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Abstract

The goal of these three talks is to cover the material of a 2007 paper by Jowsig, Sturmfels, and Yu
[JSY07] that applies tropical geometry to the problem of computation in the Bruhat-Tits building of
SL(n,K), where K is a field with non-trivial valuation. The first two talks are introductory talks leading
up to the content of the paper; the first also includes some material on tropical algebraic geometry,
following e.g. [IMS07], [MS15], [Mac11], or [RST03], and the second includes a basic introduction to
buldings, following e.g. [AB08]. The talks should be accessible to anyone with a basic understanding
of algebraic geometry (i.e. there is no dependence on any of the theory of toric varieties, and no prior
knowledge of buildings should be needed). In addition the first and second talks are mutually independent
(though both are needed for the third talk).
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Talk I: Tropical geometry
According to [IMS07], ‘tropical geometry first appeared as a subject on its own in 2002’; the name of the
subject honours the Brazillian mathematician Imre Simon who used the tropical semiring in the 1980s to
study optimisation theory, while the algebro-geometric connection may be traced back to work by George
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M. Bergman in the 1970s. Tropical geometry is intimately related to the study of toric varieties and to the
fields of combinatorial geometry and combinatorial commutative algebra; our interest in it here is primarily
the study of tropicalisations of convex sets, since such objects are precisely the images under a valuation of
convex sets in a field — we will use them to study convex hulls in Bruhat-Tits buildings.

I.1 Tropicalisation
Let k be a (possibly not algebraically closed) field. The philosophy of tropical geometry is the existence of
a map

trop ∶ {deformable classical structures over k} → {combinatorial structures over ℝ} (1)
such that

trop f = lim
"→0

− log"||f (")|| (2)
(where f (") is the deformation of f by ").

Of course − log|⋅| is only defined if k is something like ℝ or ℂ. Thus we need to provide an analogous
structure on k for this philosophy to be of any use. The most useful ‘k→ ℝmaps’ turn out to be valuations:
I.1 Definition. A valuation on k is a map � ∶ k→ ℝ ∪ {∞} such that for all a, b ∈ k:

1. �(ab) = �(a) + �(b) (motivation: − log|ab| = − log|a| − log|b|)
2. �(a + b) ≤ min{�(a), �(b)} (motivation: − log|x + y| ≤ min{− log|x| ,− log|y|})
3. �(a) = ∞ iff a = 0. (motivation: − log|x| = ∞ iff x = 0)

We will also require our valuations to be anti-compatible with any ordering ≤ on k; namely, a ≤ b ⟹

�(a) ≥ �(b). (motivation: − log is monotone decreasing)
I.2 Lemma. 1. �(1) = 0

2. �(−a) = �(a) for all a ∈ k

3. if �(a) ≠ �(b) then �(a + b) = min{�(a), �(b)}

Note that we obtain, based on these properties, a natural semigroup structure on ℝ.
I.3 Definition. The tropical semiring T is the semiring supported on ℝ̄ ≔ ℝ ∪ {∞} with addition
a ⊕ b ≔ min{a, b} and multiplication a ⊙ b ≔ a + b. The semiring is endowed with a total ordering given
by extending that of ℝ in the obvious way.

Note that some authors (e.g. [IMS07]) take a ⊕ b ≔ max{a, b}. This makes sense if one replaces
− log|⋅| in Eq. (1) with log|⋅|, as log(x + y) ≈ max{log|x| , log|y|} whenever x and y are of different
magnitude (c.f. part 3 of Lemma I.2). Of course the two structures are equivalent; but we prefer the min
formulation as it is what has become standard (despite the max formulation being older, indeed it was
studied as early as 1971 by Bergman — c.f. [MS15, section 1.4]). For a more comprehensive discusion of
this, see [Jos20, section 1.3].

We will usually define a map trop as in Eq. (1) by replacing every + with⊕, every ⋅ with ⊙, and every
field element with its valuation.
I.4 Definition. Let f ∈ k[X1, ..., Xr]. Then, if [X�1

1 ⋯X�r
r ]f denotes the coefficient of X�1

1 ⋯X�r
r in f

so
f =

∑

X�1
1 ⋯X�r

r ∈supp f

[X�1
1 ⋯X�r

r ]X
�1
1 ⋯X�r

r
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Figure 1: red: Y = −2 log"|X|; orange: Y = log"||2|| + log"|X|; blue: Y = log"||1||.

we define the tropicalisation trop f ∈ T [X1, ..., Xr] by
trop f ≔

⨁

X�1
1 ⋯X�r

r ∈supp f

�([X�1
1 ⋯X�r

r ])⊙X
�1
1 ⊙⋯⊙X�r

r .

Note that a tropical polynomial f ∈ T [X1, ..., Xr] defines a continuous finite-piecewise linear concavefunction ℝr → ℝ with integer coefficients for the non-constant terms; in fact the converse is also true, in
the sense that every continuous finite-piecewise linear concave function ℝr → ℝ with integer coefficients
for the non-constant terms is equal to the function defined by some tropical polynomial.

I.2 Tropical varieties
Finding a ‘zero’ of a tropical polynomial does not always make sense since there is no subtraction: consider
x ⊕ −1 = 0. Thus we need a tropical analogue of the zero locus of a polynomial.
I.5 Example. Recall that our motivation was taking logs of varieties. Consider f = (X − 1)2 ∈ ℂ[X], so
Z(f ) = {1}. Then

− log"|f | = − log"(X2 − 2X + 1) ≈ min{−2 log"|X| , log"||2|| + log"|X| , log"||1||};

if we graph this for " → 0 (Fig. 1) we see that, for sufficiently small " (in fact " < 1) we have that, at the
points X = ±1 (i.e. the zeros of f ), the minimum is attained twice. The reason for this is that when f
has a root at x, − log"||f (x)|| = −∞ so the approximation ≈ must fail badly at x; i.e. two of the summands
must be of similar magnitude and thus something must be cancelling, so the minimum is attained twice
(Note that ≈ in the above display means ‘approximately, when " is small and|f | is non-zero’.)

Based on this motivation∗ and on the ‘niceness’ of the results we obtain, the tropical analogue of a zero
is the following.
I.6 Definition. Let f ∈ T [X] be a tropical polynomial. We say that x ∈ T r is a root of f if the
piecewise function defined by f is non-differentiable at x. The set Z(f ) of roots of f is the zero locus or
non-differentiablity locus of f .

An example of such a ‘nice’ result is the following.
∗which goes deeper: indeed, it is a general philosophy in real algebraic geometry that the number of zeros depends on the number

of terms, not the degree, so we would expect a ‘realification’ of a variety to depend roughly on the number of terms of the original
polynomial
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I.7 Theorem (Tropical fundamental theorem of algebra). Let f ∈ T [X] be of degree n. Then the function
defined by f is equal to the function defined by (x ⊕ �1)⊙⋯⊙ (x ⊕ �n) for some �1, ..., �n ∈ ℝ̄; and this
factorisation is unique.

I.8 Example. Unique factorisation does not hold in more than one variable:
(x ⊕ 0)⊙ (y ⊕ 0)⊙ (x ⊙ y ⊕ 0) = (x ⊙ y ⊕ x ⊕ 0)⊙ (x ⊙ y ⊕ y ⊕ 0)

where all the bracketed factors are irreducible.
In general, if f ∈ T [X1, ..., Xr] is a tropical polynomial. we define Z(f ) to be the non-differentiablity

locus of the function defined by f .
I.9 Definition. Let Y be a variety in kr, and let a ⊆ k[X1, ..., Xr] be the corresponding ideal. We define

trop Y ≔
⋂

f∈a
Z(trop f ).

