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Definition. A Kleinian group is a discrete1 group of
(orientation-preserving) isometries of hyperbolic 3-space H3.

Screengrab from https://www.youtube.com/watch?v=jfSTwqmrQDc

1With respect to the topology of the Lie group Isom+(H3)
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Limit points of groups

Let Γ be a group of homeomorphisms of a space X . A point x ∈ X
is a limit point of Γ if x is an accumulation point of some orbit of
Γ (i.e. if there exists a point x0 and a sequence of distinct elements
(γi ∈ Γ) such that γix0 → x .)

Lemma
The action of a Kleinian group on H3 has no limit points. mAk

If a discrete group Γ acts on a locally compact space X without
limit points, then X/Γ is Hausdorff; all these conditions are satisfied
for the action of a Kleinian group on H3, and in fact we get more:

Theorem
If Γ is a Kleinian group, then H3/Γ is a hyperbolic orbifold. mAk
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The action at infinity

I We can extend the action of an isometry f of H3 to an action
on the sphere at infinity S2

∞ of hyperbolic space: given any
point z at infinity, move an oriented geodesic ending at z by f
and look at the new location of the end. (This can be made
precise depending on your definition of S2

∞.)

I It turns out that this action is conformal. We can classify all of
the conformal bijective maps on S2: they are precisely the
Möbius transformations (all the transformations generated by
reflecting in circles.)
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The action at infinity: dynamical properties

We can classify the elements of a Kleinian group according to their
orbits on S2

∞:

Observe, we can have limit points at infinity.
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The action at infinity: dynamical properties
By stereographic projection, view S2

∞ = C ∪ {∞}. Here is an
example limit set:
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The action at infinity: dynamical properties

If Γ is a Kleinian group, we write Λ(Γ) for its limit set, and Ω(Γ) for
the complement S2

∞ \ Λ(Γ). This second set is the ordinary set or
domain of discontinuity.

Lemma
If Γ is a Kleinian group, then Ω(Γ)/Γ is a (possibly singular)
Riemann surface. mAk

Putting everything together, it turns out that the Kleinian manifold

Ω(Γ) ∪H3

Γ

is an orbifold-with-boundary, with interior H3/Γ and boundary
Ω(Γ)/Γ.
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Circle pairings: a 2-torus

Consider four disjoint circles in the plane, all disjoint. Put the
circles in pairs:

I There are conformal bijections f and g which act on Ĉ such
that f (intA) = extB and g(int b) = extB. The group
Γ = 〈f , g〉 is a Kleinian group, called the classical Schottky
group obtained from the given data.

I (Poincaré polyhedron theorem) The quotient surface Ω(Γ)/Γ
can be obtained by taking the common exterior of the four
circles and gluing a to A and b to B with the identifications
given by f and g .
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Circle pairings: a 2-torus
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Circle pairings: 4-times punctured spheres
I Consider now the following deformation. We take a and A and

push them together, and take b and B and push them together,
such that the paired circles become tangent. As long as the
two pairs remain mutually disjoint and the paired circles have
the same radius, the Poincaré polyhedron theorem still holds.

I However, the Riemann surface now has cusps at the point of
tangency. Hence we obtain a 4-times punctured sphere as the
quotient.

I Observe, we have two real parameters: the relative angle of
a ∪ A to b ∪ B, and the distance between them. In fact, all of
the groups we obtain are parameterised by one complex
number, ρ.2

2Actually the parameters are the angle and distance between the two
hyperbolic lines joining the two intersection points in each pair...
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Circle pairings: 4-times punctured spheres

The moulding of hyperbolic clay



Isometries of H3 Schottky groups The boundary of the Riley slice The theory of Keen and Series

The Riley slice

After suitable normalisation, the parameter values for which we
obtain 4-times punctured spheres can be plotted; they form the
exterior of the following figure:

-6 -4 -2 2 4 6

-4

-2

2

4

This exterior is called the Riley slice. We denote it by R.
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The Riley slice: properties

Theorem (Bers, Lyubich, Maskit, Suvorov, Swarup, and others)

The Riley slice is a connected open set, and in fact is topologically
an annulus. If ω ∈ ∂R, then Gω is discrete and either Ω(Gω) = ∅ or
Ω(Gω)/Gω is a pair of 3-times punctured spheres. Points in the
latter category are called cusp points. mAk

