DEFORMATIONS OF ORBIFOLD HOLONOMY GROUPS

(AND APPLICATIONS TO ARITHMETIC AND ALGEBRA)

ALEX ELZENAAR

Monash University, Melbourne

JOINT MEETING OF THE NZMS, AUSTMS, AND AMS AUCKLAND, DECEMBER 2024

Len Lye, still frame from Rainbow Dance, 1936

A **hyperbolic orbifold** is the quotient of \mathbb{H}^3 by a discrete group Γ of isometries.

Possible coarse geometry on these objects includes:

- pieces of Riemann surface on the boundary (from the action of Γ on ∂H³ = Ĉ)
- deleted arcs and loops (from parabolic elements of Γ)
- cone arcs (from torsion elements of Γ)
- reflection planes (from reflections in Γ)

We will always restrict to non-elementary, orientation-preserving, discrete groups in $Isom(\mathbb{H}^3)$.

S.T. Hyde, S. J. Ramsden, and V. Robins. "Unification and classification of two-dimensional crystalline patterns using orbifolds". Acta Cryst. (2014).

A discrete subgroup of Isom⁺(\mathbb{H}^3) is called a **Kleinian group**. Since \mathbb{H}^3 is negatively curved, isometries act as conformal maps on its visual boundary, which is the Riemann sphere.

Dynamics of the action of a Kleinian group Γ are complicated. The Riemann sphere is partitioned into a limit set $\Lambda(\Gamma)$ and its complement $\Omega(\Gamma)$. The conformal boundary of $O_{\Gamma} = \mathbb{H}^3/\Gamma$ is $\partial O_{\Gamma} = \Omega(\Gamma)/\Gamma$.

The group Γ is the holonomy group of O_{Γ} . Each component $S \subset \partial O_{\Gamma}$ gives a map $\pi_1(S) \to \Gamma$ (unlikely to be injective).

How much of $\Gamma \leq PSL(2, \mathbb{C})$ can be recovered from the map $\prod_{S \subset \partial O_{\Gamma}} \pi_1(S) \rightarrow \Gamma$?

TEICHMÜLLER THEORY IN 30 SECONDS

Isomorphism of Riemann surfaces: If Σ and $\tilde{\Sigma}$ are marked Riemann surfaces, and $\phi : \Sigma \to \tilde{\Sigma}$ is a conformal homeomorphism that preserves the marking, then we say that Σ and $\tilde{\Sigma}$ are isomorphic.

The **Teichmüller space** of Σ is the set (mod conformal maps) of *quasiconformal* homeomorphisms $\phi : \Sigma \to \tilde{\Sigma}$.

Sporadic examples: $T(\mathbb{T}) = T(S_{1,1}) = T(S_{0,4}) = \mathbb{H}^2$.

For everything else, the Teichmüller space is only hyperbolic after collapsing subsets where lots of disjoint curves are short (Masur and Minsky, 1999).

A quasiconformal map:

A measurable conformal structure transported to the usual round structure by a quasiconformal mapping

K. Astala, T. Iwaniec, G.J. Martin. *Elliptic PDEs and quasiconformal mappings in the plane* (2009), p. 162.

A path in $T(S_{2,0})$:

Ahlfors-Bers theory in 30 seconds

Marden–Tukia isomorphism theorem: If Γ and $\tilde{\Gamma}$ are Kleinian, non-elementary, and geometrically finite, and $\phi : \Omega(\Gamma) \rightarrow \Omega(\tilde{\Gamma})$ is a conformal map that conjugates Γ to $\tilde{\Gamma}$ where it's defined, then ϕ extends to an isometry $\tilde{\phi}$ of \mathbb{H}^3 which also conjugates Γ to $\tilde{\Gamma}$.

The **quasiconformal deformation space** of Γ is the set (mod conformal maps) of *quasi*conformal homeomorphisms $\phi : \Omega(\Gamma) \to \hat{\mathbb{C}}$ such that $\gamma \mapsto \phi \gamma \phi^{-1}$ is a faithful, type-preserving, discrete representation of Γ .

