
Toric Varieties

Alexander Elzenaar

Supervisor:
Jeroen Schillewaert

A dissertation submitted in partial fulfilment of
the requirements for the degree of BSc(Hons) in Mathematics

The University of Auckland
2020



Abstract
In this dissertation, we survey the basic theory of toric varieties as developed by Oda, Mumford, and others
in the last 50 years. We give full proofs from first principles of the main theorems, modulo basic results
from analysis and a first introduction to scheme theory. For this part we draw from [Oda78] and other
historical sources. In the second part, we give detailed expositions of the two main classical applications
of the theory: Ehrhart reciprocity and Stanley’s resolution of McMullen’s g-conjecture. For this part we
give detailed proofs of all the toric results needed, and spend a significant amount of time motivating the
theory and giving examples; we draw primarily from [CLS11].
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0 Introduction
The study of toric varieties (or, torus embeddings) is at the intersection of several different branches
of mathematics: the theory of convex sets; algebraic geometry; complex geometry; and the theory of
semigroups.

We begin by recalling the notion of a variety.
0.1 Definition. An affine variety is an affine scheme which is reduced, irreducible, and of finite type over
an algebraically closed field. A variety is a reduced, irreducible, separated scheme with a finite open cover
consisting of affine varieties.

A main purpose of the theory of combinatorial algebraic geometry is the study of the following
questions:
To what extent is the global structure of a variety determined by the combinatorial properties of ‘nice’ finite
affine open covers? To what extent are these combinatorial properties preserved by scheme morphisms?

Note that a scheme has two pieces of data: a topological space (which we have placed a condition on),
and a sheaf of regular functions (each section of which is finitely generated). Hence any attempt to answer
the questions must try to capture the combinatorial properties of both the topological space and the sheaf
of regular functions.

In order to place a combinatorial structure on the sheaf of regular functions, we will study affine
varieties whose ring of regular functions is generated by some additive structure embedded in a lattice (in
particular, a convex semigroup). It will turn out that the simplest such structure — namely the semigroup
consisting of the identity element of the lattice, which is clearly embedded in every other semigroup —
corresponds to the ring of regular functions of (ℂ∗)n (the torus of rank n), where n is the rank of the lattice
(Example 4.12). Further, this lattice substructure is embedded in the larger lattice in a very natural way;
this leads us to guess that the copy of (ℂ∗)n is embedded in the variety in a natural way. We are therefore
led to consider all the varieties which include (ℂ∗)n as open subvarieties, such that the torus is embedded
in the most natural way possible: as a dense open subset of each of the finitely many open affine varieties
in the cover, such that the natural multiplication action of (ℂ∗)n on itself extends naturally to its closure.

In order to make this work, we will eventually need a technical property that we might as well state
now:
0.2 Definition. Let R be a ring, and let K = FracR. The integral closure of R in K is the set

{� ∈ K ∶ f (� ) = 0 for some monic f ∈ R[T ]}.
We say R is integrally closed if it is equal to its integral closure. A scheme is normal if all its local rings
are integrally closed.

It is not immediately clear why this is at all related to the programme outlined above; the idea is
basically that normal schemes are those where pathological gluing does not occur (see for example the
intuition given at [MO109395]), and since we are studying varieties which are glued in a particularly nice
manner this is a property we expect.

A feature of the theory which we will develop is a duality between normal varieties with an embedded
torus (“toric varieties”, see Definition 4.1) and certain polyhedra in Euclidean space. This duality allows
us to apply powerful techniques from fields like convex geometry and linear optimisation to algebraic
geometry, and vice versa.
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0.1 Outline and novel elements
The dissertation is divided into two parts: Part I covers the basic theory of toric varieties, and Part II gives
a brief overview of the cohomology theory and some classical applications.

In Part I, Sections 1, 2, and 3 give the required technical background from the theory of group varieties
and convex geometry; section 4 develops the local theory of toric varieties; and Section 5 develops the
global theory. The main novelty here is the manner in which the theory is developed: we follow the
development in [CLS11] for most of the local theory, but in contrast to that book we immediately begin
with a view to abstract varieties. In this way we are able to use the full power of scheme-theoretic language
to give to give simplified or more enlightening statements in some cases. We also introduce new notation
when it allows for a better exposition: the E, H, and D maps of Definition 4.4 and Definition 4.9 are
novel and serve to make correspondences and identifications between points, semigroups, orbits, and
distinguished open sets clearer than the notation of [Oda78] or [Ful93].