It is worth separating out the following, as the theorem of which this
is a special case is part of the work for which McMullen won a
Fields Medal in 1998:

Theorem (Curtis McMullen, 1991)

Cusp points are dense on ∂R. mAk
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Deformations

Observe that we obtained the 4-punctured sphere by ‘deforming’
Schottky groups. In some sense we are justified in saying that the
Riley slice is a subset of the boundary of the space of Schottky
groups (this can be made precise).
We now study the boundary of the Riley slice. Suppose we take the
4-punctured sphere and begin to shrink the geodesic marked as αβ
in the following picture:
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Deformations

After pinching the marked geodesic to zero, we obtain a pair of
3-punctured spheres:
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The fundamental group

In order to understand what is happening algebraically, we need to
study the relationship between π1(Ω(Γ)/Γ) and Γ. A figure like the
common exteriors of the circles which we used to define the
Schottky groups is called a fundamental domain. In this case, the
fundamental domain W is the common exterior of two pairs of
tangent circles. Observe, this is topologically an annulus. Basic
algebraic topology and the Poincaré polyhedron theorem gives the
following:

Γ ' π1(Ω(Γ)/Γ)

p∗π1(W )

where p : Ω(Γ)→ Ω(Γ)/Γ is the canonical projection.
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The fundamental group

In particular, elements of Γ lift to homotopy classes of closed loops
on the 4-punctured sphere; and every homotopy class is obtained
except for the one which corresponds to the nontrivial loop in W
(this is the geodesic γ):

One can check that the geodesic labelled as αβ is the lift of the
element fg from Γ = 〈f , g〉 to the fundamental group of the
4-punctured sphere.
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Curves to the boundary

I It is possible to enumerate all of the curves which, when shrunk
to zero, deform the 4-punctured sphere to a pair of
3-punctured spheres. They are in bijective correspondence with
rational numbers 0 < r/s < 1 according to the theory of
Dehn’s cutting sequences.

I We let W be the set of all words in the generators of Γ which
correspond to such curves; each word corresponds (via the
isomorphism PSL(2,C) ' Isom+(H3)) to a matrix; and the
trace of the matrix determines the dynamical type of the object.

I Pinching a geodesic to zero corresponds to deforming the
relevant lift to a parabolic element; this corresponds to sending
the trace to ±2.

The moulding of hyperbolic clay



Isometries of H3 Schottky groups The boundary of the Riley slice The theory of Keen and Series

Farey polynomials

Definition
A polynomial (in the single complex parameter ρ) obtained by
taking the trace of an element of W is called a Farey polynomial.
Each polynomial is associated bijectively with a rational number
0 < r/s < 1, the slope. Write Φr/s for the polynomial with slope
r/s.

Thus we wish to study ‘limits of preimages of Farey polynomials’ as
the image tends to ±2.
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Pleating rays

Theorem (Linda Keen and Caroline Series, c.1992)

There is a lamination of the Riley slice obtained in the following
way: for each Farey polynomial Φr/s , there are two connected
components of the inverse image

Φ−1r/s ((−∞,−2) ∪ (2,∞))

with respective asymptotic slopes π(1 + r/s) and π(1− r/s). These
components (called the r/s-pleating rays) are complex conjugate
nonsingular curves, with unique complex conjugate endpoints on
∂R corresponding to the “±2–limit”; these endpoints are cusp
groups, hence are dense in the boundary.
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Pleating rays (picture)

(Plot is due to David Wright, and reproduced from L. Keen and C. Series (1994). “The Riley slice of Schottky

space”. In: Proceedings of the London Mathematics Society 3.1 (69), pp. 72–90.)

The moulding of hyperbolic clay



Isometries of H3 Schottky groups The boundary of the Riley slice The theory of Keen and Series

The 2-elliptic case
Take the space of Riemann surfaces with four paired ramification
points instead of punctures. This corresponds to the quotient space
of a group with two elliptic (rotation) elements, which determine
the cone angles.

Figure on left from C. Gunn, D. Maxwell, and D. Epstein (1991). Not Knot. url:

https://www.youtube.com/watch?v=4aN6vX7qXPQ.
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Pleating rays for cone angles π/3 and π/4
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Big question

The Farey polynomials determine the shape of the Riley slice.
So, what are the combinatorial properties of the Farey polynomials?
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