Ephemera and apocrypha

2. Sociology

- 1. Let $T = \mathbb{R}^2/\mathbb{Z}^2$ be the affine torus.
 - (a) Show that every geodesic on T is either (i) dense in T or (ii) the projection of a line of rational slope. Call the latter $\gamma(p/q)$ where (p,q)=1 or $p/q\in\{1/0,0/1\}$.
 - (b) Show that every geodesic lamination on T consists of a single geodesic.
 - (c) Show that there is a natural $PSL(2,\mathbb{Z})$ action on non-dense geodesic laminations and this action preserves the simplicial structure with cells (p/q, r/s, (p+r)/(q+s)) where |ps-qr|=1.
- 2. (a) Find conditions on $\lambda, \mu \in \mathbb{R}$ such that the group G generated by the two elements $\begin{bmatrix} \lambda & -\lambda \\ \lambda & (1-\lambda^2)/2 \end{bmatrix}$ and $\begin{bmatrix} \mu & -\mu \\ -\mu & (1+\mu^2)/2 \end{bmatrix}$ is discrete and has quotient a disjoint union of two punctured tori.

The group should be Fuchsian of the first kind and hence the hyperbolic metrics on \mathbb{H}^2 and $-\mathbb{H}^2$ descend. Let T^* be the quotient of \mathbb{H}^2 .

- (b) Show that every closed geodesic on T^* is either (i) dense in T^* minus some small open neighbourhood of the cusp or (ii) has homology class $p\gamma_0 + q\gamma_\infty$ for (p,q) = 1 or $p/q \in \{1/0,0/1\}$ and with some fixed homology basis (γ_0,γ_∞) . Even better, there is a bijection between points visible from the origin in $H_1(T^*) \simeq \mathbb{Z}^2$ and non-dense closed geodesics on T^* .
- (c) Show that every geodesic lamination on T^* which does not meet the cusp end (\iff has compact support) consists of a single geodesic.
- (d) Show that there is a natural $PSL(2,\mathbb{Z})$ action on non-dense geodesic laminations with compact support and that this action preserves the simplicial structure with cells (p/q, r/s, (p+r)/(q+s)) where |ps-qr|=1.
- 3. (We saw the Maskit and Riley slices in the lecture. This problem contains both of them.) Let $G = G(\lambda, \mu, \rho)$ be the group generated by

$$X = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda^{-1} \end{bmatrix}, Y = \begin{bmatrix} \mu & 0 \\ \rho & \mu^{-1} \end{bmatrix};$$

the generic situation is that G is free and $\Omega(G)/G$ (it is a genus two Schottky group). Suppose $\lambda=2$, then X represents the transformation $z\mapsto 4z+2$ which sends the vertical line $\operatorname{Re} z=-1$ to the vertical line $\operatorname{Re} z=1$. If $\mu=2$ then the isometric circles of Y are the circles of radius $1/|\rho|$ centred around $-1/2\rho$ and $2/\rho$.

(a) Prove that these circles are contained strictly within the vertical strip -1 < Re z < 1 iff the two following conditions hold (where $\rho = re^{i\theta}$):

$$r > \frac{1}{2}(\cos \theta + 2) < 1 \text{ and } r > (2\cos \theta + 1).$$

That is, ρ lies in the mutual exterior of the two cardioids depicted in fig. 1. This gives a rough bound on the family $\operatorname{Fam}(G(\lambda=2,\mu=2,\rho),|\rho|\gg 0)$, which is a one-dimensional slice through genus two Schottky space. (Compare this with the Riley slice, which is the slice $\lambda=\mu=1$ through the boundary of this space.) Which points of the cardioids actually lie on the actual boundary of the deformation space?

- (b) Anyway, carry out an analysis similar to the torus questions for a genus two surface S. Your theory should include such things as:
 - i. Maximal geodesic laminations all have three geodesics, and there is a natural partition of the space of laminations given via density in non-zero measure subsets of the surface;
 - ii. The geodesics can be viewed in some way as (isotopic to) projections of combinatorially defined curves with respect to the fundamental domain given in (a);

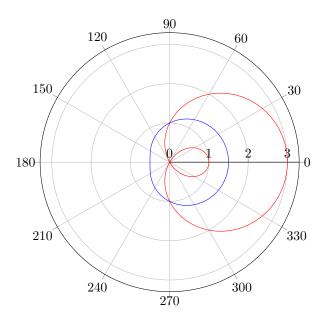


Figure 1: Bounds on the one-dimensional slice through genus two Schottky space.

- iii. There is a bijection between the space of non-dense maximal geodesics and some natural subset of $H_1(S)$;
- iv. There is an action of some group like $PSL(3, \mathbb{Z})$ on this subset.
- (c) If you take a maximal geodesic lamination with one lamination separating the surface into two tori-minus-discs (each with one of the other laminations) then this lamination can be pinched to a cusp. This reduces (topologically) to question 2 above. In particular, this explains why we ignore geodesics which hit the cusp. Check that your theory contains the theory of question 2.
- 4. (Open) Some open problems relating Kleinian groups to algebraic curves?
 - (a) Give a strictly algebraic method for determining the canonical lamination on a Kleinian group.
 - (b) What algebraic structure can be placed onto an algebraic curve in order to lift a complex structure to the structure of a visual boundary of a 3-manifold? (The answer should be more algebraic than 'a quadratic differential', for instance.)
 - (c) What is the algebraic analogue of the procedure 'measured lamination → train track'?