PICTURES OF HYPERBOLIC SPACES

ALEX ELZENAAR

(MPI-MIS)

MAY 3, 2022

Hyperbolic 2-space, \mathbb{H}^2

[M.C. Escher (1959)]

Hyperbolic 3-space, \mathbb{H}^3 : tiling by dodecahedra

[Pierre Berger https://www.espaces-imaginaires.fr/works/ExpoEspacesImaginaires2.html]

The figure 8 knot k(5/3)

[Francis, p.150]

Theorem (Robert Riley (c.1974); William P. Thurston (c.1975))

The complement of the figure 8 knot,

 $S^3 \setminus k(5/3),$

admits a hyperbolic geometry.

Theorem (Thurston (c.1979))

Almost every knot complement¹ admits a hyperbolic geometry.

4

¹All but a small family of tabulated exceptions

THE HYPERBOLIC STRUCTURE

[Guéritaud/Segerman/Schleimer, https://youtu.be/xGf5jY_v5GE]

THE BORROMEAN RINGS COMPLEMENT

[Gunn/Maxwell, Not Knot]

IDEA: VISUALISE KNOT COMPLEMENTS BY TILING

[Matsuzaki/Taniguchi, p.34]

Weeks' algorithm

SnapPea Algorithm (Jeff Weeks, c.1985)

- 1. Embed the knot in $S^2 \times [-1, 1]$ 'flatly' around $S^2 \times \{0\}$.
- 2. Cut straight down along the dual graph & the knot graph.

3. Collapse the quadrilateral slices to tetrahedra.

- 4. Glue four cusps onto these vertices to get spherical tetrahedra.
- 5. Do a bit of fiddling to get the hyperbolic geometry back.

Theorem (Thurston, c.1979)

Every hyperbolic 3-manifold can be obtained by 'Dehn surgery' along some hyperbolic link.

Thus Weeks' algorithm triangulates every hyperbolic 3-manifold.

Theorem (Hyperbolic developing)

Let M be a hyperbolic orbifold. Then M is isometric to a orbifold of the form \mathbb{H}^3/G for some discrete group G of hyperbolic isometries (called the **holonomy group** of M). Conversely, given any discrete group $G \leq \text{Isom}^+(\mathbb{H}^3)$, \mathbb{H}^3/G is a hyperbolic orbifold.

Definition

A discrete group $G \leq \text{Isom}^{+}(\mathbb{H}^{3})$ is called a **Kleinian group**.

Theorem (Poincaré extension)

There is a natural isomorphism between the group Isom⁺(\mathbb{H}^3) of orientation-preserving hyperbolic isometries and the group PSL(2, \mathbb{C}) of conformal maps on $\partial \mathbb{H}^3 = \hat{\mathbb{C}}$.

Example (Robert Riley, c.1972)

The holonomy group of the figure 8 knot complement is

$$\left\langle \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -\exp(2\pi/3) & 1 \end{bmatrix} \right\rangle.$$

[M.C. Escher (1957)]

The dynamics of the action of a Kleinian group G on $\hat{\mathbb{C}}$ are complicated. There is a partition $\hat{\mathbb{C}} = \Omega(G) \cup \Lambda(G)$ similar to the partition between the Fatou and Julia sets of a holomorphic dynamical system.

Definition

If G is non-elementary, then the **limit set** of G is the closure of the set of fixed points of elements of G.

EXAMPLES

Figure 8 knot group (dense in $\hat{\mathbb{C}}$)

Elliptic Riley groups

Left: parabolic Riley group. Right: Indra's Necklace group.

Theorem (Thurston (c.1979); The ending lamination theorem (Epstein/Marden/Minsky))

If G is non-degenerate² then there is a strong deformation retract

$$\frac{\mathbb{H}^3 \cup \Omega(G)}{G} \twoheadrightarrow \frac{\text{h.conv} \Lambda(G)}{G}$$

and the 'folding structure' on the convex hull determines the hyperbolic geometry entirely.

²non-Fuchsian and non-elementary

BUG ON NOTES OF THURSTON

Let G be Kleinian (and non-elementary); we want to compute $\Lambda(G)$.

- Let G be Kleinian (and non-elementary); we want to compute $\Lambda(G)$.
- The basic idea is to use the following pair of lemmata:

- Let G be Kleinian (and non-elementary); we want to compute $\Lambda(G)$.
- The basic idea is to use the following pair of lemmata:
 - Fixed points of loxodromic elements of G lie in $\Lambda(G)$.

- Let G be Kleinian (and non-elementary); we want to compute $\Lambda(G)$.
- The basic idea is to use the following pair of lemmata:
 - Fixed points of loxodromic elements of G lie in $\Lambda(G)$.
 - If $z \in \Lambda(G)$ then Gz is dense in $\Lambda(G)$.

- Let G be Kleinian (and non-elementary); we want to compute $\Lambda(G)$.
- The basic idea is to use the following pair of lemmata:
 - Fixed points of loxodromic elements of G lie in $\Lambda(G)$.
 - If $z \in \Lambda(G)$ then Gz is dense in $\Lambda(G)$.
- In the case of interest to me, loxodromic elements are easy to find — we can take 'Farey words'.

- Let G be Kleinian (and non-elementary); we want to compute $\Lambda(G)$.
- The basic idea is to use the following pair of lemmata:
 - Fixed points of loxodromic elements of G lie in $\Lambda(G)$.
 - If $z \in \Lambda(G)$ then Gz is dense in $\Lambda(G)$.
- In the case of interest to me, loxodromic elements are easy to find — we can take 'Farey words'.
- So the problem is reduced to (1) enumerating 'lots of words', and (2) doing matrix products quickly.

