
RIGID SYSTEMS OF POLES AND HINGES

ALEX ELZENAAR

Abstract. We describe relationships between the computational

geometry of rigid frameworks (a subfield of real algebraic geometry)

and the theory of deformation spaces of d-dimensional Kleinian

groups.

1. Bar-and-joint frameworks

Definition 1.1 ([3, Definition 4.1]). Let G be a (simple undirected
loopless) graph with finite vertex set V and edge set E. A bar-and-joint
framework in Rd for G consists of joints, which are points qi ∈ Rd

for i ∈ V , and bars, which are (Euclidean) line segments [qi, qj] for
{i, j} ∈ E. If the canonical map V → Rd is non-injective then the
framework is degenerate.

The problem of whether or not a bar-and-joint framework is rigid is
an important one for applications. There are two major kinds of rigidity
(Figure 1):

• A framework (qi) is locally rigid if there are no differentiable
families of frameworks t 7→ (qi(t))i∈V with qi(0) = qi that pre-
serve lengths of edges (all defined in the obvious sense), except
for those induced by Euclidean isometries of Rd.

• A framework (qi) is rigid if every framework for G with the same
edge lengths is congruent to (qi) via a Euclidean isometry.

Observe that if (qi) is rigid in either sense then every subdivision of qi

(defined by adding vertices interior to edges) is also rigid.
Fix a framework (qi) on the graph G. Let M̃d be the space of conformal

automorphisms of Sd, and let Md be the orientation-preserving half of
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Figure 2

M̃d. It is well-known that M̃d is generated by reflections in spheres,
Figure 2 [1, II, 18.10.4 and 20.6.3]. A discrete subgroup of M̃d is called
a (d-dimensional) Kleinian group [7, §I.2].

Following [5, Construction 1.2], we define a map which assigns to
each bar-and-joint framework a d-dimensional Kleinian group.

Construction 1.2. We define a d-dimensional Kleinian group Γ̃ in the
following way :

(1) If two edges intersect, add a vertex/joint at the intersection.
(2) For each vertex qi, let qi′ be the vertex closest to qi in the

Euclidean metric. If qi is not joined by an edge to qi′ then
subdivide all edges of G incident with qi into two, adding new
joints midway between qi and its neighbouring vertices. Continue
doing this until the graph stabilises.

(3) Around each vertex qi draw a sphere with radius 1
2 minj∈V \{i} |qi − qj|.

(4) For each edge, consider the two spheres centred at its endpoints.
If these spheres are not tangent, subdivide the edge at the
midpoint of the subsegment of the edge not covered by the
spheres, and draw a new sphere centred at this new joint which
is tangent to the two existing spheres.

(5) Now let Γ̃ be the group generated by the reflections in all the
spheres.

The construction admits many nontrivial deformations, and is far
from optimal. Is there a method of picking circles at vertices of a bar-
and-joint framework which better reflects the geometry in the situation
where the bars are not of uniform length—what is the optimal way of
picking interpolating circles?

2. Two dimensions

We recall from undergraduate complex analysis that M = M2 is identi-
fied with PSL(2,C) and is the group of fractional linear transformations,
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i.e. acts on S2 ≃ Ĉ like [
a b
c d

]
· z := az + b

cz + d

In addition one easily sees that every orientation-reversing element
f ∈ M̃ is of the form

f(z) =
[
a b
c d

]
·̃z := az + b

cz + d
.

It can be explicitly decomposed into a product of Euclidean motions
(i.e. products of reflections in Euclidean planes) and a single sphere
reflection in some sphere I−(f) [8, §I.C.1]. This sphere has the unique
property that the restriction of f to this sphere is an Euclidean isometry.
It is called the (repelling) isometric circle of f .

Now the group Γ̃ produced by Construction 1.2 is identified with a
discrete subgroup of PSL(2,C). The orientation-preserving half Γ of Γ̃
is generated by all products ϕϕ′ where ϕ and ϕ′ are reflections in two
tangent circles. If the framework is a topological circle, then Γ lies on
the boundary of Schottky space (it is Schottky-type); this can be seen by
noting that the quotient Ω(Γ)/Γ is a handlebody-with-rank-one-cusps
using the Poincaré polyhedron theorem.
Example 2.1 ([5, Example 1.3]). In Figure 3, we show (in black) the
defining circles Ci for four different necklace groups; the points chosen
in each case are respectively:

(A) The 8th roots of unity;
(B) {0, 1, 1 + 1i, 1 + 2i, 2i, 1i};
(C) {0, 1, 2, 1.5 + 3i, 4i, 5i, 6i − 1, 4i − 3, 2i − 2}; and
(D) {0, 1+1i, 1+