Note that trop Y is in fact determined by Y ∩(k∗)r = Y ∩m−Spec k[X±1
1 , ..., X±1

r ], since trop(Xmf ) =
trop f (indeed, trop(Xmf ) = Xm ⊙ trop f = Xm + trop f , and trop f is non-differentiable at a point iff
Xm + trop f is non-differerentiable there). Thus we will nearly always care only about subvarieties of the
torus.
I.10 Example. Tropicalisation of varieties does not commute with intersections. In particular, if S =
{f1, ..., fn} is a finite generating set for a, it is not necessarily true that trop Y = ⋂n

i=1 Z(trop fi). If equality
does hold, we call S a tropical basis for a. The study of such things belongs to the theory of Gröbner
bases over ℤ and can be used to study the presentations of discrete groups [MS15, section 1.6].

We may describe the structure of tropical varieties fairly easily:-
I.11 Theorem (Fundamental theorem of tropical algebraic geometry). Let K be an algebraically closed
field with nontrivial valuation �; let p ⊆ K[X±1

1 , ..., X±1
n ] be a prime ideal; and let Y ⊆ (K∗)n be the

variety of p. Then the following coincide:

1. the tropical variety trop Y ;

2. the closure in ℝn of the set

�(Y ) ≔ {(�(x1), ..., �(xn)) ∶ (x1, ..., xn) ∈ Y }.

Further, if w is any point in �(K∗)n ∩ trop Y , then �−1(w) ∩ Y is dense in Y .

Discussion of proof. The full details of the proof may be found as [MS15, theorem 3.2.3]. The idea is to
prove the result for the hypersurface case (which is itself non-trivial, see [MS15, theorem 3.1.3] which
uses Gröbner basis theory for the hypersurface proof) and then to use a projection to the hypersurface case
to prove the general result. mAk

A tropical variety is a particular kind of polyhedral complex.
I.12 Definition. A polyhedron Δ is the intersection of finitely many halfspaces; in particular, it is a closed
convex set (so the notion of faces makes sense). We will say that a polyhedron is Λ-rational for a lattice Λ
embedded in the ambient space ℝn if the vertices of Δ lie in Λ.

A polyhedral complex is a collection Σ of polyhedra such that:
1. If � ∈ Σ and � ⪯ � then � ∈ Σ.
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2. If �, � ∈ Σ then � ∩ � is a face of � and �.
A facet of Σ is a polyhedron � ∈ Σ that is maximal with respect to ⪯. The complex is pure of dimension
d if every facet of Σ has dimension d. We shall denote the set of d-dimensional polyhedra by Fd(Σ). It is
connected through codimension 1 if, for every two d-dimensional polytopes �, �′ ∈ Σ, there is a chain
� = �1, ..., �m = �′ of d-dimensional polytopes of Σ such that �i ∩ �i+1 is a facet of both �i and �i+1(1 ≤ i < m).

At each polyhedron � ∈ Σ the star of Σ at �, starΣ(�), is the smallest subcomplex of Σ consisting of
all the members of Σ with � as a face; we place a fan structure on it by taking the cone corresponding to
� ∈ starΣ(�) to be �̂ = ℝ≥0{x − y ∶ x ∈ �, y ∈ �}.

Our tropical varieties shall have some additional structure: they will turn out to be polyhedral complexes,
pure of dimension d, such that each facet is assigned a weight in a global way.
I.13 Definition. Let Σ be a Λ-rational fan in ℝn, pure of dimension d; the fan is weighted if it is endowed
with a function m ∶ Fd(�)→ ℕ. If � ∈ F(d−1)(Σ) then let L = span �; L is a (d −1)-dimensional subspace,
and so L ∩ Λ is a lattice of degree d − 1 andN(�) ∩ Λ = Λ∕(L ∩ Λ) is a lattice of degree n − d + 1.

Let � be a facet of Σ including � as a face; then (� + L)∕L is a lattice cone of dimension 1; let x� bethe first lattice point on this ray. Then Σ is balanced at � if
∑

�⪯�
m(�)x� = 0

and Σ is balanced if it is balanced at all � ∈ F(d−1)(Σ). A polyhedral complex Σ is balanced if the fan
starΣ(�) is balanced for all � ∈ F(d−1)(Σ).
I.14 Theorem (Structure theorem of tropical varieties). Let Y be a subvariety of (K∗)n of dimension d.
Then trop Y is the support of a balanced, weighted, �(K∗)-rational polyhedral complex, pure of dimension
d and connected through codimension 1.

Discussion of proof. The full details occupy sections 3.3 to 3.5 of [MS15]. We will briefly mention what
weighting function we need in order to make trop Y balanced; the idea is that if Y is irreducible of dimension
d and � is a maximal ‘ of the complex Σ that trop Y is supported on, then the vanishing set of all the
initial terms of a is a d-dimensional toric variety and hence (by toric algebraic geometry) is a union of
d-dimensional toric orbits; then the weight m(�) is the number of such orbits. (This is the content of
[MS15, lemma 3.4.7].) mAk

I.3 Tropical convexity
Let k be a field with a valuation � ∶ k→ ℝ that is surjective.

Recall that a cone in kn (for an ordered field k) is a set C such that C is closed under addition, and such
that k≥0C ⊆ C . For any set S we write posS for the smallest cone containing S. A cone C is polyhedral
if C = posS for|S| <∞. A cone is strongly convex if it does not contain any line.
I.15 Lemma. Let x1, ..., xr ∈ kn; a linear combination �1x1 +⋯ + �rxr is positive if each �i ∈ k≥0. If
S ≠ ∅, then posS is the set of all positive combinations of finitely many elements of S.

These characterisations may be tropicalised.
I.16 Definition. A set C ⊆ T n is a tropical cone if it is closed under tropical addition and tropical scalar
multiplication. If S ⊆ T n is any subset, we write tposS for the set of all tropical linear combinations
�1 ⊙ x1 ⊕⋯⊕ �r ⊙ xr where the xi ∈ S and the �i ∈ T . A tropical cone C is polyhedral if C = tposS
for|S| <∞
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Note that we are replacing k≥0 with T , not T≥0. This is because �(k≥0) hits every element of T (indeed,
�(−x) = �(x) for all x ∈ k).
I.17 Lemma. For every cone C ⊆ kn, �(C) is a cone in T n and conversely every cone arises in this way.
C is polyhedral iff �(C) is polyhedral.

Now we characterise convexity. A set X ⊆ ℙV for V a finite dimensional vector space over k (here
ℙV denotes the projective space obtained from V , i.e. ℙV = V ⧵ {0}∕ ∼ where a ∼ b iff a = �b for some
� ∈ k, and dimℙV = dimV −1) is convex if its inverse image in V is convex. Note that the inverse image
will be a cone; if the cone is polyhedral then X is called a polytope.
I.18 Definition. We define tropical projective space of dimension n to be the set ℙT n ≔ T n+1 ⧵ {∞}∕ ∼
where a ∼ b iff a = � ⊙ b for some � ∈ T .

Note that � ⊙ b = �1 + b; hence as a set we have that ℙT n = T n+1 ⧵ {∞}∕ℝ1, equipped with the
canonical projection v ↦ v +ℝ1 and the standard basis (e1, ..., en+1) given by ei = (∞, ...,∞, 0,∞, ...,∞)where the 0 is in the ith position.
Remark. The tropical projective space ℙT n is a compactification of ℝn+1∕ℝ1 such that the pair of spaces
(ℙT n,ℝn+1∕ℝ1) is homeomorphic to the pair of spaces (Δn, int Δn) (Δn = conv{e1, ..., en+1} the standard
n-simplex in ℝn + 1). [Jos20, proposition 5.3]

If v ∈ ℙT n, the vector of canonical coordinates for v is the uniquew ∈ T n+1 such that each component
of w is non-negative and has at least one zero coordinate. We write|v| for this vector.
I.19 Definition. A subset X ⊆ ℙT n is tropically convex if it arises as the image of a cone under the
canonical projection T n+1 → ℙT n. If S ⊆ ℙT n is any subset, we define the convex hull tconvS to be the
smallest tropically convex set containing S; it is the image of the set of tropical positive combinations of
elements of X under the canonical projection:

tconvM ≔ {�1 ⊙||x1||⊕⋯⊕ �r ⊙||xr|| +ℝ1 ∶ r ∈ ℕ, �1, ..., �r ∈ T , x1, ..., xr ∈ T n+1}

I.20 Theorem (Properties of tropically convex sets). 1. Intersections of tropically convex sets are trop-
ically convex.

