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HYPERBOLIC 2-SPACE, ℍ2

[M.C. Escher (1959)]
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HYPERBOLIC 3-SPACE, ℍ3: TILING BY DODECAHEDRA

[Pierre Berger https://www.espaces-imaginaires.fr/works/ExpoEspacesImaginaires2.html]
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THE FIGURE 8 KNOT 𝑘(5/3)

[Francis, p.150]
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DAWN OF 3-DIMENSIONAL GEOMETRY AND TOPOLOGY

Theorem (Robert Riley (c.1974); William P. Thurston (c.1975))
The complement of the figure 8 knot,

𝑆3 \ 𝑘(5/3),

admits a hyperbolic geometry.

Theorem (Thurston (c.1979))
Almost every knot complement1 admits a hyperbolic geometry.

1All but a small family of tabulated exceptions
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THE HYPERBOLIC STRUCTURE

[Guéritaud/Segerman/Schleimer, https://youtu.be/xGf5jY_v5GE]
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THE BORROMEAN RINGS COMPLEMENT

[Gunn/Maxwell, Not Knot]
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IDEA: VISUALISE KNOT COMPLEMENTS BY TILING

[Matsuzaki/Taniguchi, p.34]
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WEEKS’ ALGORITHM

SnapPea Algorithm (Jeff Weeks, c.1985)

1. Embed the knot in 𝑆2 × [−1, 1] ‘flatly’ around 𝑆2 × {0}.
2. Cut straight down along the dual graph & the knot graph.

3. Collapse the quadrilateral slices to tetrahedra.

4. Glue four cusps onto these vertices to get spherical
tetrahedra.

5. Do a bit of fiddling to get the hyperbolic geometry back.
8 26



THIS GIVES ALL HYPERBOLIC MANIFOLDS

Theorem (Thurston, c.1979)
Every hyperbolic 3-manifold can be obtained by ‘Dehn surgery’
along some hyperbolic link.

Thus Weeks’ algorithm triangulates every hyperbolic 3-manifold.
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KLEINIAN GROUPS

Theorem (Hyperbolic developing)
Let 𝑀 be a hyperbolic orbifold. Then 𝑀 is isometric to a orbifold
of the form ℍ3/𝐺 for some discrete group 𝐺 of hyperbolic
isometries (called the holonomy group of 𝑀). Conversely, given
any discrete group 𝐺 ≤ Isom+(ℍ3), ℍ3/𝐺 is a hyperbolic orbifold.

Definition
A discrete group 𝐺 ≤ Isom+(ℍ3) is called a Kleinian group.
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ACTION AT INFINITY

Theorem (Poincaré extension)
There is a natural isomorphism between the
group Isom+(ℍ3) of orientation-preserving
hyperbolic isometries and the group
PSL(2, ℂ) of conformal maps on 𝜕ℍ3 = ℂ̂.

Example (Robert Riley, c.1972)
The holonomy group of the figure 8 knot
complement is

⟨ [1 1
0 1] , [

1 0
− exp(2𝜋/3) 1] ⟩ . [M.C. Escher (1957)]
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THE LIMIT SET

The dynamics of the action of a Kleinian group 𝐺 on ℂ̂ are
complicated. There is a partition ℂ̂ = Ω(𝐺) ∪ Λ(𝐺) similar to the
partition between the Fatou and Julia sets of a holomorphic
dynamical system.

Definition
If 𝐺 is non-elementary, then the limit set of 𝐺 is the closure of
the set of fixed points of elements of 𝐺.
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EXAMPLES

Figure 8 knot group (dense in ℂ̂)
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EXAMPLES

Elliptic Riley groups
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EXAMPLES

Left: parabolic Riley group. Right: Indra’s Necklace group.
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REMARK: WHY IS THIS IMPORTANT?

Theorem (Thurston (c.1979); The ending lamination theorem
(Epstein/Marden/Minsky))
If 𝐺 is non-degenerate2 then there is a strong deformation retract

ℍ3 ∪ Ω(𝐺)
𝐺 ↠ h.conv Λ(𝐺)

𝐺
and the ‘folding structure’ on the convex hull determines the
hyperbolic geometry entirely.

2non-Fuchsian and non-elementary
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BUG ON NOTES OF THURSTON

[Jeffrey Brock and David Dumas, https://www.dumas.io/poster/]
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ALGORITHMS FOR COMPUTING LIMIT SETS

Let 𝐺 be Kleinian (and non-elementary); we want to compute
Λ(𝐺).

The basic idea is to use the following pair of lemmata:
▶ Fixed points of loxodromic elements of 𝐺 lie in Λ(𝐺).
▶ If 𝑧 ∈ Λ(𝐺) then 𝐺𝑧 is dense in Λ(𝐺).