For the global theory we primarily follow the theoretical development pioneered by [Oda78], but with
many added examples and with greater motivation: for example, the proof of the ‘properness theorem’
(Lemma 5.23) is given in terms of the combinatorial data rather than the pure valuation ring argument
given in Oda (in this way, our proof is similar to that in [Ful93], but we have tried to simplify our argument
compared to the proof there).

Another distinct feature of the development we pursue here is full acknowledgement of the combinatorial-
commutative-algebraic side of the theory: as is well-known, the theory of toric varieties is intimately
linked with the theory of monomial and binomial ideals and their combinatorics (see, for example, [MS05,
Part II]). Adopting some of the language and methods of combinatorial commutative algebra allows us to
choose at each point the language best suited for the task at hand.

In Part II, the goal of Section 6 is to develop the cohomology theory of toric varieties. We use this in
section 7 to present a classification of quasi-projective toric varieties, and in section 8.1 a proof of Pick’s
formula using high-powered machinery: the divisor theory of toric varieties. This provides us with an
opportunity to develop briefly the cohomology theory as well. In Section 8.2 we apply the theory of toric
varieties to the study of the face lattice of polytopes, and briefly mention the recent solution of McMullen’s
g-conjecture for simplicial spheres, which uses modern techniques from this field.

0.2 Required background
The background assumed of the reader is, roughly speaking, undergraduate real analysis and a first course
in scheme-theoretic algebraic geometry. More precisely, we will assume without proof anything found in
[Rud13] for real analysis and in chapters I and II of [Har77] for geometry (along with the required algebra,
which may generally be found in chapters I to VIII of [Alu09]). The reader may also find that some of
the concepts we require from algebraic geometry may be covered in more detail in [Sha13, Chapter 2]
(particularly the notion of normality, which Hartshorne relegates to exercises).

In addition, though our coverage of convex and affine geometry is mathematically self-contained, the
reader less schooled in this area might find it a good idea to read an elementary treatment like that in
chapters 12 and 13 of [Cox69] before trying one of the more relevant (but more abstract) treatments listed
in the references section below.

0.3 References
The standard introductory references for this subject are [Ful93] and [CLS11] (the latter more comprehensive
and covering newer topics in research using more abstract language). From a more combinatorial/convex-
geometric viewpoint, the book [Ewa96] is comprehensive. One of the important historical figures in
this subject is Tadao Oda; his book [Oda78] could also be viewed as an introductory text but assumes
much more familiarity with algebraic geometry; it also has a different focus, the primary themes being
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the birational geometry of toric varieties and the classification of those of small dimension. Note also the
existence of [Kem+73] which is one of the oldest references to the subject written by some of the other
early modern practitioners.

For the necessary results in convexity theory, some good elementary references include [Bar02],
[Ber09], and [Zie95]; an excellent historical reference is [Sch86, pp. 209–223]. The ‘canonical’ book on
the subjects are [Grü03]. For the necessary results on algebraic groups, see [Hum75] or [Wat79].

Finally note that there are several books on the subject from the perspective of complex geometry (see
the extensive monograph [BL04]) and tropical geometry (see the final chapter of [MS15]).

0.4 Terminology
The field K is assumed algebraically closed but may be of positive characteristic. If A is an algebra,
the localisation of A by a multiplicative set S is denoted by A[S−1]; the localisation by a prime ideal
p ∈ SpecA is denoted by Ap (so Ap = A[(A ⧵ p)−1]); and if f ∈ A we denote by Af the localisation
A[U−1] where U = {f n ∶ n ∈ ℤ}. When we write something like ‘x is a point of SpecA’ or ‘x ∈ SpecA’
we will usually mean that x is a closed point. If we mean to include arbitrary prime ideals of A we shall
always say so, and will usually use an appropriate letter like p.

