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HYPERBOLIC 2-SPACE, H?

244, Circle Limit lll, waodeut, 195¢

[M.C. Escher (1959)]




HYPERBOLIC 3-SPACE, H3: TILING BY DODECAHEDRA

[Pierre Berger https://www.espaces-imaginaires.fr/works/ExpoEspacesImaginaires2.html]



https://www.espaces-imaginaires.fr/works/ExpoEspacesImaginaires2.html
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DAWN OF 3-DIMENSIONAL GEOMETRY AND TOPOLOGY

Theorem (Robert Riley (c.1974); William P. Thurston (c.1975))
The complement of the figure 8 knot,

S*\ k(5/3),

admits a hyperbolic geometry.

Theorem (Thurston (c.1979))
Almost every knot complement’ admits a hyperbolic geometry.

"All but a small family of tabulated exceptions



THE HYPERBOLIC STRUCTURE

[Guéritaud/Segerman/Schleimer, https://youtu.be/xGf5jY_v5GE]



https://youtu.be/xGf5jY_v5GE

THE BORROMEAN RINGS COMPLEMENT

[Gunn/Maxwell, Not Knot]




IDEA: VISUALISE KNOT COMPLEMENTS BY TILING

[Matsuzaki/Taniguchi, p.34]



WEEKS' ALGORITHM

SnapPea Algorithm (Jeff Weeks, ¢.1985)

1. Embed the knot in S2 x [-1, 1] ‘flatly’ around S? = {0}.
2. Cut straight down along the dual graph & the knot graph.

3. Collapse the quadrilateral slices to tetrahedra.
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4. Glue four cusps onto these vertices to get spherical

tetrahedra.
5. Do a bit of fiddling to get the hyperbolic geometry back.

8]



THIS GIVES ALL HYPERBOLIC MANIFOLDS

Theorem (Thurston, ¢1979)

Every hyperbolic 3-manifold can be obtained by ‘Dehn surgery’
along some hyperbolic link.

Thus Weeks’ algorithm triangulates every hyperbolic 3-manifold.




KLEINIAN GROUPS

Theorem (Hyperbolic developing)

Let M be a hyperbolic orbifold. Then M is isometric to a orbifold
of the form H? /G for some discrete group G of hyperbolic
isometries (called the holonomy group of M). Conversely, given
any discrete group G < Isom*(H3), H3/G is a hyperbolic orbifold.

Definition
A discrete group G < Isom*(H?) is called a Kleinian group.




ACTION AT INFINITY

. - .

Theorem (Poincaré extension)

There is a natural isomorphism between the
group Isom*(H?) of orientation-preserving
hyperbolic isometries and the group

PSL(2, C) of conformal maps on oH?> = C.

Example (Robert Riley, c.1972)

The holonomy group of the figure 8 knot
complement is

11 1 0
0 117 - exp(2n/3) 1 . [M.C. Escher (1957)]




THE LIMIT SET

The dynamics of the action of a Kleinian group G on C are
complicated. There is a partition C = Q(G) u A(G) similar to the
partition between the Fatou and Julia sets of a holomorphic
dynamical system.

Definition

If G is non-elementary, then the limit set of G is the closure of
the set of fixed points of elements of G.



EXAMPLES

Figure 8 knot group (dense in C)
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EXAMPLES

Elliptic Riley groups
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EXAMPLES

Left: parabolic Riley group. Right: Indra’s Necklace group.




REMARK: WHY IS THIS IMPORTANT?

Theorem (Thurston (c.1979); The ending lamination theorem

(Epstein/Marden/Minsky))

If G is non-degenerate? then there is a strong deformation retract

H3 u Q(G) . h.conv A(G)
G G

and the ‘folding structure’ on the convex hull determines the
hyperbolic geometry entirely.

2non-Fuchsian and non-elementary



BuUG ON NOTES OF THURSTON
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[Jeffrey Brock and David Dumas, https://www.dumas.io/poster/]


https://www.dumas.io/poster/

ALGORITHMS FOR COMPUTING LIMIT SETS

m Let G be Kleinian (and non-elementary); we want to compute
NG).




ALGORITHMS FOR COMPUTING LIMIT SETS

m Let G be Kleinian (and non-elementary); we want to compute
A(G).
m The basic idea is to use the following pair of lemmata:




ALGORITHMS FOR COMPUTING LIMIT SETS

m Let G be Kleinian (and non-elementary); we want to compute
A(G).
m The basic idea is to use the following pair of lemmata:
> Fixed points of loxodromic elements of G lie in A(G).