2. (Carathéodory’s theorem) If x ∈ K = tconv{x1, ..., xr} in ℙT n with r > n, then x is a tropical
linear combination of n − 1 of the xi. [Jos20, theorem 5.37]

3. Tropical linear spaces are tropically convex. [MS15, proposition 5.2.8]

4. Tropical polytopes are compact.

5. The tropical line segment trop[p, q] ≔ tconv{p, q} in Tℙn is the union of at most n classical line
segments considered as a subset of ℝn. [Jos20, proposition 5.11]

6. (Farkas’ theorem / Point separation lemma) Let P be a tropical polytope. For all x = (x1, ..., xn+1) ∈
ℙT n, if x does not lie in V then there is a tropical hyperplane defined byℤ(a1⊙X1+⋯+an+1⊙Xn+1)
such that for some k we have ak + xk = min{a1 + x1, ..., an+1 + xn+1} (i.e. the minimum is attained
at least once) and such that for all points of P , the minimum is never attained. [MS15, proposition
5.2.10]

I.21 Example. We will compute trop[p, q] in ℙT 2 for p = (0, 1, 0) and q = (0, 4, 1). A point x lies in
trop[p, q] iff x = � ⊙ (0, 1, 0)⊕� ⊙ (0, 4, 1); i.e. x = (min{�, �},min{� +1, � +4},min{�, � +1}). Note
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p

q

Figure 2: The line segment trop[p, q].

x +ℝ1 = x − �1 +ℝ1, so setting � = � − � we have x ∼ (min{�, 0},min{� + 1, 4},min{�, 1}). Now:
range of � generic point of trop[p, q] corresponding segment
� ≤ 0 (min{�, 0},min{� + 1, 4},min{�, 1}) = (0, 1, 0) p

0 ≤ � ≤ 1 (min{�, 0},min{� + 1, 4},min{�, 1}) = (0, � + 1, �) [p, (0, 2, 1)]
1 ≤ � ≤ 3 (min{�, 0},min{� + 1, 4},min{�, 1}) = (0, � + 1, 1) [(0, 2, 1), q]
3 ≤ � (min{�, 0},min{� + 1, 4},min{�, 1}) = (0, 4, 1) q.

See Fig. 2.

I.22 Example. Let v1 = (0, 1, 0), v2 = (0, 4, 1), v3 = (0, 3, 3), v4 = (0, 0, 2) ∈ ℙT 2. We compute the
tropical polytope tconv{v1, ..., v4} to be the shaded area of Fig. 3.

Talk II: Buildings
Recall from my earlier talk that a simplicial complex Δ on a finite set X is a collection of subsets of X
(simplices) closed under taking subsets. To extend this to infinite vertex sets, we will ask that each simplex
is finite. To avoid redundancy we will usually ensure that the set X contains only as many elements as are
needed (i.e. delete any elements from X that do not, as singletons, appear as faces).

II.1 A straight line to a definition
The following definition appears in [Cox73, chapter XI] in the context of the study of kaleidoscopes.
II.1 Definition. A Coxeter group of rank n is a group of the form

W = ⟨x1, ..., xn|∀i,j(xixj)m(i,j) = 1⟩

where each m(i, j) = m(j, i) ∈ ℤ ∪ ∞ (the relation (xixj)∞ meaning that xixj has infinite order) and
m(i, i) = 1 for all i.
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v1

v2

v3

v4

Figure 3: The line segments trop[v1, v2] (red), trop[v1, v3] (blue), trop[v1, v4] (green), trop[v2, v3] (orange),
trop[v2, v4] (purple), trop[v3, v4] (pink).

The Coxeter system is the pair (W ,S) where S = {x1, ..., xn} is the distinguished set of generators of
W .

For example, the dihedral groups are generated by the reflection elements, and the products of distinct
pairs of reflections are rotations.
II.2 Theorem. Let W be a group generated by a subset S of elements of order 2. The following are
equivalent:

1. (W ,S) is a Coxeter system.

2. There is an action ofW on SW × {±1} such that a generator s ∈ S acts as

s(t, ") =

{

(ts, ") t ≠ s
(s,−") t = s.

The elements of SW are the reflections ofW ; the idea is that every reflection t ∈ SW determines a
‘wall’ (i.e. the ‘reflecting hyperplane’) and two halfspaces (t,+) and (t,−); a reflection acts on its
own halfspaces by exchanging them, and acts on other halfspaces by ‘rotation or translation’ (i.e.
movement).

3. For an element w ∈ W , let l(w) denote the length of the shortest possible representation of w
as a word in S. If w = s1⋯ sm with m > l(w), then there are indices i < j such that w =
s1⋯ ŝi⋯ ŝj⋯ sm (where a hatted symbol is omitted).
Intuitively, every non-geodesic ‘reflection path’ can be reduced by cancelling pairs of reflections.

4. For any w ∈ W , s ∈ S, and representation w = s1⋯ sd of w as a reduced word in S, either
l(sw) = d + 1 or there is some i such that w = ss1⋯ ŝi⋯ sd .
Intuitively, extending a path by a reflection either gives a cell that is minimally a single reflection
further (‘reflecting further away from the centre’), or a cell that is the same length (i.e. we ‘reflect
across the centre’).
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5. For anyw ∈ W and s, t ∈ S such that l(sw) = l(w)+1 and l(wt) = l(w)+1, either l(swt) = l(w)+2
or swt = w.
Intuitively, extending a path in both directions either does nothing (the added reflections cancel)
or gives a path two steps longer (a pair of reflections that do not cancel have total constructive
interference).

Proof. [AB08, theorem 2.49] mAk

A Coxeter system (W ,S) is just a generalised reflecton group; indeed, it has a canonical representation
in a vector space.
II.3 Theorem. Let V be the vector space with basis (es ∶ s ∈ S) over ℝ. Define a symmetric bilinear
form B on V given on the basis by

B(es, et) = − cos
�

m(s, t)
.

Then (es) is orthonormal with respect to B, and the obvious action ofW by left multiplication on V is
faithful and has the property that for all s ∈ S, v ∈ V ,

s(v) = v − 2 projBes v

where projBes ≔ B(es,v)
B(es,es)

es = B(es, v)es is the orthogonal projection of v onto es with respect to B. In
addition, this action induces an action ofW on V ∗ by setting ⟨wv|wv∗⟩ = ⟨v|v∗⟩ for all v ∈ V , v∗ ∈ V ∗.

More informally, s acts as the reflection across the hyperplane e⟂s . The representationW → GL(V ) is
the canonical linear representation of (W ,S).