Occasionally we will write⨄�∈A S� for the union
⋃

�∈A S� if we wish to stress that the unioned sets
are pairwise disjoint. We will write∐�∈A S� for the categorical disjoint union.If p ∈ R[X] is a polynomial over a ring R in indeterminate X (we shall ordinarily use capital letters
for indeterminates), we write )p for the degree of p, and [Xi]p for the coefficient ofXi in p and extend this
notation in the obvious way for multivariable polynomials.

We write V ∨ for the dual space of a vector space V over K , and if X ⊆ V , we write X⟂ for the set
{a ∈ V ∨ ∶ ∀x∈X ⟨x|a⟩ = 0} where ⟨⋅|⋅⟩ ∶ V × V ∨ → K is the duality pairing.)

We shall assume without comment the notation of [Har77]; we write A(Y ) and K(Y ) for, respectively,
the affine coordinate ring and the function field of an affine variety Y ; we writeD(f ) for the principal open
subvariety SpecAf when f ∈ A.

We will occasionally use a Halmos ▮ at the end of the statement of a proposition; this means that the
proof is (or should be) trivial.

0.5 Acknowledgements
The author thanks their supervisor for guidance and helpful feedback, and Oliver Li for sharing expert
knowledge of the foundations of algebraic geometry.
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Part I

Basic theory
1 Algebraic tori and lattices
Fundamental to the study of toric varieties is the study of the canonical such variety: the algebraic torus
itself. We are particularly interested here in the relationship between the algebraic torus and its lattices of
characters and 1-psgs (Definition 1.3); in some sense the entire theory of toric varieties may be viewed as
the study of embeddings of tori in varieties with the property that the characters of the torus are restrictions
of regular functions of the ambient variety.

All the interesting theory occurs when we study closed points of varieties, and the extension to arbitrary
points of a variety (i.e. actually using the scheme-theoretic definition) does not give us much more geometry.
We will therefore spend most of our efforts on the closed case; for the general case, relevant introductory
texts on algebraic groups include [Wat79] or [DG80]. For our purposes the relevant material is found
entirely in [Hum75, Section 16].
1.1 Definition. A group variety is an affine variety X equipped with two morphisms of varieties � ∶
X ×X → X and � ∶ X → X such that � and � satisfy the axioms for a group multiplication and identity
operation respectively. If X and Y are group varieties, a morphism f ∶ X → Y is a morphism of varieties
that is also a homomorphism of the groups.
1.2 Example. Let K be a field; then K = A1K is a group variety where �(x, y) = x + y and �(x) = −x.
Similarly K∗ is a group variety where �(x, y) = xy and �(x) = x−1; and (K∗)n is a group variety under
componentwise multiplication. All these groups are abelian, and all their underlying varieties are (quasi)-
affine.
1.3 Definition. Let G be a group variety; a character of G is a morphism of group varieties � ∶ G → K∗.
The set of characters forms an abelian group, X(G); note that X(G) is a subgroup of A(G). If G is abelian,
a one-parameter subgroup (1-psg) of G is a morphism � ∶ K∗ → G. The set of 1-psgs forms an abelian
group, Y (G).
1.4 Theorem (Torus characterisation). Let G be a group variety. Then the following are equivalent:

1. G is isomorphic to a closed subgroup of (K∗)n for some n ∈ ℕ;

2. X(G) generates A(G);

3. G ≃ (K∗)m for some m ∈ ℕ.

Such a group is called an algebraic torus.

Note also, by dimension counting we must have m ≤ n in the above theorem.
Proof. This is the combination of the results of [Hum75, Sections 16.1 and 16.2], noting that we assume
varieties to be irreducible. ▮

We study the characters and 1-psgs of tori.
1.5 Definition. A latticeN is a free abelian group of finite rank; i.e. a group isomorphic to ℤn for some
n ∈ ℕ. If N is a lattice define the dual lattice N∨ ≔ Homℤ(N,ℤ) (i.e. the abelian group of ℤ-linear
mapsN → ℤ).
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By standard results similar to those for finite-dimensional vector spaces, if N ≃ ℤn then N∨ ≃ ℤn,
there is a bijection between the set of isomorphismsN → N∨ and the set ofℤ-bilinear mapsN ×N∨ → ℤ
(we call such maps duality pairings), and there is a natural isomorphism (N∨)∨ ≃ ∨.
1.6 Lemma. Let T be a torus, with isomorphism � ∶ T → (K∗)k. Then:

1. The characters of T are, after choosing coordinates, precisely the evaluations on T of monomials of
the form Xm1

1 ⋯Xmk
k where (m1, ..., mk) ∈ ℤk.