This space is the product of the Teichmüller spaces $\prod_{S \subset \partial O_{\Gamma}} T(S)$, mod the twist group of O_{Γ} .

Ahlfors-Bers theory in 30 seconds

Marden–Tukia isomorphism theorem: If Γ and $\tilde{\Gamma}$ are Kleinian, non-elementary, and geometrically finite, and $\phi : \Omega(\Gamma) \rightarrow \Omega(\tilde{\Gamma})$ is a conformal map that conjugates Γ to $\tilde{\Gamma}$ where it's defined, then ϕ extends to an isometry $\tilde{\phi}$ of \mathbb{H}^3 which also conjugates Γ to $\tilde{\Gamma}$.

The **quasiconformal deformation space** of Γ is the set (mod conformal maps) of *quasi*conformal homeomorphisms $\phi : \Omega(\Gamma) \to \hat{\mathbb{C}}$ such that $\gamma \mapsto \phi \gamma \phi^{-1}$ is a faithful, type-preserving, discrete representation of Γ .

This space is the product of the Teichmüller spaces $\prod_{S \subset \partial O_{\Gamma}} T(S)$, mod the twist group of O_{Γ} .

AHLFORS-BERS THEORY IN 30 SECONDS

Marden–Tukia isomorphism theorem: If Γ and $\tilde{\Gamma}$ are Kleinian, non-elementary, and geometrically finite, and $\phi : \Omega(\Gamma) \rightarrow \Omega(\tilde{\Gamma})$ is a conformal map that conjugates Γ to $\tilde{\Gamma}$ where it's defined, then ϕ extends to an isometry $\tilde{\phi}$ of \mathbb{H}^3 which also conjugates Γ to $\tilde{\Gamma}$.

The **quasiconformal deformation space** of Γ is the set (mod conformal maps) of *quasi*conformal homeomorphisms $\phi : \Omega(\Gamma) \to \hat{\mathbb{C}}$ such that $\gamma \mapsto \phi \gamma \phi^{-1}$ is a faithful, type-preserving, discrete representation of Γ .

This space is the product of the Teichmüller spaces $\prod_{S \subset \partial O_{\Gamma}} T(S)$, mod the twist group of O_{Γ} .

Ahlfors-Bers theory in 30 seconds

Marden–Tukia isomorphism theorem: If Γ and $\tilde{\Gamma}$ are Kleinian, non-elementary, and geometrically finite, and $\phi : \Omega(\Gamma) \rightarrow \Omega(\tilde{\Gamma})$ is a conformal map that conjugates Γ to $\tilde{\Gamma}$ where it's defined, then ϕ extends to an isometry $\tilde{\phi}$ of \mathbb{H}^3 which also conjugates Γ to $\tilde{\Gamma}$.

The **quasiconformal deformation space** of Γ is the set (mod conformal maps) of *quasi*conformal homeomorphisms $\phi : \Omega(\Gamma) \to \hat{\mathbb{C}}$ such that $\gamma \mapsto \phi \gamma \phi^{-1}$ is a faithful, type-preserving, discrete representation of Γ .

This space is the product of the Teichmüller spaces $\prod_{S \subset \partial O_{\Gamma}} T(S)$, mod the twist group of O_{Γ} .

AHLFORS-BERS THEORY IN 30 SECONDS

Marden–Tukia isomorphism theorem: If Γ and $\tilde{\Gamma}$ are Kleinian, non-elementary, and geometrically finite, and $\phi : \Omega(\Gamma) \rightarrow \Omega(\tilde{\Gamma})$ is a conformal map that conjugates Γ to $\tilde{\Gamma}$ where it's defined, then ϕ extends to an isometry $\tilde{\phi}$ of \mathbb{H}^3 which also conjugates Γ to $\tilde{\Gamma}$.

The **quasiconformal deformation space** of Γ is the set (mod conformal maps) of *quasi*conformal homeomorphisms $\phi : \Omega(\Gamma) \to \hat{\mathbb{C}}$ such that $\gamma \mapsto \phi \gamma \phi^{-1}$ is a faithful, type-preserving, discrete representation of Γ .

