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A hyperbolic orbifold is the quotient of ℍ3 by a
discrete group Γ of isometries.
Possible coarse geometry on these objects
includes:

pieces of Riemann surface on the boundary
(from the action of Γ on 𝜕ℍ3 = ℂ̂)
deleted arcs and loops (from parabolic
elements of Γ)
cone arcs (from torsion elements of Γ)
reflection planes (from reflections in Γ)

We will always restrict to non-elementary,
orientation-preserving, discrete groups in Isom(ℍ3). S.T. Hyde, S. J. Ramsden, and V. Robins. “Unification

and classification of two-dimensional crystalline
patterns using orbifolds”. Acta Cryst. (2014).
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A discrete subgroup of Isom+(ℍ3) is called a
Kleinian group. Since ℍ3 is negatively curved,
isometries act as conformal maps on its visual
boundary, which is the Riemann sphere.
Dynamics of the action of a Kleinian group Γ are
complicated. The Riemann sphere is partitioned
into a limit set Λ(Γ) and its complement Ω(Γ). The
conformal boundary of 𝑂Γ = ℍ3/Γ is 𝜕𝑂Γ = Ω(Γ)/Γ.
The group Γ is the holonomy group of 𝑂Γ. Each
component 𝑆 ⊂ 𝜕𝑂Γ gives a map 𝜋1(𝑆) → Γ (unlikely
to be injective).
How much of Γ ≤ PSL(2, ℂ) can be recovered from
the map ∏𝑆⊂𝜕𝑂Γ 𝜋1(𝑆) → Γ?
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TEICHMÜLLER THEORY IN 30 SECONDS

Isomorphism of Riemann surfaces: If Σ and Σ̃ are
marked Riemann surfaces, and 𝜙 ∶ Σ → Σ̃ is a
conformal homeomorphism that preserves the
marking, then we say that Σ and Σ̃ are isomorphic.

The Teichmüller space of Σ is the set (mod
conformal maps) of quasiconformal
homeomorphisms 𝜙 ∶ Σ → Σ̃.

Sporadic examples: 𝑇(𝕋) = 𝑇(𝑆1,1) = 𝑇(𝑆0,4) = ℍ2.
For everything else, the Teichmüller space is only
hyperbolic after collapsing subsets where lots of
disjoint curves are short (Masur and Minsky, 1999).

A quasiconformal map:

K. Astala, T. Iwaniec, G.J. Martin. Elliptic PDEs and
quasiconformal mappings in the plane (2009), p. 162.

A path in 𝑇(𝑆2,0):
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AHLFORS–BERS THEORY IN 30 SECONDS

Marden–Tukia isomorphism theorem: If Γ and Γ̃ are
Kleinian, non-elementary, and geometrically finite,
and 𝜙 ∶ Ω(Γ) → Ω(Γ̃) is a conformal map that
conjugates Γ to Γ̃ where it’s defined, then 𝜙 extends
to an isometry 𝜙̃ of ℍ3 which also conjugates Γ to Γ̃.

The quasiconformal deformation space of Γ is the
set (mod conformal maps) of quasiconformal
homeomorphisms 𝜙 ∶ Ω(Γ) → ℂ̂ such that
𝛾 ↦ 𝜙𝛾𝜙−1 is a faithful, type-preserving, discrete
representation of Γ.

This space is the product of the Teichmüller spaces
∏𝑆⊂𝜕𝑂Γ 𝑇(𝑆), mod the twist group of 𝑂Γ.

Limit sets under
holomorphic flow
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The quasiconformal deformation space of Γ lies
inside the PSL(2, ℂ) character variety 𝑋(Γ) as an
open but very wild set.
Giving a concrete realisation of this set (e.g. for
discreteness testing or group/orbifold recognition)
is practically impossible.
We have two kinds of effective theorems:
1. Give coarse bounds on the deformation space
which are far away from the boundary but easy
to compute. (Skipped in today’s talk, slides in appendix.)

2. Give locii tending to the boundary within the
quasiconformal deformation space which are
‘local’, based on controlling short curves.
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GOOD LOCAL BOUNDS: MODELLING THE CONVEX CORE BOUNDARY

The conformal boundary 𝜕𝑂Γ does not have
hyperbolic geometry, but it is homotopic to a
totally geodesic pleated surface embedded in 𝑂Γ.
The convex core of 𝑂Γ is the quotient

CC(𝑂Γ) = (convℍ3 Λ(Γ)) /Γ.