2. The 1-psgs of T are, after choosing coordinates, precisely the evaluations on (K∗)n of tuples of
monomials of the form (Xn1 , ..., Xnk ) where (n1, ..., nk) ∈ ℤk.

3. There is a canonical (coordinate-free) identification between X(T )∨ and Y (T ) as lattices of rank k.

Proof. Every morphism of varieties (K∗)k → K∗ is the evaluation of a polynomial from the algebra
K[X±1

1 , ..., X±1
k ]. Hence every character m ∈ X(T ) is of the form f◦� for such a polynomial f . Further,

such a composition is a morphism of group varieties if and only if f (X1, ..., Xk) = Xm1
1 ⋯Xmk

k for
(possibly negative) integers mi (otherwise, the polynomial map is not a homomorphism of groups). Thus
the morphism of abelian groups � ∶ X(T ) → ℤk sending m ↦ (m1, ..., mk) in this way is a bijection
and hence an isomorphism. Similarly, all members of Y ((K∗)k) are of the form t ↦ (tn1 , ..., tnk ); so
 ∶ Y (T )→ ℤk mapping n↦ (n1, ..., nk) is an isomorphism.

For all m ∈ X(T ) and n ∈ Y (T ), m◦n is a character of K∗ and hence can be identified with an integer
[m, n] ∈ ℤ by the previous paragraph. Note that unlike � and  , [⋅, ⋅] does not depend on the choice of any
isomorphism. Suppose f ∈ X(T )∨; let (ei)ki=1 be a basis of ℤk, and define ni ≔ f (�−1(ei)) ∈ ℤ for each
i. Set n =  −1(n1, ..., nk) ∈ Y (T ).Let m ∈ X(T ) be arbitrary, and set (m1, ..., mk) = �(m). Now for all t ∈ K∗,

t[m,n] = (m◦n)(t) = (�(m)◦ (n))(t) = �(m)(tn1 , ..., tnk ) = (tn1 )m1⋯ (tnk )mk = tn1m1+⋯+nkmk

so [m, n] = n1m1 +⋯ + nkmk, and
f (m) = f (�−1(e1)m1⋯�−1(ek)mk ) = m1f (�−1(e1)) +⋯ + mkf (�−1(ek)) = m1n1 +⋯ + mknk

and so [m, n] = f (m) for all m ∈ X(T ). Thus for each f ∶ X(T ) → ℤ we obtain an n ∈ Y (T ) such that
f = [⋅, n]; and for each n ∈ Y (T ) it is obvious that [⋅, n] is a character. Further this correspondence is
ℤ-linear in f and n, and so we can identify Y (T ) and X(T )∨. Finally, note that this correspondence is
coordinate-free as the pairing [⋅, ⋅] does not depend on coordinate choices; but upon choice of coordinates
we have that [m, n] is the usual dot product ⟨�(m)| (n)⟩. ▮

We shall reserve the usual symbol ⟨⋅|⋅⟩ to denote the canonical inner product between the lattices of a
torus, as defined in the proof of Lemma 1.6.
1.7 Example. As an example, consider the cusped cubic k = SpecK[X, Y ]∕(X3 − Y 2) which we shall
meet later on as a useful example of a singular affine toric variety (c.f. Example 4.17). The intersection
k ∩ (K∗)2 is an algebraic torus under the isomorphism

Φ ∶ k ∩ (K∗)2 → K∗

(x, y)↦ (y∕x).