Proof. Straightforward, see [AB08, sections 2.5.1 and 2.5.2]. mAk

II.4 Definition. If (W ,S) is a Coxeter system with canonical linear representation V , we define:
1. Φ(W ,S) ≔ {wes ∶ w ∈ W } the set of roots
2.  ≔ {we⟂s ∶ w ∈ W } the set of walls (we writeHs for e⟂s = {v ∶ ⟨v|es⟩ = 0})
3.  ≔ {wC ∶ w ∈ W } the set of chambers where C = ∩s∈S{v ∈ V ∗ ∶ ⟨v|es⟩ > 0} is the

fundamental chamber.
Now we state some combinatorial properties without proof; these should be well-motivated by the

standard theory of polyhedra and their face lattices (noting that each chamber is the interior of a polyhedron):-
II.5 Theorem.
For every wall wHs and every chamber D, D lies on exactly one side of wHs (write wHs as the set
⟨⋅|w−1es⟩ = 0 and require ⟨d|w−1es⟩ = 0 to have constant sign as d ranges over D).
Every chamber D may be addressed by a sequence {"wHs

∶ wHs ∈ } where "wHs
is + or − depending

on whether D is on the positive or negative side of wHs. There is a bijection between chambers and such
sequences.
For any s ∈ S,Hs is the only wall separating C from sC . Any two chambers are separated by only finitely
many walls. Equivalently, the sign sequences for any two chambers differ in only finitely many locations.

II.6 Example. Consider D6 = ⟨s, t|s2 = t2 = (st)3 = 1⟩. Its canonical linear representation is depicted as
Fig. 4.
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s t

st

C

tCtsC

sCstC

tstC

Figure 4: The canonical linear representation of D6.

Let us now allow, in our ‘addresses’ for chambers, zero signs; then we may obtain the faces of the
chambers as polyhedra in V . These faces are in correspondence with cosets of the formw⟨J⟩ for subsets J
of S: if A is a face of C , then its stabiliser is the set generated by all the elements of S whose hyperplanes
contain it, and faces of every other chamber may be obtained by taking cosets; conversely, the fixed set of
w⟨J ⟩ is a face of wC . Note that this correspondence reverses the face lattice.
II.7 Definition. A standard coset of (W ,S) is a coset of the form w⟨J ⟩ for some w ∈ W , J ⊆ S. We
define theCoxeter complex of (W ,S), Σ = Σ(W ,S), to be the poset of standard cosets of (W ,S) ordered
by reverse inclusion; i.e. A ⪯ B in Σ(W ,S) iff A ⊇ B inW . If A ⪯ B we say A is a face of B. Under
this relation we obtain a simplicial complex; terminologically, the elements of Σ are simplices, maximal
elements w⟨1⟩ are chambers, and simplices w⟨s⟩ for s ∈ S are panels. The fundamental chamber is
⟨1⟩. There is a canonical action ofW on Σ by left multiplication, which is simply transitive. Givenw ∈ W
we may write w = s1⋯ sl with si ∈ s for all I ; then the sequence wC, s1⋯ sl−1C, ..., s1C,C is a gallery.
Note that we can put an incidence structure on the chambers of Σ by declaring C ∼ D iff there is a gallery
of length 1 between C and D (i.e. C = sD for some s ∈ S).

We now glue these simplicial complexes together:-
II.8 Definition. A building is a simplicial complex Δ that can be expressed as the union of subcomplexes
called apartments satisfying the following axioms.

1. Each apartment is a Coxeter complex.
2. For any two simplices A,B ∈ Δ there is an apartment containing both.
3. If Σ and Σ′ are two apartments containing A and B, then there is an isomorphism Σ→ Σ′ fixing A

and B pointwise.
A building is thick if every panel is a face of at least three chambers.

Note that a consequence of these axioms is that every apartment is isomorphic to a fixed Coxeter
complex Σ(W ,S). We call |S| the rank of the building, and |S| − 1 the dimension. In fact ([AB08,
proposition 4.6]) every building is|S|-vertex-colourable.

In particular, every building is a chamber complex: that is, a simplicial complex, pure of some
dimension d < ∞, such that the graph of maximal simplices is path-connected (in the sense of being
‘connected through codimension 1’, Definition I.12).
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II.2 Hopefully some examples?
Let P be an incidence structure (i.e. a set with a binary relation ∼ that is reflexive and symmetric). A
flag of P is a set of pairwise incident elements of P (i.e. F ⊆ P is a flag if x, y ∈ F ⟹ x ∼ y). For
example, let V be a fdvs over a field k and define P to be the set of linear subspaces of V under inclusion;
then define x ∼ y in P iff there is some inclusion chain ∅ ⊆ ⋯ ⊆ V of subspaces including both x and y.
(This is the origin of the term ‘flag’!) The flag complex of P is the simplicial complex with P as vertex
set and finite flags as simplices.

We now give some examples of buildings.
II.9 Example. Consider a building  of rank 1, so W = ⟨s|s2 = 1⟩ = C2. The Coxeter complex of
(W , {s}) is the lattice

{1} {s} (chambers)

∅

Hence an apartment of  is the simplicial complex consisting of two distinct vertices. Thus  is a simplical
complex consisting of at least two distinct vertices with every pair of vertices forming an apartment.
II.10 Example. Consider a building  of rank 2, soW = ⟨s, t|s2 = t2 = (st)m = 1⟩. ThenW = D2m,and the Coxeter complex of (W , {s, t}) is the m-gon. If m = 2, we glue together 2-coloured quadrangles
(the apartments) such that vertex-vertex, vertex-edge, or edge-edge pair appears in at last one square. To
preserve colouring we must therefore have every vertex of type 1 joined by an edge to every vertex of type
2; i.e. we may view the building as an incidence geometry of points and lines such that every vertex lies on
each line. Similarly if m = 3 we obtain an incidence geometry such that every pair of vertices lies on a
unique line and vice versa, i.e. we obtain a combinatorial projective plane. The converse is also true: the
flag complex of a projective plane is a building with triangles as apartments (the six points of the hexagon
are three vertices and three edges distinguished by colouring).

For reference, we give the axioms and construction of finite projective planes over finite fields. A very
good reference is [Wal88, chapter 5].
II.11 Definition. A finite projective plane is a finite set X which can be written as a disjoint union
X0 ∪X1 where the elements of X0 are points and the elements of X1 are lines, together with an incidencerelation ∼ such that:

1. For any pair x, y ∈ X0 there is a unique z ∈ X1 such that x ∼ z ∼ y;
2. For any pair x, y ∈ X1 there is a unique z ∈ X0 such that x ∼ z ∼ y;
3. We say a subset A ⊆ X0 is colinear if there exists l ∈ X1 such that a ∼ l for all a ∈ A. There

exists a subset Q ⊆ X0 such that|Q| = 4 and such that no 3-subset of Q is colinear.
In such an incidence structure there is a fixed constant n such that every line contains n+ 1 points; then the
structure is a balaced incomplete block design with parameters (v, b, r, k, �) = (n2 + n + 1, n2 + n + 1, n +
1, n + 1, 1).

A finite projective geometry of dimension d over GF(q), denoted by PG(d, q), is the set of non-zero
vectors of GF(q)d+1 modulo the relation x ∼ y ⟺ x = �y for some � ∈ GF(q). Each PG(2, q) is a finite
projective plane.
Remark. Not every finite projective plane is constructed from a field!
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Figure 5: The Fano plane.

Figure 6: The building associated to the Fano plane.

II.12 Example. The Fano plane is the projective plane overGF(2) (a BIBD with parameters (7, 7, 3, 3, 1)),
pictured in Fig. 5. The apartments of the corresponding building  are the triangles of the plane, made
up of three vertices and three edges. There are therefore 14 vertices of , (73

)

− 7 = 28 apartments (all
combinations of 3 vertices minus the colinear arrangements), and 7 ⋅ 3 = 21 edges (an edge exists between
two vertices iff one end is incident with the other end, and each point is incident with exactly 3 lines so the
number of pairs (x, y) with x ∼ y is 7 ⋅ 3). The building itself is depiced in Fig. 6.