CC(𝑂Γ) is a coarse invariant
of the orbifold, conjectured
to recover the whole thing.

J. Brock and E. Dumas. Bug on notes of Thurston,
2006.
https://www.dumas.io/poster/

A. Fomenko. A retraction of a space onto a subspace
of it, 1974.
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A F-peripheral subgroup of Γ is a subgroup Π which
leaves invariant a round disc Δ ⊂ Ω(𝐺).

periph’er|y̆, n. Bounding line
esp. of round surface;
external boundary or
surface. Hence ~AL a., ~alLY
adv. [f. LL f. Gk PERI(pheria f.
pherō bear) circumference]

The concise Oxford dictionary, 5th ed., p. 904.

Here, peripheral in the
sense of the limit set of Γ,
and in the sense of giving
the hyperbolic structure to a
peripheral hyperbolic plane
(flat piece of 𝜕CC(𝑂Γ)) in 𝑂Γ.
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WHAT DO THE PERIPHERAL GROUPS OF A SCHOTTKY GROUP LOOK LIKE?
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⟨𝑎𝑏𝐴, 𝐵⟩

⟨𝑎, 𝑏𝐴𝐵⟩ ⟨𝐴, 𝐵𝑎𝑏⟩⟨𝐴𝐵𝑎, 𝑏⟩

⟨𝑎𝑏𝐴𝐵⟩ ⟨𝐵𝑎𝑏𝐴⟩

⟨𝐴𝐵𝑎𝑏⟩⟨𝑏𝐴𝐵𝑎⟩

⟨𝐵⟩

⟨𝐴⟩

⟨𝑏𝑎𝐵, 𝑏𝑏𝐴𝐵𝐵⟩⟨𝑏𝐴𝐵⟩

⟨𝑏𝑎𝑏𝐴𝐵𝐵⟩
⟨𝑏𝑏𝐴𝐵𝐵⟩
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WHAT DO THE PERIPHERAL GROUPS OF A SCHOTTKY GROUP LOOK LIKE?

Action of Γ on this graph encodes
algebraic information: it is not
quite an amalgamated product
but it’s close.
In an intriguing 1978 paper
Wielenberg studied the actions of
external elements 𝑛 ∈ PSL(2, ℂ) on
the peripheral subgroup graphs of
some groups Γ. You get extensions
Γ̂ = ⟨Γ, 𝑛⟩ where convex core
boundary pieces are glued
together and rank two parabolic
subgroups (knot components) pop
out.
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Let Γ = ⟨𝐴, 𝐵⟩ be a Kleinian group where 𝐴 and 𝐵 are
elliptic or parabolic and 𝜕𝑂Γ ≠ ∅. If 𝜕CC(𝑂Γ) is
pleated along a simple closed curve, then we have
a system 𝐿 of 3 curves on the abstract genus 2
surface (pull back along the rep 𝜋1(𝑆0,2) → Γ we
talked about at the start of the talk).
Very special situation: Γ admits two (maximal!)
F-peripheral subgroups which are non-conjugate
and which uniformise the flat pieces of 𝜕CC(𝑂Γ). We
call these an 𝐿-circle chain if they exist.
The locus of all groups in the deformation space
admitting an 𝐿-circle chain is called the 𝐿-pleating
variety.

A B

pleating
locus
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Let Γ be a group with an 𝐿-circle chain and
holomorphically deform Γ to Γ̃. By the 𝜆-lemma,
small deformations stay inside QH(Γ). But we can
also apply the 𝜆-lemma to the F-peripheral
subgroups; after deforming they are quasi-Fuchsian
but still peripheral (and still give peripheral
surfaces with the same topology).
Their existence is still a certificate of discreteness
(it shows Ω(Γ̃) ≠ ∅). Bounding the deformation
space of these peripheral groups and pulling back
to QH(Γ) gives computable open sets provably
inside deformation space.
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Summary: if we can bound the original deformation
space by algebraic inequalities, then we know how
far we can squish peripheral subgroups so that the
convex core does not collapse; i.e. how far we can
move off pleating varieties before we hit 𝜕QH(Γ).