(Note, this is an isomorphism as it is locally regular and has an inverse � ↦ (�2, �3).) A character on
k ∩ (K∗)2 is the pullback via Φ of a character of K∗, and a 1-psg on k ∩ (K∗)2 is a 1-psg into K∗ followed
by Φ−1. Take the character �X ↦ X3 of K∗; then the induced character of the cusped cubic torus is
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� ′ = �◦Φ ∶ (X, Y )↦ (Y ∕X)3; further if we take the 1-psg ofK∗ defined by � ∶ T ↦ T −7 we end up with
an induced 1-psg of the cusped cubic torus, namely �′ = Φ−1◦� ∶ T ↦ ((T −7)3, (T −7)3) = (T −14, T −21).
The inner product ⟨� ′|�′⟩ is the exponent of T in � ′◦�′; since � ′◦�′ = (T −21∕T −14)3 = T −21, we have
⟨� ′|�′⟩ = −21. Note that the inner product ⟨�|�⟩ is the exponent of T in (T −7)3, which is −21 (as we
would expect, since the inner products are coordinate independent).

We will give a name to the map � from the proof of Lemma 1.6 as it will arise often.
1.8 Definition. Let m = �X�1

1 ⋯X�n
n ∈ K[X±1

1 , ..., X±1
n ] be a monomial with � ≠ 0. We define the

exponent vector of m to be the tuple (�1, ..., �n) ∈ ℤn. Conversely, if � = (�1, ..., �n) ∈ ℤn we will write
�� for the monomial X�1

1 ⋯X�n
n ∈ K[X±1

1 , ..., X±1
n ].

There is also an intrinsic embedding of an abstract lattice into Kn which satisfies similar compatibility
requirements with respect to coordinate choices. We give a more general case first as we will meet several
situations where a result of this form is useful.
1.9 Lemma (Base extension). Let R be a ring and letM be an R-module. Let f ∶ R → R′ be a ring
morphism. ThenMR′ ≔M ⊗R R′ is naturally an R′-module, in the sense that

• there is a morphism of abelian groups � ∶ M → MR′ such that for all a ∈ R and x ∈ M ,
�(ax) = f (a)�(x);

• for every R′-moduleN and every morphism of abelian groups � ∶M → N such that for all a ∈ R
and x ∈ M , �(ax) = f (a)�(x), there is a unique R′-linear map �̃ ∶ MR′ → N such that the
following diagram commutes:

M MR′

N

�

�
�̃

• if G is a set of generators forM over R, then �(G) is a set of generators forMR′ over R′.

Proof. We first have to define the R′-module structure onMR′ . Note that R′ is an R-module (in fact an
R-algebra!) with scalar multiplication (a, x)↦ f (a)x; thus it makes sense to say that the map

� ∶M × R′ × R′ →MR′

�(x, a, b) ≔ x ⊗ ab

isR-trilinear. By the universal property of the tensor product we obtain anR-linear mapM⊗RR′⊗RR′ →
MR′ and thus (composing with the mapM ×R →M⊗R R′) an R-bilinear map �′ ∶ (M⊗R R′) ×R′ →
MR′ , sending (m⊗a, b)↦ m⊗ab. But now note that this map �′ defines anR′ multiplication onM⊗RR′,thus turning it into an R′-module. We equipMR′ with the usual coprojection � ∶M ∋ x↦ x⊗ 1 ∈MR′ ;this satisfies the linearity condition since, for a ∈ R and x ∈M , �(ax) = ax⊗1 = f (a)(x⊗1) = f (a)�(x).

The universal property now follows directly from the usual universal property for a tensor product;
the only thing needed is to verify that the induced pushforward �̃ is indeed linear in the required manner,
which is done in the same way it was showed for �.

Finally note that the statement about the generators follows directly from the construction, asM⊗RR′is generated over R′ by m⊗ 1 for m ∈M . ▮

1.10 Corollary. IfN is a lattice of rank n and a particular isomorphism � ∶ N → ℤn is chosen, then:

1. NK = N ⊗ℤ K is canonically isomorphic to Kn under an extension of �.
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2. TN ≔ N ⊗ℤ K∗ is canonically isomorphic to (K∗)n under an extension of �. Further, Y (TN ) is
canonically isomorphic toN .