- Let G be Kleinian (and non-elementary); we want to compute $\Lambda(G)$.
- The basic idea is to use the following pair of lemmata:
 - Fixed points of loxodromic elements of G lie in $\Lambda(G)$.
 - If $z \in \Lambda(G)$ then Gz is dense in $\Lambda(G)$.
- In the case of interest to me, loxodromic elements are easy to find — we can take 'Farey words'.
- So the problem is reduced to (1) enumerating 'lots of words', and (2) doing matrix products quickly.
- These are standard problems in computational combinatorial group theory.

A DEFINITION

The (a, b)-**Riley slice**, $\mathcal{R}^{a,b}$, is the set of $\rho \in \mathbb{C}$ such that the limit set of the matrix group

$$\Gamma_{\rho} \coloneqq \left\langle \begin{bmatrix} e^{\pi i/a} & 1\\ 0 & e^{-\pi i/a} \end{bmatrix}, \begin{bmatrix} e^{\pi i/b} & 0\\ \rho & e^{-\pi i/b} \end{bmatrix} \right\rangle$$

is neither dense in a circle packing, nor dense in $\hat{\mathbb{C}}.$

19

Limit set deformations in $\mathcal{R}^{5,\infty}$

- The definition I gave is hiding the term 'quasiconformal deformation space' behind the geometry of limit sets.
- Equivalent definition: R^{a,b} is the moduli space of hyperbolic orbifolds (...together with conformal boundary...) homeomorphic to a 3-ball with two cone arcs, one of order a and one of order b (whose boundary is a sphere with two a-cone points and two b-cone points).
- The closure R^{a,b} is the moduli space of discrete groups, free on two elliptic generators (where we view parabolic elements as limiting cases of elliptic elements).
- Discrete groups in the exterior C \ *R^{a,b}* parameterise the 2-bridge link groups and their 'untwistings' (Heckoid groups).

THE KEEN-SERIES RATIONAL LAMINATION

Theorem (Linda Keen & Caroline Series (1994); Yohei Komori & Series (1998); Elzenaar, Martin, Schillewaert (2022))

There exists a dense foliation of $\mathcal{R}^{a,b}$ by smooth analytic curves, indexed by $p/q \in \mathbb{Q}$, such that

1. When moving along each curve, the combinatorial properties of the circle chains in the limit set are preserved.

THE KEEN-SERIES RATIONAL LAMINATION

Theorem (Linda Keen & Caroline Series (1994); Yohei Komori & Series (1998); Elzenaar, Martin, Schillewaert (2022))

There exists a dense foliation of $\mathcal{R}^{a,b}$ by smooth analytic curves, indexed by $p/q \in \mathbb{Q}$, such that

- 1. When moving along each curve, the combinatorial properties of the circle chains in the limit set are preserved.
- The curve is a connected component of the inverse image of (-∞, -2) under some Farey polynomial Φ_{p/q} (which depends on a and b).

THE KEEN-SERIES RATIONAL LAMINATION

Theorem (Linda Keen & Caroline Series (1994); Yohei Komori & Series (1998); Elzenaar, Martin, Schillewaert (2022))

There exists a dense foliation of $\mathcal{R}^{a,b}$ by smooth analytic curves, indexed by $p/q \in \mathbb{Q}$, such that

- 1. When moving along each curve, the combinatorial properties of the circle chains in the limit set are preserved.
- The curve is a connected component of the inverse image of (-∞, -2) under some Farey polynomial Φ_{p/q} (which depends on a and b).
- 3. The inverse images of -2 which lie at the ends of the curves (called **cusp points**) are dense in the boundary of $\mathcal{R}^{a,b}$ [Curtis McMullen, 1991]; they have circle packing limit sets and the points corresponding to different curves are distinct [Keen/Maskit/Series, 1991].

The Keen–Series rational lamination of $\mathcal{R}^{\infty,\infty}$

[Yasushi Yamashita, c.2007]

A method for drawing the Riley slice boundary and exterior

- Compute all of the Farey polynomials. (A priori, each such computation requires 2q matrix multiplications. We have a recurrence relation that computes them all just with polynomial arithmetic [EMS22].)
- 2. Compute all of the inverse images $\Phi_{p/q}^{-1}(-2)$. (This is the computationally hard step. Geometric arguments show that even the inverse images which are not cusps lie in the exterior of the slice)

Conjecture

The points $\Phi_{p/q}^{-1}(-2)$ $(p/q \in \mathbb{Q})$ are dense in $\mathcal{R}^{a,b}$.

Some work has been done by Jane Gilman (2008) to explain the patterns of density that are visible (the 'parabolic dust').

25

26

Bedtime reading

- George K. Francis, A topological picturebook (Springer, 1987)
- William P. Thurston, Geometry and topology of 3-manifolds (unpublished lecture notes, c.1979)
- William P. Thurston, Three-dimensional geometry and topology, Vol. 1 (Princeton, 1997)
- Jeff Weeks, "Computation of hyperbolic structures in knot theory". In: *Handb. of Knot Theory* (Elsevier, 2005)
- David Mumford, Caroline Series, David Wright, Indra's pearls (Cambridge, 2002)
- Albert Marden, *Hyperbolic manifolds* (Cambridge, 2015)
- Jessica Purcell, Hyperbolic knot theory (AMS, 2021)