This space is the product of the Teichmüller spaces $\prod_{S \subset \partial O_{\Gamma}} T(S)$, mod the twist group of O_{Γ} .

AHLFORS-BERS THEORY IN 30 SECONDS

Marden–Tukia isomorphism theorem: If Γ and $\tilde{\Gamma}$ are Kleinian, non-elementary, and geometrically finite, and $\phi : \Omega(\Gamma) \rightarrow \Omega(\tilde{\Gamma})$ is a conformal map that conjugates Γ to $\tilde{\Gamma}$ where it's defined, then ϕ extends to an isometry $\tilde{\phi}$ of \mathbb{H}^3 which also conjugates Γ to $\tilde{\Gamma}$.

The **quasiconformal deformation space** of Γ is the set (mod conformal maps) of *quasi*conformal homeomorphisms $\phi : \Omega(\Gamma) \to \hat{\mathbb{C}}$ such that $\gamma \mapsto \phi \gamma \phi^{-1}$ is a faithful, type-preserving, discrete representation of Γ .

This space is the product of the Teichmüller spaces $\prod_{S \subset \partial O_{\Gamma}} T(S)$, mod the twist group of O_{Γ} .

The quasiconformal deformation space of Γ lies inside the PSL(2, \mathbb{C}) character variety $X(\Gamma)$ as an open but very wild set.

Giving a concrete realisation of this set (e.g. for discreteness testing or group/orbifold recognition) is practically impossible.

We have two kinds of effective theorems:

- Give coarse bounds on the deformation space which are far away from the boundary but easy to compute. (skipped in today's talk, slides in appendix.)
- 2. Give locii tending to the boundary within the quasiconformal deformation space which are 'local', based on controlling short curves.

GOOD LOCAL BOUNDS: MODELLING THE CONVEX CORE BOUNDARY

The conformal boundary ∂O_{Γ} does not have hyperbolic geometry, but it is homotopic to a totally geodesic pleated surface embedded in O_{Γ} .

The **convex core** of O_{Γ} is the quotient

 $CC(O_{\Gamma}) = (conv_{\mathbb{H}^3} \Lambda(\Gamma)) / \Gamma.$

 $CC(O_{\Gamma})$ is a coarse invariant of the orbifold, conjectured to recover the whole thing.

J. Brock and E. Dumas. Bug on notes of Thurston, 2006. https://www.dumas.io/poster/

A. Fomenko. A retraction of a space onto a subspace of it, 1974.

A **F-peripheral subgroup** of Γ is a subgroup Π which leaves invariant a round disc $\Delta \subset \Omega(G)$.

periph'er|y, n. Bounding line esp. of round surface;

external boundary or surface. Hence ~AL a., ~alLY adv. [f. LL f. Gk PERI(*pheria* f. *pherō* bear) circumference]

The concise Oxford dictionary, 5th ed., p. 904.

Here, peripheral in the sense of the limit set of Γ , and in the sense of giving the hyperbolic structure to a peripheral hyperbolic plane (flat piece of $\partial CC(O_{\Gamma})$) in O_{Γ} .

WHAT DO THE PERIPHERAL GROUPS OF A SCHOTTKY GROUP LOOK LIKE?

WHAT DO THE PERIPHERAL GROUPS OF A SCHOTTKY GROUP LOOK LIKE?

WHAT DO THE PERIPHERAL GROUPS OF A SCHOTTKY GROUP LOOK LIKE?

Action of Γ on this graph encodes algebraic information: it is not quite an amalgamated product but it's close.

In an intriguing 1978 paper Wielenberg studied the actions of external elements $n \in PSL(2, \mathbb{C})$ on the peripheral subgroup graphs of some groups **F**. You get extensions $\hat{\Gamma} = \langle \Gamma, n \rangle$ where convex core boundary pieces are glued together and rank two parabolic subgroups (knot components) pop out.

Very special situation: Γ admits two (maximal!) F-peripheral subgroups which are non-conjugate and which uniformise the flat pieces of $\partial CC(O_{\Gamma})$. We call these an *L*-circle chain if they exist.