In the case of interest to me, loxodromic elements are easy
to find — we can take ‘Farey words’.
So the problem is reduced to (1) enumerating ‘lots of words’,
and (2) doing matrix products quickly.
These are standard problems in computational
combinatorial group theory.
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A DEFINITION

The (𝑎, 𝑏)-Riley slice, R𝑎,𝑏, is the set of 𝜌 ∈ ℂ such that the limit
set of the matrix group

Γ𝜌 ≔ ⟨ [
𝑒𝜋𝑖/𝑎 1
0 𝑒−𝜋𝑖/𝑎] , [

𝑒𝜋𝑖/𝑏 0
𝜌 𝑒−𝜋𝑖/𝑏] ⟩

is neither dense in a circle packing, nor dense in ℂ̂.
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LIMIT SET DEFORMATIONS IN R5,∞

(a) 𝜌 = 4𝑖 (b) 𝜌 = 3𝑖 (c) 𝜌 = 2𝑖 (cusp group)

(d) 𝜌 = 1.7𝑖 (e) 𝜌 = 1.5𝑖 (f) 𝜌 = √2𝑖
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SMALL PRINT

The definition I gave is hiding the term ‘quasiconformal
deformation space’ behind the geometry of limit sets.
Equivalent definition: R𝑎,𝑏 is the moduli space of hyperbolic
orbifolds (...together with conformal boundary...)
homeomorphic to a 3-ball with two cone arcs, one of order 𝑎
and one of order 𝑏 (whose boundary is a sphere with two
𝑎-cone points and two 𝑏-cone points).
The closure R𝑎,𝑏 is the moduli space of discrete groups, free
on two elliptic generators (where we view parabolic
elements as limiting cases of elliptic elements).
Discrete groups in the exterior ℂ \R𝑎,𝑏 parameterise the
2-bridge link groups and their ‘untwistings’ (Heckoid groups).
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THE KEEN–SERIES RATIONAL LAMINATION

Theorem (Linda Keen & Caroline Series (1994); Yohei Komori
& Series (1998); Elzenaar, Martin, Schillewaert (2022))
There exists a dense foliation of R𝑎,𝑏 by smooth analytic curves,
indexed by 𝑝/𝑞 ∈ ℚ, such that
1. When moving along each curve, the combinatorial properties
of the circle chains in the limit set are preserved.

2. The curve is a connected component of the inverse image of
(−∞, −2) under some Farey polynomial Φ𝑝/𝑞 (which depends
on 𝑎 and 𝑏).

3. The inverse images of −2 which lie at the ends of the curves
(called cusp points) are dense in the boundary of R𝑎,𝑏 [Curtis
McMullen, 1991]; they have circle packing limit sets and the
points corresponding to different curves are distinct
[Keen/Maskit/Series, 1991].

22 26



THE KEEN–SERIES RATIONAL LAMINATION

Theorem (Linda Keen & Caroline Series (1994); Yohei Komori
& Series (1998); Elzenaar, Martin, Schillewaert (2022))
There exists a dense foliation of R𝑎,𝑏 by smooth analytic curves,
indexed by 𝑝/𝑞 ∈ ℚ, such that
1. When moving along each curve, the combinatorial properties
of the circle chains in the limit set are preserved.

2. The curve is a connected component of the inverse image of
(−∞, −2) under some Farey polynomial Φ𝑝/𝑞 (which depends
on 𝑎 and 𝑏).

3. The inverse images of −2 which lie at the ends of the curves
(called cusp points) are dense in the boundary of R𝑎,𝑏 [Curtis
McMullen, 1991]; they have circle packing limit sets and the
points corresponding to different curves are distinct
[Keen/Maskit/Series, 1991].

22 26



THE KEEN–SERIES RATIONAL LAMINATION

Theorem (Linda Keen & Caroline Series (1994); Yohei Komori
& Series (1998); Elzenaar, Martin, Schillewaert (2022))
There exists a dense foliation of R𝑎,𝑏 by smooth analytic curves,
indexed by 𝑝/𝑞 ∈ ℚ, such that
1. When moving along each curve, the combinatorial properties
of the circle chains in the limit set are preserved.

2. The curve is a connected component of the inverse image of
(−∞, −2) under some Farey polynomial Φ𝑝/𝑞 (which depends
on 𝑎 and 𝑏).

3. The inverse images of −2 which lie at the ends of the curves
(called cusp points) are dense in the boundary of R𝑎,𝑏 [Curtis
McMullen, 1991]; they have circle packing limit sets and the
points corresponding to different curves are distinct
[Keen/Maskit/Series, 1991].

22 26



THE KEEN–SERIES RATIONAL LAMINATION OF R∞,∞

[Yasushi Yamashita, c.2007]
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A METHOD FOR DRAWING THE RILEY SLICE BOUNDARY
AND EXTERIOR

1. Compute all of the Farey polynomials. (A priori, each such
computation requires 2𝑞 matrix multiplications. We have a
recurrence relation that computes them all just with
polynomial arithmetic [EMS22].)

2. Compute all of the inverse images Φ−1
𝑝/𝑞(−2). (This is the

computationally hard step. Geometric arguments show that
even the inverse images which are not cusps lie in the
exterior of the slice)
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Conjecture
The points Φ−1

𝑝/𝑞(−2) (𝑝/𝑞 ∈ ℚ) are dense in R𝑎,𝑏.

Some work has been done by Jane Gilman (2008) to explain the
patterns of density that are visible (the ‘parabolic dust’).
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