Theorem (E.–Martin–Schillewaert, 2021+)

In the case of holonomy groups isomorphic to
ℤ/𝑎ℤ ∗ ℤ/𝑏ℤ, there are computable semi-algebraic
sets filling out the (1 complex dimensional)
deformation space.

This gives a countable list of inequalities to check.
If lucky, this will give a certificate of membership
within human lifetime. In practice it works(!).
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APPLICATION: ARITHMETIC GROUPS

An arithmetic group is an algebraic group
with only integers as coefficients in its
defining polynomials (so coordinates will be
algebraic integers). Arithmetic Kleinian
groups are finite covolume. A thin group is an
infinite index subgroup of an arithmetic
group. Their 3-folds are infinite volume.

Theorem (E.–Martin–Schillewaert,
Maclachlan–M., Chesebro–M.–S.)
There are ~150 thin groups in PSL(2, ℂ) that
are generated by two elliptic elements and
don’t split as free products. These groups can
be listed explicitly.

Sketch of proof.
Maclachlan–M. after
Flammang–Rhin give a finite list of
possible parameters which could
be arithmetic or thin groups.
Enumerate all of these possibilities
and check whether they are in the
closure of the deformation space
of 4-marked sphere groups (i.e.
split as free products) or not, using
certificates of freeness (E.–M.–S.)
and non-freeness
(Chesebro–M.–S.). mAk
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A GENERALISATION... DRILLING THE WHITEHEAD LINK

𝐺 = ⟨𝑃 = [1 𝑡(2𝑖√3−1)+𝑖(1−𝑡)√4√5−1+3

0 1 ] , 𝑄 = [1
1
2 𝑡(2𝑖√3−1)+

𝑖
2 (1−𝑡)√4√5−1−

3
2

0 1 ] ,𝑀 = [
1
2 (𝑡−3)

1
4 𝑡
2− 32 𝑡+

5
4

1 1
2 (𝑡−3)

]⟩

H. Akiyoshi, Y. Nakagawa, M.
Sakuma. “Shortest vertical
geodesics of manifolds ob-
tained by hyperbolic Dehn
surgery on the Whitehead
link”. Knots ‘96. Fig. 1.1.
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𝐺 = ⟨𝑃 = [1 𝑓(𝑡)
0 1 ] , 𝑄 = [1 𝑔(𝑡)

0 1 ] ,𝑀 = [ℎ(𝑡) ℎ(𝑡)2 − 1
1 ℎ(𝑡) ]⟩

H. Akiyoshi, Y. Nakagawa, M.
Sakuma. “Shortest vertical
geodesics of manifolds ob-
tained by hyperbolic Dehn
surgery on the Whitehead
link”. Knots ‘96. Fig. 1.1.
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Len Lye, still frame from Rainbow Dance, 1936.
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COARSE BOUNDS

Following Lyndon–Ullman, we have coarse bounds on the
entire deformation space of ℤ/𝑎ℤ ∗ ℤ/𝑏ℤ at once. We give
just one example, (𝑎, 𝑏) = (2, 3).
A possible quantisation of SL(2, ℤ) which is related to the
𝑞-rational integers of Morier-Genoud–Ovsienko–Veselov is

SL(2, ℤ)𝑞 = ⟨[
−𝑞 1
0 1] , [

1 0
𝑞 −𝑞]⟩ < GL(2, ℤ[𝑞

±1]).

When 𝑞 = −1, you get SL(2, ℤ) = ℤ/2ℤ ∗ ℤ/3ℤ = B3.
Question. For which values of 𝑞 ∈ ℂ is the substitution
map SL(2, ℤ)𝑞 → SL(2, ℂ) faithful?

O. Jones. The grammar of
ornament, Bernard Quaritch,

1910. Taffel XXX, No. 42.



COARSE BOUNDS

Theorem (E.–Gong–Martin–Schillewaert)

The realisations for 𝑞 ∈ ℂ of SL(2, 𝑍)𝑞 are
faithful within a closed semialgebraic region
strictly containing the region conjectured by
Morier-Genoud, Ovsienko, and Veselov, except
at one point where both bounds are tight; our
region is

3 ≤ |(𝑞1/2 − 𝑞−1/2) ± √(𝑞1/2 − 𝑞−1/2)2 + 3|.

SL(2, ℤ)𝑞 = ⟨[
−𝑞 1
0 1] , [

1 0
𝑞 −𝑞]⟩ .

(Purple shading is the interior of
the bounded region.)
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