√
2+1i, 2+

√
2, 1+

√
2−1i, 1−1i, 0, −1+1i, −1−√

2+1i, −2−
√

2, −1−
√

2−1i, −1−1i} (compare [8, §VIII.F.5]).
The light gray circles are the isometric circles of the chosen generators

for the orientation-preserving half. At each point of tangency of the
black reflection circles there is also a tangent pair of isometric circles,
and the product of the reflections in the two black circles maps the
interior of one grey circle onto the exterior of the other grey circle. By
taking sufficiently small vertex circles and sufficiently small interpolating
circles in the construction, one can obtain groups whose limit sets are
arbitrarily close to the starting polygon.

Example 2.2. We take a regular hexagon and compute a group on
the boundary of genus 6 Schottky space (subset of X(F6)), Figure 4.
Hexagons tile the plane, and if we generalise the notion of a bar-and-joint
framework to discrete embeddings of graphs in Rd then we obtain groups
with less generators and a simpler character variety, X((Z ⊕ Z) ∗ Z) [5,
Example 2.1]. The point is that we can pack space with circles by taking
translates of the discs at the hexagon vertex; the group generated by the
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(a) Roots of unity (b) Rectangle

(c) A complicated polygon (d) Figure 8

Figure 3. Four necklace groups.

reflections in all these circles is not finitely generated (the corresponding
orbifold is not geometrically finite), but if we extend it by adding the
translation group arising from the rank 2 lattice of hexagon centres then
this extended group is finitely generated. See Figure 5 for a fundamental
domain that shows how this additional rank two subgroup glues up the
genus 6 surface: the two 6-punctured spheres are glued onto each other
inside-out and then there are additional foldings of this glued surface
to produce a 2-punctured torus.

Recall that the deformation spaces of Schottky groups and Schottky-
type groups are very complex. A subgroup of M̃ is discrete if and only
if its orientation-preserving half is discrete. Therefore one would expect
the deformation spaces of groups arising from these configuration spaces
to be quite complex. But this is not the case. Smooth motions of the
bar-and-joint framework give smooth deformations of the generators:
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Figure 4

keep the same circle radii (this is OK since the edge lengths are fixed),
hence a smooth parameterisation of the group in its character variety.

Theorem 2.3. The subset of quasiconformal deformation space parame-
terised by a (general 2D) bar-and-joint framework is a real semi-algebraic
set.

Proof. The groups fail to be discrete when (new) parabolics or elliptics
form (not quite true, but the boundary is dense with such points,
and if these points lie in a semialgebraic set then the whole boundary
must since it is closed). This occurs whenever non-intersecting circles
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Figure 5

Figure 6. Parametrising the phase space of the double
pendulum.

intersect (fixed points of the product of the two circle reflections are
the intersection pts). □

Example 2.4 ([5, Example 3.9]). Consider two rigid rods of length 2,
connected to form a double pendulum. Fixing one of the ends at 0, the
configuration space is parameterised by two angles πx and πy and we
may draw circles of radius 1 centred at the three vertices (Figure 6). A
generating set of the orientation-preserving half (before normalising to
determinant 1) is

M1 =
[
−eiπx 2e2iπx

−2 3eiπx

]
, M2 =

[
−4eiπx − eiπy 8e2iπx + 8eiπ(x+y) + 2e2iπy

−2 4eiπx + 3eiπy

]
, and

M3 =
[
−7eiπ(x+y) − 4e2iπy − 4e2iπx 2eiπ(2x+y) + 2eiπ(x+2y)

−2eiπx − 2eiπy eiπ(x+y)

]
.

If we parameterise this by the complex plane t = x+ iy (with 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2) we may visualise the entire phase space of the double
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Figure 7. A linear slice through X(F3) which arises
from the configuration space of the double pendulum.

pendulum, Figure 7. The groups ⟨M1, M2, M3⟩ generically lie in the
boundary of genus 3 Schottky space, and the lines in Figure 7 which
appear straight are actually straight (not fractal), corresponding to the
condition that the three circles become mutually tangent in a triangle.

If a framework is rigid, the image of any map of this form is a single
point. Consider the possible deformations of the group in (larger) defor-
mation space; they correspond to growing and shrinking the reflecting
circles while keeping them tangent. In other words, it corresponds to
changing the distance between the mirrors in H3/Γ̃.

This suggests an interpretation of the deformation spaces we have
constructed: they correspond to spaces of H3-orbifolds with mirror
planes, with constraints on the ‘mirror diameter’ of the 3-fold (minimal
distance between mirror planes).