Finally we give an example of a different flavour (c.f [Ser80] for details).
II.13 Example. Let T be an r-regular tree. Then T is a building with simplices the vertices and edges,
and apartments infinite paths (that is, a sequence of vertices f indexed by ℤ such that f (i) ∼ f (i + 1) and
f (i) ≠ f (i + 2) for all i ∈ ℤ). The apartments are Coxeter complexes associated to D∞.

II.3 BN-pairs
In this section and the next we follow a mixture of [AB08, chapter 6] and [Ser80, section II.1].

Our next goal is to try to identify a class of groups G with which we may associate a building Δ such
that G ≤ Aut Δ.

We say that an action of a group G on a building Δ is strongly transitive if it is transitive on the set of
pairs (Σ, C) consisting of an apartment Σ of Δ and a chamber C of Σ. Pick an arbitrary pair (Σ, C) of this
form, and let (W ,S) be the Coxeter system of Δ. Then we introduce:

B = StabG C
N = StabG Σ

T = ∩�∈Σ StabG �.

(i.e. B is the stabiliser of the fundamental chamber,N the stabiliser of the fundamental apartment, and T
the pointwise stabiliser of that apartment). Note also that there is a morphism f ∶ N → W since every
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action on Σ induces an action on the whole building; this is surjective (every action on the building restricts
to an action on Σ) and ker f = T , soW ≃ N∕T . Finally, T = B ∩N . It turns out that this is the general
kind of structure we need on our group G in order to be able to construct a building:
II.14 Definition. A pair of subgroups (B,N) of a group G is a BN-pair if G = ⟨B,N⟩, B ∩N is normal
in G, andW = G∕(B ∩N) has a set S of generators satisfying the following conditions:

1. For all s ∈ S, w ∈ W , sBw ⊆ BswB ∪ BwB;
2. For all s ∈ S, sBs−1 ≰ B.

The quadruple (G,B,N, S) is a Tits system; the groupW is theWeyl group associated to the system.
II.15 Theorem. Given a BN-pair in G, the generating set S is uniquely determined and (W ,S) is a
Coxeter system. There is a thick building Δ and a strongly transitive G-action on Δ such that B is the
stabiliser of a fundamental chamber and N stabilises a fundamental apartment and is transitive on its
chambers.

Conversely, if a group G acts transitively on a thick building Δ with fundamental apartment Σ and
fundamental chamber C ∈ Σ then (B,N) (B = StabG C ,N ⊆ StabG Σ transitive on the chambers of Σ).
Then (B,N) is a BN-pair in G and Δ is canonically isomorphic to the building induced by it.

Proof. [AB08, theorem 6.56] mAk

II.4 The Bruhat-Tits building
We will now survey the construction of buildings that are naturally acted upon by SLn(K); we will do the
construction in full for the case n = 2 and then sketch the case n ≥ 3. We will also indicate the general
theory obtained when SLn(K) is replaced with any of the classical groups. A good source of motivation
for the study of the interaction of SLn(K) and buildings seems to be [Ji08].

A valuation � on a field K (Definition I.1) is discrete if �(K∗) = ℤ. We will always assume such
valuations to be surjective. The set R = {x ∈ K ∶ �(x) ≥ 0} is the valuation ring of K , and any ring
arising in such a way is a discrete valuation ring. The unit group R∗ is precisely �−1(0), andm = R ⧵R∗
is the unique maximal ideal of R. If � is any element of R such that �(�) = 1 then m = (�) and each
x ∈ K may be written uniquely in the form x = �nu for n ∈ ℤ, u ∈ R∗. Thus K = R[�−1]. We write
k ≔ R∕m and call this the residue field associated to �. Further, every nonzero ideal of R is of the form
(�)n for some n ∈ ℤ≥0 and hence R is a PID.
II.16 Definition. Let V be a n-dimensional vector space over K . An R-lattice is an R-module Λ ⊆ V
such that Λ is generated by a basis for V ; i.e. Λ is a free R-module of rank n.
II.17 Lemma. If Λ and Λ′ are two R-lattices, there exists a basis (e1, ..., en) for Λ and integers r1, ..., rn
such that (�r1e1, ..., �rnen) is a basis for Λ′; the integers r1, ..., rn are unique up to ordering. Λ ⊆ Λ′ iff
ri ≥ 0 for each i.

The tree of SL2(K). Consider the case where n = 2; define an equivalence relation ∼ on the set of
R-lattices by Λ ∼ Λ′ if there exists a basis (e1, e2) for Λ and a scalar � ∈ K∗ such that (�e1, �e2) is a basisfor Λ′. Let the set of equivalence classes of lattices be denoted X. Consider two lattices Λ and Λ′, and
pick bases as in the lemma so Λ = Re1 ⊕Re2, Λ′ = R(�r1e1)⊕R(�r2e2). Define a function d from the
set of pairs of lattices to ℤ by sending (Λ,Λ′)↦ |

|

r1 − r2||; then if s, t ∈ K∗ give lattices sΛ, tΛ we have
bases (se1, se2) and (t�r1e1, t�r2e2) so the second base may be written in terms of the first as

(

t
s
�r1se1,

t
s
�r2se2

)
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Figure 7: The tree X corresponding to lattices over ℚ2. Figure from [Ser80, p. 71].

so d(sΛ, tΛ′) = |

|

(r1 + �(t∕s)) − (r2 + �(t∕s))|| = |

|

r1 − r2|| = d(Λ,Λ′); i.e. d induces a well-defined
function on X. This gives a metric on X (i.e. d(A,B) ≥ 0 with equality iff A = B; d(A,B) + d(B,C) ≥
d(A,C); and d(A,B) = d(B,A)).

We define a relation ≈ on X by Λ ≈ Λ′ ⟺ d(Λ,Λ′) = 1. This defines an incidence structure on X.
In fact ([Ser80, theorem 1 of II.1]) the structure is a tree. Further, this tree is regular: if Λ is a fixed vertex
of X then the vertices Λ′ such that d(Λ,Λ′) = � are in bijection with points of the projective line over
R∕(��) since we may choose our representative Λ′ such that (1) Λ′ ⊆ Λ and (2) Λ∕Λ′ ≃ R∕(��). (For
example, if K = ℚ2 then each vertex has the same degree as the number of points on the projective line
over k = GF(2); by standard considerations (c.f. Definition II.11) this is 3; see Fig. 7).

Note next that there is an action of GL2(K) on this tree: Let Λ = Re1 ⊕ Re2 be an R-lattice; thenif g ∈ GL2(K) we have gΛ ≔ Rge1 ⊕ Rge2 (linear independence is preserved since g is invertible).
If Λ ∼ Λ′, write Λ′ = R�e1 ⊕ R�e2 so gΛ′ = R�ge1 ⊕ R�ge2 and thus gΛ ∼ gΛ′: i.e. the action
of g on lattices induces an action on X. (In fact it is clear that this action is transitive.) Further this
action preserves the incidence structure: if Λ,Λ′ ∈ X such that Λ ≈ Λ then Λ′ = R�r1e1 ⊕R�r2e2 so
gΛ′ = R�r1ge1 ⊕R�r2ge2 and thus gΛ ≈ gΛ′ and so we have a homomorphism G → AutX.

