
Ephemera and apocrypha
1. Kleinian groups

Question 1: Isometric circles
For this question fix f ∈ M such that f(∞) ̸= ∞.

(a) Show that there exists some r ∈ R>0 such that if C is a circle of radius greater than r centred at
f−1(∞) then f(C) is a circle of radius less than r about f(∞).

(b) Improve the result of (a) enough that you can apply the intermediate value theorem to conclude the
existence of a circle of radius r about f−1(∞) that is mapped to a circle of the same radius about
f(∞). Show that these are the only two circles of the same Euclidean radius paired by f . These are
the isometric circles of f .

(c) True or false: f is parabolic if and only if its isometric circles are tangent.

(d) Give the most general theorem which you can that relates intersection properties of the isometric
circles of f and the dynamical properties of f .

Question 2: Schottky groups

(a) Let Ci for i ∈ {1, 2} be the circle of radius ρi > 0 about xi ∈ C. Suppose C1 ̸= C2. Write down all
transformations f ∈ M such that f(C1) = C2.

(b) A classical Schottky group is given by the following data: (i) 2n disjoint circles, C1, . . . , Cn, C
′
1, . . . , C

′
n,

which bound a common exterior U ; and (ii) for each i, a loxodromic transformation gi which sends
Ci to C ′

i. Describe the homeomorphism class of the hyperbolic 3-manifold which it uniformises.
Describe the conformal structure at infinity.

(c) For n = 2 and n = 3, compute as many qualitatively different limit sets as possible for classical
Schottky groups on 2n circles. How do the limit sets vary (qualitatively) as the coefficients vary?

(d) Give an example, for arbitrary n ∈ N, of a one-parameter family Gt (t ∈ (0, 1)) of classical Schottky
groups on 2n circles such that as t → 1 the family converges (as a matrix group) to a group whose
quotient surface is exactly a union of thrice-punctured spheres and as t → 0 every generator is an
involution in M (i.e. conjugate to z 7→ −1/z).

Question 3: Fuchsian groups
Let H2 = {z ∈ C : Im z > 0} be the hyperbolic plane.

(a) Show that A ∈ PSL(2,C) preserves H2 iff A ∈ PSL(2,R).

(b) Recall that the metric ϱ on H2 is given by cosh ϱ(w, z) = 1 + |w−z|2
2(Imw)(Im z) . Show that every element

of PSL(2,R) is an isometry of H2. (Remark: the converse is also true, PSL(2,R) = Isom+(H2).)

(c) A Kleinian group which preserves H2 (i.e. a discrete group of isometries of H2) is called Fuchsian.
Show that a discrete G is Fuchsian iff Λ(G) ⊆ R.

Question 4: The (∞,∞,∞)-triangle group
Let C1, C2, C3, C4 be four circles such that each Ci is tangent to Ci−1 and Ci+1 and there are no other
intersection relations (all subscripts taken mod 4).

(a) Show that the four intersection points lie on a fifth circle which is orthogonal to each Ci.

(b) Give necessary and sufficient Eucidean-geometric conditions for the configuration to be M-equivalent
to the configuration given by the two vertical lines Re z = ±1 and the two circles of radius 1 around
±1/2 respectively.

(c) Show that the group G generated by the two elements
[
1 2
0 1

]
and

[
1 0
2 1

]
is discrete. Describe the

homeomorphism class of the hyperbolic 3-manifold which it uniformises. Describe the conformal
structure at infinity.

(d) Show that G is an index two subgroup of a group generated by the reflections in an arbitrary
(∞,∞,∞)-triangle. Reinterpret (b) in terms of this.



Figure 1: Rita Angus, Growth, 1968.

Question 5: The figure 8 knot

(a) Draw a convincing picture or sequence of pictures to show that Γ−ω has quotient manifold a figure
eight knot.

(b) Show that Γ−ω has limit set equal to Ĉ without appealing to 3-manifold geometry.

Question 6: Some funner manifolds
We only dealt with hyperbolic space in the lecture but this works for all geometric spaces (suitably
defined).

(a) Give an affine structure on the punctured torus. Is it complete? (Of course not, but why not, and
why is this an easy question to answer with no work?)

(b) Let ρ be the isometry of E3 = C× R defined by ρ(z, t) = (ze2π/3, t). Describe the affine 3-orbifold
E3/⟨ρ⟩. Draw a picture of Growth (fig. 1) as seen from behind the cone arc.

(c) Recall that SO(4) is the group of rotations of S3, where we view S3 as embedded into R4 as a sphere
centred at 0. The only subgroups of SO(4) which act freely on S3 are the finite subgroups. Identify
R4 ≃ C2, let ζ be a primitive pth root of unity (for some p ∈ Z), let q be coprime to p, and let
Z/pZ ≃ ⟨ζ⟩ act on S3 by

ζ · (w, z) := (ζw, ζpz).

Give matrix representatives in SO(4) for this action (the group isomorphism class depends only on
p, but the action depends on p and q); and a fundamental domain for the action.

This is the Lens space L(p, q) (Bredon, example 7.4).

(d) Show that the trefoil knot complement is diffeomorphic to PSL(2,R)/PSL(2,Z) and hence the trefoil

knot complement is a P̃SL(2,R)-manifold. (See for instance https://math.stackexchange.com/

a/3115852.)

(e) Let T = R2/Z2 be the 2-torus.

i. Show that the linear automorphism of R2 represented by
[
2 1
1 1

]
descends to T . The resulting

map on the torus is the Arnold’s cat map α.

ii. Draw the mapping torus of α, (T × [0, 1])/((x, 1) ∼ (α(x), 0)). This manifold is a Sol-manifold.
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