Here is another application. The deformation space of a geometrically
finite Kleinian group is the quotient of a product of Teichmüller spaces
(this is a version of Marden–Tukia rigidity, see [10, Theorems 5.26
and 5.27]), i.e. it is connected. However, parameterisations are not
usually connected: e.g. the map R → QH(Γ) where Γ is a Riley group
is a double-cover (the covering map comes from a Dehn twist around the
compression disc) [6]. Our maps go from configuration spaces to these
parameter spaces. There exist algorithms for determining whether two
bar-and-joint frameworks with the same edge lengths are deformable
into each other (e.g. the two ‘locally rigid but not rigid’ frameworks in
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Figure 1 are not deformable into each other in R2, only R3) [4, Chapter 5].
These can be modified to provide constructive connectedness proofs for
our parameterisations of subsets of quasiconformal deformation spaces.

3. Higher dimensions

We also get quantifiable maps into quasiconformal deformation spaces
of higher-dimensional Kleinian groups. Here is one fun example [8,
§VIII.F.4]:

Example 3.1. Take a string of beads. Lift it into S3, cut it open
at a point of tangency, and reglue it. The limit set of the result is a
topological circle embedded in S3 as a wild knot.

We already saw that we get the best results when our linkages have
high levels of symmetry in their lengths, e.g. are polygons with all
equal lengths. In higher dimensions there are many nice symmetric
objects, e.g. the Leech lattice Λ24 [2]. From these objects we can define
highly structured subsets of deformation spaces similar to the lattice-
invariant groups of [5, §2]. Euclidean groups generated by reflections in
planes arising from the Leech lattice are well-studied, see e.g. [9] and
references therein, but the groups generated by the reflections in the
sphere packing which it determines do not seem to be so popular.

Question 3.2. Define a group G which is generated by the reflections
in the Leech sphere packing (Figure 8). There are a couple of natural
geometrically finite extensions analogous to the construction we carried
out before:

• Adjoin the Leech lattice itself (i.e. a Z⊕24). This is the tightest
extension, in some sense: it is the Euclidean extension with
the shortest translation lengths, so the smallest/least complex
conformal 24-fold at infinity.

• Adjoin the translations in Aut Λ24. This is a direct generalisation
of Example 2.2.

• Adjoin the entire automorphism group Aut Λ24.
These groups are interesting since the Leech lattice is the tightest sphere
packing in R24, so (just like the group generated by the triangular
packing in R2 to) the corresponding group has conformal quotient Ω/G
of minimal Euclidean volume. What are the hyperbolic 25-orbifolds
uniformised by the extensions of G? Does they have similar extremal
properties, e.g. minimal hyperbolic convex core volume? Unlike in
Example 2.2 there are conformal surfaces which have varying ‘types’
(parameterised by the so-called ‘deep holes’ of the Leech lattice)—how
do these show up in the hyperbolic structure?
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Figure 8. Projection to 2D of the 196,560 vertices of
the Leech polytope (convex hull of shortest vectors in
Λ24). Gro-Tsen, answer to Examples of unexpected mathe-
matical images, https://mathoverflow.net/a/338245/

150082

4. Notes

(1) If we arbitrarily subdivide the framework, the subset of quasi-
conformal deformation space which is parameterised gets closer
and closer to being parameterised by the entire deformation
space of the rigid framwork but you never get a bijection (both
kernel and cokernel are nontrivial). Is it possible to quantify
this in some way (suspect not).

(2) Our construction above is ‘greedy’. Investigate minimal num-
bers of circles needed to construct groups from configurations.
These give smaller but more “canonical”/“natural” subsets of
deformation space.

(3) Sharpness of these sets—‘extremal’ configurations of the frame-
work must always give cusp points, if the cusp hasn’t already
been hit earlier in the deformation. Can we always choose a
subdivision of edges of the original framework so as to be able
to ‘hit’ arbitrary cusps sharply?

(4) Maybe a better way of putting (1)–(3): determine the optimal
subdivision algorithm for a fixed starting configuration to get

https://mathoverflow.net/users/17064/gro-tsen
https://mathoverflow.net/a/338245/150082
https://mathoverflow.net/a/338245/150082
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a maximally large image in some quasiconformal deformation
space.

(5) Combinatorial description based on G of the cusps which can/-
can’t occur. In the case of Schottky-type groups (those arising
from generalised polygons), we get knotted cusp groups

(6) Carefully write down the relationship between configuration
rigidity and group rigidity—the above algorithm does not give
rigid groups, only single-point images of the defined map. Can
this be fixed?
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