Fix a lattice class representative Λ ∈ X and consider StabGL2(K) Λ. We have that g ∈ StabGL2(K) Λ iff
gΛ ∼ Λ. Hence gΛ = R�e1⊕R�e2 = �(Re1⊕Re2) = �Λ for some � ∈ K∗; i.e. StabGL2(K) Λ = Z2(K)(Z2(K) being the multiplicative 2-torus overK). But GL2(K)∕Z2(K) ≃ SL2(K) (since if A is an arbitrary
matrix we may decompose it uniquely as

A =
(

� �

 �

)

=
(

�∕ det A �∕ det A

∕ det A �∕ det A

)(

det A
det A

)

= SD

where S ∈ SL2(K),D ∈ Z2(K)). In particular, while GL2(K) does act onX it is more natural to consider
the induced action of SL2(K) as this action is free; note further that this action continues to be transitive on
X and is in fact strongly transitive when we endowX with the building structure of Example II.13. Further,
SL2(X) acts without inversion (i.e. if [Λ,Λ′] is a 1-arc then s[Λ,Λ′] ≠ [Λ′,Λ] for all s ∈ SL2(K)).We now find a BN-pair of SL2(K) which will have the associated building X (c.f. Theorem II.15).
Pick a fundamental apartment/chamber pair (Σ, C) by taking Σ = {Λr = Re1 ⊕R�re2 ∶ r ∈ ℤ} ((e1, e2)some R-basis for K2) and C = [Λ0,Λ1]:

Σ = ⋯ Λ−1 Λ0 Λ1 Λ2 ⋯C

Then B′ ≔ StabGL2(K) C is the set of matrices fixing the pair of lattice equivalence classes represented by
Λ0 and Λ1. Consider an arbitrary member of B′, say

M ≔
(

�r1u1 �r2u2
�r3u3 �r4u4

)
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where each ri ∈ ℤ and ui ∈ R∗. We have, considering the action of L on the basis of Λ0, that
Me1 = �r1u1e1 + �r3u3e2Me2 = �r2u2e1 + �r4u4e1

and so (since both products lie in Re1 ⊕ Re2 by assumption, so �riui ∈ R for each i) each ri must be
non-negative. Further, considering the action on the basis of Λ1, we have

Me1 = �r1u1e1 + �r3u3e2M�e2 = �r2+1u2e1 + �r4+1u4e1

and so we obtain (in addition to the relations we derived above) r3 ≥ 1 and r2 + 1 ≥ 0 (which is redundant
since we know that r2 ≥ 0). Finally from the relation detM = 1 we have that

0 = �(1) = �(�r1�r4u1u4 − �r2�r3u2u3) ≥ min{r1 + r4, r2 + r3};

since r2 + r3 ≥ 1 and each ri ≥ 0 we have that r1 = r4 = 0.In summary, the matrixM must be of the form

M ≔
(

� �
�
 �

)

(3)

where each of �, �, 
, � lies in R and � and � are invertible. It is easy to see that, conversely, all matrices of
this form do indeed fix the two lattices. Hence StabSL2(K) C = B′ ∩ SL2(K) is precisely the matrices of
the form given as Eq. (3) that have determinant 1. We next find the subgroup N = StabSL2(K) Σ. Eachlinear map fixing Σ must be a product of a permutation on {e1, e2} and a diagonal matrix; henceN is the
group of 2 × 2 matrices over K with determinant 1 such that every column contains exactly one non-zero
element.

Given the discussion in Section II.3 we therefore have produced a BN-pair in SL2(K) that correspondsto the tree X. Note that B ∩ N is the group of diagonal 2 × 2 matrices of determinant 1; we know
that W = SL2(K)∕(B ∩ N) = SL2(K)∕(SL2(K) ∩ Diag2(K)) should (by the structure of X) just be
D∞ ≃ ℤ ⋊ {±1}; indeed we may embed ℤ into W using the standard n ↦

(

1
n 1

)

, and embed

−1↦
(

−1
1

)

, and this works.

The building of SLn(K), n ≥ 3. More generally the theory is similar to that of the n = 2 case (c.f.
[AB08, section 6.9.3], [Ser80, exercise 4 to section II.1.1]). Note that in the n = 2 case we colour the
lattices according to whether they are of odd or even distance to some fixed root point (c.f. Fig. 7); this is
equivalent to colouring Λ = Rf1 ⊕Rf2 with the residue mod 2 of �(det(f1, Xf2)) and this generalises to
the case n ≥ 3. Thus:
II.18 Definition. The Bruhat-Tits building associated to SLn(K) for n ≥ 2 is the flag complex associated
with the classes of lattices of Kn modulo the relation Λ ∼ Λ′ ⟺ Λ = �Λ′ for some � ∈ K∗ and with
adjacency relation Λ ≈ Λ′ iff the representatives of the classes may be chosen so that �Λ ≤ Λ′ ≤ Λ, and
with the colouring of Λ = Rf1 ⊕⋯⊕Rfn being the reduction of �(det(f1, ..., fn)) modulo n.

One can show that the Weyl group associated to the Bruhat-Tits building of SLn(K) is isomorphic to
ℤn−1 ⋊ Sn (where ℤn−1 is invariant under the action of Sn on some vector space, see [AB08, p. 355]).

The general Bruhat-Tits theory. We will briefly outline, now, the general theory of the Bruhat-Tits
buildings associated to the classical groups. More comprehensive studies are [AN02], [AB08, chapter 6],
and [Gar97] (see in particular chapter 20).
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As before, let K be a field with discrete valuation � ∶ K → ℤ, local ring (R,m) withm = (�), and
residue field k; further let � be an involution on K (i.e. an endomorphism of order 2) such that R� = R
and let � = ±1. A (�, �)-hermitian form on a vector space V over K is a function ℎ ∶ V × V → K such
that for all u, v,w ∈ V , � ∈ K:

1. ℎ(u, v) = �ℎ(v, u)�
2. ℎ(�u, v) = �ℎ(u, v)
3. ℎ(u + v,w) = ℎ(u,w) + ℎ(v,w).

Two hermitan forms ℎ, k on V are equivalent if there exists � ∈ GL(V ) such that ℎ(�−1u, �−1v) = k(u, v)
for all u, v ∈ V .

We say ℎ is nondegenerate if f (u, v) = 0 for all u ∈ V implies v = 0; in this case we say (V , ℎ)
is a nondegenerate inner product space. An isometry of a nondegenerate inner product space (V , ℎ)
is a linear transformation f ∶ V → V such that ℎ(fu, fv) = ℎ(u, v) for all u, v ∈ V . The set of all
isometries, Isom(V , ℎ), is a subgroup of GL(V ). A subspaceW ≤ V is totally isotropic if ℎ(u, v) = 0 for
all u, v ∈ W .
II.19 Definition. The term ‘classical group’ is a term with no universally accepted meaning. (c.f. [Rot95,
pp. 234–246], [Hum11]) For us, a classical group is one of the following:

The general and special linear groups GLn(K) or SLn(K) for a field K .
The orthogonal groups On(K, ℎ) ≔ Isom(V , ℎ) for a field K and a (1, 1)-hermitian form ℎ.
The symplectic groups Spn(K, ℎ) ≔ Isom(V , ℎ) for a field K and a (1,−1)-hermitian form ℎ. (In
this case, n is even.)
The unitary groups Un(K, ℎ) ≔ Isom(V , ℎ) for a field K and a (�, 1)-hermitian form ℎ (� ≠ 1).
A primitive lattice for (K, ℎ) is anR-lattice such that ℎ reduces to a nondegenerate form on the residue

field k. Now define an incidence geometry to have as vertices the set ofR-lattices Λ ofK , modulo the same
equivalence relation as before (Λ ∼ Λ′ ⟺ ∃�∈K∗ (Λ = �Λ′)), which satisfy the following additional
axioms:

1. The representative Λ may be chosen so there exists a lattice Λ0 such thatm−1Λ0 is primitive and
Λ0 ⊆ Λ ⊆ m−1Λ0;

2. ℎ(Λ,Λ) ⊆ m.
(That is, Λ∕Λ0 is a totally isotropic k-subspace of m−1Λ0∕Λ0 with respect to the reduced form on the
quotient space.) We define our incidence relation ≈ by Λ ≈ Λ′ iff the representatives can be chosen so
there exists Λ0 such that:

1. m−1Λ0 is primitive;
2. Λ ⊆ Λ′ or Λ′ ⊆ Λ;
3. Λ0 ⊆ Λ ⊆ m−1Λ0; and
4. mΛ0 ⊆ Λ′ ⊆ m−1Λ0.