ALGORITHMS FOR COMPUTING LIMIT SETS

m Let G be Kleinian (and non-elementary); we want to compute
A(G).
m The basic idea is to use the following pair of lemmata:

> Fixed points of loxodromic elements of G lie in A(G).
> If z e A(G) then Gz is dense in A(G).




ALGORITHMS FOR COMPUTING LIMIT SETS

m Let G be Kleinian (and non-elementary); we want to compute
A(G).
m The basic idea is to use the following pair of lemmata:
> Fixed points of loxodromic elements of G lie in A(G).
> If z e \(G) then Gz is dense in A(G).
m In the case of interest to me, loxodromic elements are easy
to find — we can take ‘Farey words'.




ALGORITHMS FOR COMPUTING LIMIT SETS

m Let G be Kleinian (and non-elementary); we want to compute
A(G).
m The basic idea is to use the following pair of lemmata:
> Fixed points of loxodromic elements of G lie in A(G).
> If z e \(G) then Gz is dense in A(G).
m In the case of interest to me, loxodromic elements are easy
to find — we can take ‘Farey words'.

m So the problem is reduced to (1) enumerating ‘lots of words’,
and (2) doing matrix products quickly.




ALGORITHMS FOR COMPUTING LIMIT SETS

m Let G be Kleinian (and non-elementary); we want to compute
N(G).
m The basic idea is to use the following pair of lemmata:
> Fixed points of loxodromic elements of G lie in A(G).
> If z e A(G) then Gz is dense in A(G).
m In the case of interest to me, loxodromic elements are easy
to find — we can take ‘Farey words'.
m So the problem is reduced to (1) enumerating ‘lots of words’,
and (2) doing matrix products quickly.
m These are standard problems in computational
combinatorial group theory.



A DEFINITION

The (a, b)-Riley slice, R%?, is the set of p € C such that the limit
set of the matrix group

erri/a 1 erri/b 0
[ o= e o
p <[ 0 em/a]r [ p eﬂl/b]>

is neither dense in a circle packing, nor dense in C.




LIMIT SET DEFORMATIONS IN R>

(d)p=17i (e)p=15i (f)p=+2i




SMALL PRINT

m The definition | gave is hiding the term ‘quasiconformal
deformation space’ behind the geometry of limit sets.

m Equivalent definition: R%? is the moduli space of hyperbolic
orbifolds (...together with conformal boundary...)
homeomorphic to a 3-ball with two cone arcs, one of order a
and one of order b (whose boundary is a sphere with two
a-cone points and two b-cone points).

m The closure Rab is the moduli space of discrete groups, free
on two elliptic generators (where we view parabolic
elements as limiting cases of elliptic elements).

m Discrete groups in the exterior C \ R@b parameterise the
2-bridge link groups and their ‘untwistings’ (Heckoid groups).



THE KEEN-SERIES RATIONAL LAMINATION

Theorem (Linda Keen & Caroline Series (1994); Yohei Komori

& Series (1998); Elzenaar, Martin, Schillewaert (2022))

There exists a dense foliation of R*? by smooth analytic curves,
indexed by p/q € Q, such that

1. When moving along each curve, the combinatorial properties
of the circle chains in the limit set are preserved.
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THE KEEN-SERIES RATIONAL LAMINATION

Theorem (Linda Keen & Caroline Series (1994); Yohei Komori

& Series (1998); Elzenaar, Martin, Schillewaert (2022))

There exists a dense foliation of R*? by smooth analytic curves,
indexed by p/q € Q, such that

1. When moving along each curve, the combinatorial properties
of the circle chains in the limit set are preserved.

2. The curve is a connected component of the inverse image of
(-0, -2) under some Farey polynomial Dyq (which depends
on a and b).

3. The inverse images of -2 which lie at the ends of the curves
(called cusp points) are dense in the boundary of R%P [Curtis
McMullen, 1991]; they have circle packing limit sets and the
points corresponding to different curves are distinct
[Keen/MasRit/Series, 1991].



THE KEEN—-SERIES RATIONAL LAMINATION OF R*'®

[Yasushi Yamashita, c.2007]




A METHOD FOR DRAWING THE RILEY SLICE BOUNDARY

AND EXTERIOR

1. Compute all of the Farey polynomials. (A priori, each such
computation requires 2g matrix multiplications. We have a
recurrence relation that computes them all just with
polynomial arithmetic [EMS22].)

2. Compute all of the inverse images CD;/q(—z). (This is the
computationally hard step. Geometric arguments show that
even the inverse images which are not cusps lie in the

exterior of the slice)




The points CD;/q(—Z) (p/q € Q) are dense in R%P,

o

Some work has been done by Jane Gilman (2008) to explain the
patterns of density that are visible (the ‘parabolic dust’).
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