Very special situation: Γ admits two (maximal!) F-peripheral subgroups which are non-conjugate and which uniformise the flat pieces of $\partial CC(O_{\Gamma})$. We call these an *L*-circle chain if they exist.

Very special situation: Γ admits two (maximal!) F-peripheral subgroups which are non-conjugate and which uniformise the flat pieces of $\partial CC(O_{\Gamma})$. We call these an *L*-circle chain if they exist.

Very special situation: Γ admits two (maximal!) F-peripheral subgroups which are non-conjugate and which uniformise the flat pieces of $\partial CC(O_{\Gamma})$. We call these an *L*-circle chain if they exist.

Very special situation: Γ admits two (maximal!) F-peripheral subgroups which are non-conjugate and which uniformise the flat pieces of $\partial CC(O_{\Gamma})$. We call these an *L*-circle chain if they exist.

Very special situation: Γ admits two (maximal!) F-peripheral subgroups which are non-conjugate and which uniformise the flat pieces of $\partial CC(O_{\Gamma})$. We call these an *L*-circle chain if they exist.

Very special situation: Γ admits two (maximal!) F-peripheral subgroups which are non-conjugate and which uniformise the flat pieces of $\partial CC(O_{\Gamma})$. We call these an *L*-circle chain if they exist.

Very special situation: Γ admits two (maximal!) F-peripheral subgroups which are non-conjugate and which uniformise the flat pieces of $\partial CC(O_{\Gamma})$. We call these an *L*-circle chain if they exist.

Summary: if we can bound the original deformation space by algebraic inequalities, then we know how far we can squish peripheral subgroups so that the convex core does not collapse; i.e. how far we can move off pleating varieties before we hit $\partial QH(\Gamma)$.

Theorem (E.-Martin-Schillewaert, 2021+)

In the case of holonomy groups isomorphic to $\mathbb{Z}/a\mathbb{Z} * \mathbb{Z}/b\mathbb{Z}$, there are computable semi-algebraic sets filling out the (1 complex dimensional) deformation space.

This gives a countable list of inequalities to check. If lucky, this will give a certificate of membership within human lifetime. In practice it works(!).

An arithmetic group is an algebraic group with only integers as coefficients in its defining polynomials (so coordinates will be algebraic integers). Arithmetic Kleinian groups are finite covolume. A thin group is an infinite index subgroup of an arithmetic group. Their 3-folds are infinite volume.

Theorem (<u>E.</u>-Martin-Schillewaert, Maclachlan-M., Chesebro-M.-S.)

There are ~150 thin groups in $PSL(2, \mathbb{C})$ that are generated by two elliptic elements and don't split as free products. These groups can be listed explicitly.

Sketch of proof.

Maclachlan-M. after Flammang-Rhin give a finite list of possible parameters which could be arithmetic or thin groups. Enumerate all of these possibilities and check whether they are in the closure of the deformation space of 4-marked sphere groups (i.e. split as free products) or not, using certificates of freeness (E.-M.-S.) and non-freeness (Chesebro-M.-S.). ZA

A GENERALISATION... DRILLING THE WHITEHEAD LINK

 τ

H. Sa ge ta

$$G = \left(P = \begin{bmatrix} 1 \\ 0 \end{bmatrix} t(2i\sqrt{3}-1)+i(1-t)\sqrt{4\sqrt{5}-1}+3 \\ 1 \end{bmatrix}, Q = \begin{bmatrix} 1 \\ 0 \end{bmatrix} t(2i\sqrt{3}-1)+\frac{i}{2}(1-t)\sqrt{4\sqrt{5}-1}-\frac{3}{2} \end{bmatrix}, M = \begin{bmatrix} \frac{1}{2}(t-3) \\ 1 \\ \frac{1}{2}(t-3) \end{bmatrix} \right)$$

$$Akiyoshi, Y. Nakagawa, M. Kuma. "Shortest vertical ordesics of manifolds obined by hyperbolic Defining days hyperbolic before the Whitehead kit." Knots '96. Fig. 1.$$