Then the Bruhat-Tits building of (K, ℎ) is the flag complex associated to this incidence structure; it has a
natural action (via a BN-pair, as above) by the relevant classical group.
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Talk III: Convexity
We shall repeat for convenience:
III.1 Definition (Definition II.18). The Bruhat-Tits building of SLn(K) is the flag simplicial complex
n(K) whose vertices are equivalence classes of lattices in Kd and whose edges are the adjacent pairs of
lattices.
Remark. The link of a vertex v in a simplicial compex Σ is the subcomplex with vertex set {w ∈ F0(Σ) ∶
w ∼ v,w ≠ v} and simplices {� ∈ Σ ∶ v ∉ �, {v} ∪ � ∈ Σ}. The links of Λ in n(K) may be identified
with the flag complex of chains of subspaces in the residue vector space k3.

We shall now apply tropical geometry to the study of Bruhat-Tits buildings; let n(K) denote thebuilding of SLn(K) as in the previous talk. We shall focus on convexity, as in [JSY07]; however one can
also use tropical methods to study the compactifications of buildings, as in [Wer11]. In order to motivate
the definition of convexity in n(K) as it does not exactly match the usual definition (e.g. as found in
[AB08]), we will summarise a motivating paper from the theory of abelian varieties [Fal01].

III.1 Summary of Faltings’ paper
We shall begin by giving some vague background to the paper at hand [Fal01]. Roughly speaking, a
deformation problem (c.f. [Har10]) is a study of a morphism of schemes f ∶ X → T , where we regard
the fibres through f , Xt for t ∈ T , as a ‘family’ of schemes; generally one would pick a ‘favourite’ fibre
X0 and then consider infinitesimal neighbourhoods of this base fibre. Relatedly, we often studymoduli
problems (c.f. [Har10, chapter 4]): here we have a class of schemes with some fixed property  , and
we seek a morphism f ∶ X → T where T is some parametrising moduli scheme and such that every
isomorphism class of schemes with property  appears exactly once as a fibre of f in X. In general, the
‘useful’ points of a moduli scheme or of a deformation problem are singular.

The paper of Faltings considers some moduli spaces of abelian varieties; an abelian variety (see [BL04],
[Oda78, section 11]) is a complex torus that admits a positive definite line bundle; more precisely,
III.2 Definition. A lattice in ℂg is a discrete additive subgroup of maximal rank; this is a lattice in the
sense of earlier definitions of rank 2g. A complex torus is a quotient X = ℂg∕Λ for Λ a lattice in ℂg . A
morphism of tori f ∶ X → X′ is a holomorphic map that preserves the group structure; it is an isogeny
if it has finite kernel.

We say that a polarisation of X is the first Chern class of a positive definite line bundle L on X: that
is, we take an exact sequence 0→ ℤ → OX → O∗X → 0 and make it into a long cohomology sequence; the
map c1 of interest is then depicted here (recalling that line bundles on X can be viewed as elements of
H1(X,O∗X)):

⋯ H1(X,ℤ) H1(X,OX) H1(X,O∗X) H2(X,ℤ) ⋯
c1

The first Chern class of L is a Hermitian form on Λ which may be written as a block matrix
[

D
−D

]

, D
a diagonal matrix. If D = Ig then the polarisation is principal.

An abelian variety is a complex torus that admits a polarisation; a morphism of polarised abelian
varieties f ∶ (X,L)→ (Y ,M) is a morphism f ∶ X → Y such that f ∗c1(M) = c1(L).

We consider a moduli space � ∶ A → B of abelian varieties where � is an isogeny, A and B are g-
dimensional principally polarised abelian varieties, and � is of degree pg compatible with the polarisations.
We further ask that � may be factored into a series of g isogenies of degree p:

A = A0 → A1 →⋯ → Ag = B.
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We may study this situation profitably over ℤp; in order to study the local singularities we must use some
crystalline cohomology; to give a vague idea of this theory we follow briefly the first part of the introductory
note [Cas15].

If X is some scheme, we define the nth l-adic cohomologies (l a prime) to be
Hn

ét(X,ℤl) ≔ lim
←
Hn

ét(X,ℤ∕l
mℤ)

Hn
ét(X,ℚl) ≔ Hn

ét(X,ℤl)⊗ℤl ℚl .

This has various nice properties. If X is smooth, irreducible, and proper over a field k of characteristic
p ≠ l, the dimension dimℚt H

n
ét(X,ℚl) is independent of l; however, if p = l then this is no longer true

(i.e. the p-adic cohomology of schemes over fields of characteristic p is pathological). The crystalline
cohomology is a cohomology theory that behaves like l-adic cohomology but for p = l. The coefficients
of this cohomology theory come from the Witt ring of k:
III.3 Theorem ([Ser79, chapter II, theorem 3]). For every perfect field k of characteristic p, there exists a
unique (up to unique isomorphism) complete discrete valuation ring that is absolutely unramified and has
k as its residue field. This is theWitt ring of k,W (k).

Denote the first crystalline cohomology of an abelian varietyA byM(A); the functorM is contravariant
and the properties of the cohomology allow us to produce from the moduli family

A = A0 → A1 → ⋯→ Ag = B

a second family
M(B) =M(Ag)→M(Ag−1)→ ⋯→M(A0) =M(A)

such that coker(M(Ai)→M(Ai−1)) is locally generated by a single element and so locally the sequence
looks like a complete flag

Ng = pN ⊂ Ng−1 ⊂ ⋯ ⊂ N0 = N (4)
whereN is a free ℤp module of rank g.

We now try to define a schemeX (theDeligne-scheme) parameterising the systems of direct summands
Fi ⊆ Ni ⊗R of some fixed rank a such that F0 and Fg are identified under the isomorphismNg = pN0and such that maps Fi → Fi−1 are induced. This scheme will be (locally) a toric resolution of singularities
for some interesting object (that is, there is a resolution of singularities Y → X with Y a toric variety;
more precisely, see [Fal01, p. 170]).

To fix notation again, we have a discrete valuation ring (R, �) with field of fractions K , � ∈ R an
element with �(�) = 1, and residue field k; so the building n(K) can be viewed as parameterising the
lattices of Kn. We may also (more usefully for our purposes) view n(K) as parameterising the additive
norms of the vector space up to equivalence:
III.4 Definition. An integral additive norm on Kn is a map‖⋅‖ ∶ Kn → ℤ ∪ {∞} such that

1. ‖�x‖ = �(�) +‖x‖ for all � ∈ K , x ∈ Kn;
2. ‖x + y‖ ≥ min{‖x‖ ,‖y‖} for all x, y ∈ Kn;
3. ‖x‖ = ∞ iff x = 0.
To set up the parameterisation, if Λ is a R-lattice in Kn then we define

‖x‖Λ ≔ sup{r ∈ ℤ ∶ �−rx ∈ Λ}
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and if‖⋅‖ is an additive norm we define
Λ{‖⋅‖} = {x ∈ Kn ∶‖x‖ ≥ 0}.

If‖⋅‖1 and‖⋅‖2 are two norms, we define the distance d(‖⋅‖1 ,‖⋅‖2) to be the variation
(sup− inf){|

|

‖x‖1 −‖x‖2|| ∶ x ∈ K
n}.

