Ephemera and apocrypha

1. Kleinian groups

Question 1: Isometric circles

For this question fix $f \in \mathbb{M}$ such that $f(\infty) \neq \infty$.

- (a) Show that there exists some $r \in \mathbb{R}_{>0}$ such that if C is a circle of radius greater than r centred at $f^{-1}(\infty)$ then f(C) is a circle of radius less than r about $f(\infty)$.
- (b) Improve the result of (a) enough that you can apply the intermediate value theorem to conclude the existence of a circle of radius r about $f^{-1}(\infty)$ that is mapped to a circle of the same radius about $f(\infty)$. Show that these are the only two circles of the same Euclidean radius paired by f. These are the **isometric circles** of f.
- (c) True or false: f is parabolic if and only if its isometric circles are tangent.
- (d) Give the most general theorem which you can that relates intersection properties of the isometric circles of f and the dynamical properties of f.

Question 2: Schottky groups

- (a) Let C_i for $i \in \{1, 2\}$ be the circle of radius $\rho_i > 0$ about $x_i \in \mathbb{C}$. Suppose $C_1 \neq C_2$. Write down all transformations $f \in \mathbb{M}$ such that $f(C_1) = C_2$.
- (b) A classical Schottky group is given by the following data: (i) 2n disjoint circles, $C_1, \ldots, C_n, C'_1, \ldots, C'_n$, which bound a common exterior U; and (ii) for each i, a loxodromic transformation g_i which sends C_i to C'_i . Describe the homeomorphism class of the hyperbolic 3-manifold which it uniformises. Describe the conformal structure at infinity.
- (c) For n = 2 and n = 3, compute as many qualitatively different limit sets as possible for classical Schottky groups on 2n circles. How do the limit sets vary (qualitatively) as the coefficients vary?
- (d) Give an example, for arbitrary $n \in \mathbb{N}$, of a one-parameter family G_t $(t \in (0,1))$ of classical Schottky groups on 2n circles such that as $t \to 1$ the family converges (as a matrix group) to a group whose quotient surface is exactly a union of thrice-punctured spheres and as $t \to 0$ every generator is an involution in \mathbb{M} (i.e. conjugate to $z \mapsto -1/z$).

Question 3: Fuchsian groups

Let $\mathbb{H}^2 = \{z \in \mathbb{C} : \text{Im } z > 0\}$ be the hyperbolic plane.

- (a) Show that $A \in PSL(2, \mathbb{C})$ preserves \mathbb{H}^2 iff $A \in PSL(2, \mathbb{R})$.
- (b) Recall that the metric ϱ on \mathbb{H}^2 is given by $\cosh \varrho(w,z) = 1 + \frac{|w-z|^2}{2(\operatorname{Im} w)(\operatorname{Im} z)}$. Show that every element of $\operatorname{PSL}(2,\mathbb{R})$ is an isometry of \mathbb{H}^2 . (Remark: the converse is also true, $\operatorname{PSL}(2,\mathbb{R}) = \operatorname{Isom}^+(\mathbb{H}^2)$.)
- (c) A Kleinian group which preserves \mathbb{H}^2 (i.e. a discrete group of isometries of \mathbb{H}^2) is called **Fuchsian**. Show that a discrete G is Fuchsian iff $\Lambda(G) \subseteq \mathbb{R}$.

Question 4: The (∞, ∞, ∞) -triangle group

Let C_1, C_2, C_3, C_4 be four circles such that each C_i is tangent to C_{i-1} and C_{i+1} and there are no other intersection relations (all subscripts taken mod 4).

- (a) Show that the four intersection points lie on a fifth circle which is orthogonal to each C_i .
- (b) Give necessary and sufficient Eucidean-geometric conditions for the configuration to be M-equivalent to the configuration given by the two vertical lines $\operatorname{Re} z = \pm 1$ and the two circles of radius 1 around $\pm 1/2$ respectively.
- (c) Show that the group G generated by the two elements $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ is discrete. Describe the homeomorphism class of the hyperbolic 3-manifold which it uniformises. Describe the conformal structure at infinity.
- (d) Show that G is an index two subgroup of a group generated by the reflections in an arbitrary (∞, ∞, ∞) -triangle. Reinterpret (b) in terms of this.

Figure 1: Rita Angus, Growth, 1968.

Question 5: The figure 8 knot

- (a) Draw a convincing picture or sequence of pictures to show that $\Gamma_{-\omega}$ has quotient manifold a figure eight knot.
- (b) Show that $\Gamma_{-\omega}$ has limit set equal to $\hat{\mathbb{C}}$ without appealing to 3-manifold geometry.

Question 6: Some funner manifolds

We only dealt with hyperbolic space in the lecture but this works for all geometric spaces (suitably defined).

- (a) Give an affine structure on the punctured torus. Is it complete? (Of course not, but why not, and why is this an easy question to answer with no work?)
- (b) Let ρ be the isometry of $\mathbb{E}^3 = \mathbb{C} \times \mathbb{R}$ defined by $\rho(z,t) = (ze^{2\pi/3},t)$. Describe the affine 3-orbifold $\mathbb{E}^3/\langle \rho \rangle$. Draw a picture of *Growth* (fig. 1) as seen from behind the cone arc.
- (c) Recall that SO(4) is the group of rotations of S^3 , where we view S^3 as embedded into \mathbb{R}^4 as a sphere centred at 0. The only subgroups of SO(4) which act freely on S^3 are the finite subgroups. Identify $\mathbb{R}^4 \simeq \mathbb{C}^2$, let ζ be a primitive pth root of unity (for some $p \in \mathbb{Z}$), let q be coprime to p, and let $\mathbb{Z}/p\mathbb{Z} \simeq \langle \zeta \rangle$ act on S^3 by

$$\zeta \cdot (w, z) := (\zeta w, \zeta^p z).$$

Give matrix representatives in SO(4) for this action (the group isomorphism class depends only on p, but the action depends on p and q); and a fundamental domain for the action.

This is the **Lens space** L(p,q) (Bredon, example 7.4).

- (d) Show that the trefoil knot complement is diffeomorphic to $PSL(2,\mathbb{R})/PSL(2,\mathbb{Z})$ and hence the trefoil knot complement is a $\widetilde{PSL}(2,\mathbb{R})$ -manifold. (See for instance https://math.stackexchange.com/a/3115852.)
- (e) Let $T = \mathbb{R}^2/\mathbb{Z}^2$ be the 2-torus.
 - i. Show that the linear automorphism of \mathbb{R}^2 represented by $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ descends to T. The resulting map on the torus is the **Arnold's cat map** α .
 - ii. Draw the mapping torus of α , $(T \times [0,1])/((x,1) \sim (\alpha(x),0))$. This manifold is a Sol-manifold.