A GENERALISATION... DRILLING THE WHITEHEAD LINK

$$G = \left\langle P = \begin{bmatrix} 1 & f(t) \\ 0 & 1 \end{bmatrix}, Q = \begin{bmatrix} 1 & g(t) \\ 0 & 1 \end{bmatrix}, M = \begin{bmatrix} h(t) & h(t)^2 - 1 \\ 1 & h(t) \end{bmatrix} \right\rangle$$

H. Akiyoshi, Y. Nakagawa, M. Sakuma. "Shortest vertical geodesics of manifolds obtained by hyperbolic Dehn surgery on the Whitehead link". *Knots* '96. Fig. 1.1.

$$Q^{-1}MPQ^{-1}$$

$$MPQ^{-1}MQ^{-1}M^{-1}QM^{-1}Q^{-1}$$

15

A GENERALISATION... DRILLING THE WHITEHEAD LINK

$$G = \left\langle P = \begin{bmatrix} 1 & f(t) \\ 0 & 1 \end{bmatrix}, Q = \begin{bmatrix} 1 & g(t) \\ 0 & 1 \end{bmatrix}, M = \begin{bmatrix} h(t) & h(t)^2 - 1 \\ 1 & h(t) \end{bmatrix} \right\rangle$$

H. Akiyoshi, Y. Nakagawa, M. Sakuma. "Shortest vertical geodesics of manifolds obtained by hyperbolic Dehn surgery on the Whitehead link". Knots '96. Fig. 1.1.

16

Len Lye, still frame from Rainbow Dance, 1936.

- A.J.E., Gaven Martin, and Jeroen Schillewaert, "Concrete one complex dimensional moduli spaces of hyperbolic manifolds and orbifolds". In: 2021–22 MATRIX annals. Springer, 2024, pp. 31–74.
- -, G.J.M., and J.S. Deformation spaces of Kleinian groups generated by two elements of finite order. Preprint to appear shortly.
- -. Peripheral subgroups of function groups. Preprint to appear early 2025.
- Eric Chesebro, G.J.M., and J.S. *2-elliptic generated Kleinian groups are Heckoid*. Preprint to appear shortly.
- Linda Keen and Caroline Series. "The Riley slice of Schottky space". Proc. LMS (1994).

Following Lyndon–Ullman, we have coarse bounds on the entire deformation space of $\mathbb{Z}/a\mathbb{Z} * \mathbb{Z}/b\mathbb{Z}$ at once. We give just one example, (a, b) = (2, 3).

A possible quantisation of $SL(2, \mathbb{Z})$ which is related to the q-rational integers of Morier-Genoud-Ovsienko-Veselov is

$$\operatorname{SL}(2,\mathbb{Z})_q = \left\langle \begin{bmatrix} -q & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ q & -q \end{bmatrix} \right\rangle < \operatorname{GL}(2,\mathbb{Z}[q^{\pm 1}])$$

When q = -1, you get SL(2, \mathbb{Z}) = $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z} = \mathcal{B}_3$.

Question. For which values of $q \in \mathbb{C}$ is the substitution map SL(2, \mathbb{Z})_{*a*} \rightarrow SL(2, \mathbb{C}) faithful?

O. Jones. The grammar of ornament, Bernard Quaritch, 1910. Taffel XXX, No. 42.

Theorem (<u>E.</u>-Gong-Martin-Schillewaert)

The realisations for $q \in \mathbb{C}$ of $SL(2,Z)_q$ are faithful within a closed semialgebraic region strictly containing the region conjectured by Morier-Genoud, Ovsienko, and Veselov, except at one point where both bounds are tight; our region is

$$3 \leq \left| (q^{1/2} - q^{-1/2}) \pm \sqrt{(q^{1/2} - q^{-1/2})^2 + 3} \right|.$$

$$\operatorname{SL}(2,\mathbb{Z})_q = \left\langle \begin{bmatrix} -q & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ q & -q \end{bmatrix} \right\rangle.$$

(Purple shading is the interior of the bounded region.)