III.5 Theorem. The function d is a integer-valued metric on n(K). The geodesic with respect to d
between‖⋅‖1 and‖⋅‖2 is the set of norms

inf{‖⋅‖1 , x +‖⋅‖2}

for x ∈ ℝ. A collection of lattices forms a simplex in n(K) if and only if the distance between any two
lattices in the collection is 1. mAk

We say a subset of n(K) is convex if it contains the geodesic between any two elements.
III.6 Theorem. If {Mi} is a finite collection of R-lattices, then the convex hull conv{Mi} is the union of
all simplices associated to flags of the form Eq. (4), where each vertexNj is a linear combination of the
Mi with coefficients in K∗. The convex hull is finite.

Proof. [Fal01, lemma 3]. mAk

We now define the Deligne-scheme, which will parameterise a convex collection of lattices. To do this,
we recall
III.7 Definition. For a moduli problem involving a class of objects (closed schemes, line bundles, etc.)
over K , parameterised by schemes over K , we define a functor  ∶ Sch(K) → Set that assigns to each
S∕K the set of equivalence classes of families of elements of  with respect to K . To solve the problem,
then, is to construct a ‘universal scheme’M∕K together with a morphism of functors  → Hom(⋅,M)
satisfying some suitable universal property. If  is actually an isomorphism of functors we say that 
represents the schemeM .∗

(See [Wat79, section 1.2] and [Har10, section 23].)
and so we have for a convex collection of lattices {Λi}

III.8 Definition. The Deligne-scheme X represents the functor on R-algebras A such that an R-valued
point of X is a collection of quotient line bundles L(Λi) of Λi ⊗R A (modulo equivalence of lattices) such
that each inclusion Λ ⊆ M maps L(Λ) to L(M).

III.2 Tropical convexity and lattices
We now follow [JSY07].

Let Λ1 and Λ2 beR-lattices overK . Then Λ1+Λ2 and Λ1 ∩Λ2 are lattices. We say that a vertex subset
of d(K) closed under finite sums ismax-convex; we say a vertex subset closed under finite intersection is
min-convex. The latter notion is precisely the notion of convexity in the previous section; and the former
arises naturally:
III.9 Lemma. For Λ1 and Λ2 R-lattices in Kd , (Λ1 + Λ2)∗ = Λ∗1 ∩ Λ

∗
2. mAk

∗The j-line of Lukas’ talk yesterday is a different example of what is known as a coarse moduli scheme: that is, a scheme
satisfying all but the requirement that  be an isomorphism.
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By Theorem III.6 both min-convex hulls and max-convex hulls are finite.
Given a finite subset M = {m1, ..., mk} of Kd which spans Kd as a K-vector space, the set of all

lattices of the form R�u1m1 +⋯ + R�ukmk as (u1, ..., uk) ranges over ℤk is the membrane spanned by
M in d(K); if k = n then the set is in fact an apartment of the building.

The goals are twofold:
1. Compute the min- and max-convex hulls of a finite set of lattices in d(K).
2. Compute the intersection of a finite set of apartments in d(K).

In [Jos20, sections 5 and 6] concrete algorithms are given for these problems. We will restrict ourselves to
studying the theoretical relationship between these problems and tropical geometry. For some historical
context and motivation for the following definitions, see [RST03].
III.10 Definition. Let d ≤ n be positive integers. A map p ∶ [n]d → ℝ̄ is a valuated matroid if

1. for any permutation � ∈ Sym[d], p(a1, ..., ad) = p(a�(1), ..., a�(d));
2. for all (a1, ..., ad) ∈ [n]d , if there exist i ≠ j such that ai = aj then p(a1, ..., ad) = ∞; and
3. for any (d−1)-subset � and any (d+1)-subset � of [n], the minimummin{p(�∪{�i})+p(� ⧵{�i}) ∶
i ∈ [d + 1]} is attained at least twice; put differently, the tropical polynomial

d+1
⨁

i=1
Xi ⊙ Yi

has roots at (Xi = p(� ∪ {�i}) ∶ i = 1, ..., d + 1), (Yi = p(� ⧵ {�i}) ∶ i = 1, ..., d + 1). (These are atropical version of the quadratic Plücker relations, c.f. [MS05, section 14.2].)
For a fixed valuatedmatroid p, we define the tropical linear space of p to be the set of points x ∈ ℙT d−1

(recall Definition I.18) such that for any (d + 1)-subset � ⊆ [n], the polynomial
d+1
⨁

i=1
Y�i ⊙X�i

has a root at (Y�i = p(� ⧵ {�i}) ∶ i = 1, ..., d + 1) and X = x.
III.11 Theorem. The tropical linear spaceLp is a tropical lattice polytope; in fact, it is the tropical convex
hull in ℙT d−1 of all the vectors of the form p(� ∗), where p(� ∗)j = p(� ∪ {j}) for all j = 1, ..., d.

Proof. [YY06, theorem 16] mAk

III.12 Theorem. For every matrixM ∈ Matd×n(K), we have a valuated matroid pM defined by

pM (!) = �(detM!)

(whereM! denotes the d × d-submatrix ofM indexed by the entries of d).
The lattice points of Lp are precisely the points �(rowM) (valuation taken pointwise).

Proof. [SS03, theorem 2.1] mAk

Define a metric on tropical projective space ℙT d−1 by �(x, y) ≔ max1≤i≤j≤n
|

|

|

(xi − xj) + (yi − yj)
|

|

|

.
As in normal convex geometry we have a ‘nearest point map’:
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III.13 Theorem. Let x ∈ ℙT d−1 and P a tropically convex closed set in ℙT d−1. There is a unique point
�P (x) that minimises the �-distance from x to P .

Proof. [JSY07, proposition 7] mAk

Remark. The nearest point map has an easily computable formula in terms of the generators of P [JSY07,
lemma 8].

We may define a graph Γ on the set of all lattice points of ℙT d−1 via the adjacency relation x ∼ y ⟺

�(x, y) = 1.
III.14 Theorem. The flag simplicial complex of Γ is a triangulation of ℙT d−1, and restricts to a triangu-
lation of any tropical lattice polytope P , known as the standard triangulation.

Proof. [JSY07, theorem 11] mAk

Hence:
III.15 Theorem. IfM ∈ Matd×n(K) has columns f1, ..., fn and Lp is the associated tropical linear space,
then

ΨM ∶ R�−u1f1 +⋯R�−unfn ↦ �Lp (u1, ..., un)

is well-defined and induces an isomorphism of simplicial complexes between the standard triangulation of
Lp and the membrane [M].

III.16 Corollary. Every lattice point of Lp uniquely represents a lattice in [M].

III.17 Corollary. Every apartment of d(K) may be identified with ℙT d−1.

III.18 Theorem. A finite set  of chambers in an apartment  of d(K) is convex (in the usual sense:
that is, it contains every minimal gallery between two of its chambers) if and only if F0() is the set of
lattice points in a tropical lattice polytope of the form

{w ∈ ℙT d−1 ∶ wi −wj ≤ ui,j for all i ≠ j} (5)
for some sequence of ui,j ∈ ℝ.

Proof. [JSY07, proposition 20] mAk

III.19 Theorem (Alessandri’s algorithm). The intersection of apartments [M1] ∩⋯ ∩ [Mr] in d(K) is
the standard triangulation of a particular tropical polytope of the form Eq. (5).
Proof. [JSY07, theorem 27] mAk

We may also compute min-convex hulls (and hence by Lemma III.9 max-convex hulls).
III.20 Theorem. Let Λ1, ...,Λr be lattices spanned by the columns of matricesM1, ...,Mr ∈ GLn(K). Let
[M] be any membrane in d(K). Let rM ∶ d(K)→ [M] be the retraction given by Λ↦ (Λ ∩Kf1) +
⋯ + (Λ ∩Kfn). Then the simplicial complex

rM min− conv{Λ1, ...,Λr}

and the standard triangulation of the tropical polytope

tconv{ΨM (rM (Λ1)), ...,ΨM (rM (Λr))}

coincide.

Proof. [JSY07, proposition 22] mAk
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