ .
- Z_{>0}-linear combinations of divisors which give embeddings also give embeddings.
- **Question.** What is deg($\lambda_1 \varphi_1 + \dots + \lambda_k \varphi_k$)?
- **Answer.** It is a homogeneous polynomial in the variables $\lambda_1, ..., \lambda_k$, called the **volume polynomial** of $\varphi_1, ..., \varphi_k$.

TORIC VARIETIES

- Toric variety: a variety V/C which contains an open subvariety isomorphic to (C*)ⁿ such that the action of (C*)ⁿ on itself by multiplication extends algebraically to the entirety of V.
- **Examples.** \mathbb{A}^n ; \mathbb{P}^n (the torus is the projection of $(\mathbb{C}^*)^{n+1}$); the cusped cubic $\mathbb{Z}(Y^2 X^3)$.

The toric variety structure is determined locally (on torus-invariant open sets) by the semigroup of characters $\chi : (\mathbb{C}^*)^n \to \mathbb{C}^*$ which extend regularly to the whole open set. The gluing of the open sets to form the variety is reflected in the gluing of the character semigroups into a polyhedral fan.

VOLUME POLYNOMIALS IN THE TORIC CASE

- Let $X = X_{\Sigma}$ for some fan Σ over *M*. The divisor class group of X_{Σ} is generated by the characters χ^m .
- Let *D* be a torus-invariant divisor of X_{Σ} . Then *D* is the closure of an orbit corresponding to one of the rays of Σ . The group of torus-invariant divisors is $\langle D_{\tau} : \tau \in \Sigma(1) \rangle$.
- **Lemma.** Div $\chi^m = \langle m, u_\tau \rangle D_\tau$ where u_τ is a minimal ray generator for τ .
- **Theorem.** If $D = \sum a_{\tau}D_{\tau}$ then $\chi^m \in \mathcal{L}(D)(X_{\Sigma})$ iff $\langle m, u_{\tau} \rangle \ge -a_{\tau}$ for all τ .
- Corollary. The set of torus-invariant Weil divisors of X_Σ is in bijection with the set of polyhedra.

Theorem

Let $D_1, ..., D_k$ be torus-invariant (ample) divisors on a toric X_{Σ} of (complex) dimension n with corresponding embeddings φ_i and polyhedra P_i . Then

$$\mathsf{Vol}(\lambda_1\varphi_1+\cdots+\lambda_k\varphi_k)=(\lambda_1D_1+\cdots+\lambda_kD_k)^{\cdot n}=k!\,\mathsf{Vol}(\lambda_1P_1+\cdots+\lambda_kP_k).$$

Matching coefficients:

Corollary

$$V(P_1, ..., P_n) = \frac{1}{k!}(D_1 \cdot ... \cdot D_n).$$

Kähler manifolds

Suppose X is a complex manifold. There is an induced vector bundle isomorphism $I : TX \to TX$ with $I^2 = -1$ given locally by multiplication by *i* in each dimension separately; this is called a **almost complex structure**. A Riemannian metric *g* on X is **Hermitian** if $g_x(I(\cdot), I(\cdot)) = g_x(\cdot, \cdot)$ on T_xX . The **fundamental form** associated to the triplet (X, g, I) is the differential 2-form given locally by

$$\omega \coloneqq g(\cdot, I(\cdot)).$$

The manifold X is called a **Kähler manifold** if the fundamental form ω is closed; ω is called a **Kähler form** and the **Lefschetz operator** is

$$L: \bigwedge^{k} X \to \bigwedge^{k+2} X$$
$$\alpha \mapsto \alpha \wedge \omega$$

Write $\Omega^{1,0}$ for the space of 1-forms f such that f(I(v)) = if(v) for tangent vectors v (i.e. the form is a combination of differential forms that look like dz), and write $\Omega^{0,1}$ for the space of 1-forms f such that f(I(v)) = -if(v) (a combination of differential forms that look like $d\overline{z}$).

Then the space of forms of type(p,q) is

$$\Omega^{p,q} = \bigwedge^p \Omega^{1,0} \wedge \bigwedge^q \Omega^{0,1}.$$

Theorem

Let X be a compact Kähler manifold. There is a vector space decomposition

$$H^k(X,\mathbb{C})=H^k(X,\mathbb{R})\otimes\mathbb{C}=\bigoplus_{p+q=k}H^{p,q}(X)$$

where $H^{p,q}(X)$ is the set of cohomology classes representable by a closed form of type (p, q).

Theorem (Hodge index theorem)

Let X be a compact Kähler surface (e.g. a projective surface over \mathbb{C} , with Kähler structure induced by pulling back the Serre twisting sheaf). Then the standard middle cohomology pairing

$$\begin{split} H^2(X,\mathbb{R})\times H^2(X,\mathbb{R}) &\to H^4(X,\mathbb{R})\simeq \mathbb{R}\\ (\alpha,\beta)\mapsto \langle \alpha,\beta\rangle\coloneqq \int_X \alpha\wedge\beta \end{split}$$

satisfies $\langle \alpha, \alpha \rangle < 0$ if α is taken in $H^{1,1}(X) \cap H^2(X, \mathbb{R})$, the orthogonal complement of the space of cohomology classes satisfying $\langle \beta, \beta \rangle > 0$.

- Then $D_1.D_2 = \langle c_1(D_1), c_1(D_2) \rangle$ is the usual intersection product.
- This generalises to give information about the middle cohomology product of higher-dimensional Kähler

GENERAL SITUATION

Corollary

If D_1, D_2 are divisors on X, and $D_1, D_1 > 0$, then $(D_1 \cdot D_2)^2 \ge (D_1 \cdot D_1)(D_2 \cdot D_2).$

Now let P_1 and P_2 be full-dimensional lattice polyhedra in \mathbb{R}^n and let D_1, D_2 be corresponding divisors giving toric embeddings.

$$V(P_1, P_2)^2 = \frac{1}{4}(D_1 \cdot D_2)^2 \ge \frac{1}{4}(D_1 \cdot D_1)(D_2 \cdot D_2) = V(P_1, P_1)V(P_2, P_2).$$

A similar argument gives the full Alexandrov-Fenchel inequality for *k* polyhedra.

In general if the relevant divisors are ample then the volume polynomial

 $Vol(\sum \lambda_i \varphi_i)$

is strictly Lorentzian.¹ In fact, one can prove a 'Hodge index theorem' over arbitrary loopless matroids and deduce that arbitrary Lorentzian polynomials satisfy the corresponding symmetry results.

¹A Lorentzian polynomial is a limit of strictly Lorentzian polynomials, and so if you replace ampleness with a the relevant weakened positivity criterion, **nefness** — roughly, a divisor is nef if it is a limit of ample divisors — you get Lorentzian polynomials.

Advertisement

Reading Group: Positivity in Intersection Theory

We will take a very geometric approach to a very geometric subject: divisors with positive intersection numbers.

We will be interested particularly in concrete examples and classical geometric problems (e.g. volume calculation).

Please email aelz176@aucklanduni.ac.nz to express interest.

~Alex Elzenaar (masters student)

22

21

- Robert Lazarsfeld, Positivity in Algebraic Geometry (Springer)
- William Fulton, Introduction to Toric Varieties (Princeton)
- Claire Voisin, Hodge Theory and Complex Algebraic Geometry (Cambridge)
- Daniel Huybrechts, Complex Geometry (Springer)
- Yurii D. Burago and Viktor A. Zalgaller, Geometric Inequalities (Springer)
- Matthew Baker, "Hodge Theory in Combinatorics" (survey article, https://arxiv.org/abs/1705.07960)