3. If T is a torus then T is canonically isomorphic to TY (T ).

Proof. Part 1 and the first statement of part 2 follow readily from the lemma. We shall begin by proving
the second statement of part 2. Note that the generators for the algebra TN are just injective images
of the generators of N ; thus every element  = (g1, ..., gn) ∈ N corresponds bijectively to a 1-psg
(x1, ..., xn)↦ xg11 ⋯ xgnn of Tn, and this bijection behaves naturally under addition of 1-psgs. Part 3 is just arestatement of this, noting that we have seen that there is a canonical identification T = Y (T )⊗ℤ K∗. ▮

1.11 Example. Let f1 = e1 and f2 = e1 + e2 be vectors in ℝ2 (with (e1, e2) the standard basis). Consider
the lattice N ≔ ℤf1 + ℤf2, together with the isomorphism � ∶ N → ℤ2 given by f1 ↦ e1, f2 ↦ e2.Consider now the tensor productNℝ = N ⊗ℤ ℝ; this is the module over ℝ generated by f1 ⊗ 0, f2 ⊗ 0
and is isomorphic to ℝ2 via the isomorphism f1⊗ 0 → e1, f2⊗ 0→ e2 (which is an extension of � given
that there is an embedding ofN intoNℝ by n↦ n ⊗ 0).

We now look at the torus TN = N ⊗ℤ ℝ∗; consider the canonical isomorphism (ℝ∗)2 → TN given by
the extension of �, that is (x, y) ↦ f1 ⊗ x + f2 ⊗ y. Suppose n = n1f1 + n2f2 and m = m1f1 + m2f2,and let x, y ∈ ℝ∗. We may therefore compute that the product law induced by � on TN is

(n ⊗ x)(m⊗ y) = ((n1f1 + n2f2)⊗ x)((m1f1 + m2f2)⊗ y)
= (f1 ⊗ n1x + f2 ⊗ n2x)(f1 ⊗m1y + f2 ⊗m2y)
= �(n1x, n2x)�(m1y, m2y)
= �(n1m1xy, n2m2xy)
= f1 ⊗ n1m1xy + f2 ⊗ n2m2xy = (n1m1f1 + n2m2f2)⊗ xy

(i.e. the coordinatewise products in eachN-component and in the ℝ-component).
A significant part of the remainder of these notes will be spent studying the relationships between:
1. Varieties which include a torus as a dense open subset with an extended group action, or equivalently

morphisms Φ ∶ (K∗)r → Kn (‘torus embeddings’) and their closures;
2. Subsets of lattices which are closed under the group operation and contain 0 (sub-semigroups);
3. Convex hulls and positive hulls in ℝn.

We shall be particularly interested in how various gluing operations (forming varieties by gluing affine
varieties along open subsets; forming sums of sub-semigroups; gluing convex sets in ℝn) map between
these three viewpoints.

2 Convexity in ℝn

In this section ℝn is endowed with the usual topology.

2.1 Types of convex set
2.1 Definition. Let x1, ..., xr ∈ ℝn, let �1, ..., �r ∈ ℝ, and let x = �1x1 +⋯ + �rxr.Consider the following independent conditions:

�1 +⋯ + �r = 1 (Aff.)
�1 ≥ 0, ..., �r ≥ 0 (Pos.)
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If (Aff.) is satisfied, we say x is an affine combination of x1, ..., xr; if (Pos.) is satisfied, we say x is
a positive combination of x1, ..., xr; and if both (Aff.) and (Pos.) are satisfied, we say x is a convex
combination of x1, ..., xr. For brevity, let the acronym A/P/C stand for affine/positive/convex.

If a subset of ℝn is closed under taking A/P/C combinations, we call it A/P/C. The smallest A/P/C
subset of ℝn containing a given set S is called the A/P/C hull of S, denoted by aff S/posS/convS. By
convention we set aff ∅ = pos ∅ = conv ∅ = {0}.

If S is finite, we call convS the convex polytope (usually abbreviated to polytope in these notes)
generated by S, and we call posS the polyhedral cone (or just cone) of S.
2.2 Lemma. If S and T are (affine/positive/convex) then S ∩ T is (affine/positive/convex). ▮

2.3 Lemma. Let S ⊆ ℝn.

1. S is convex iff for all x, y ∈ S, the segment [x, y] = {�x + (1 − �y) ∶ � ∈ [0, 1]} lies in S.

2. S is positive iff for all x ∈ S, the ray ℝ≥0x lies in S.

3. S is affine iff for all x, y ∈ S, the line x, y = ℝ(x − y) + y lies in S.

Proof. Suppose S is convex. Let x, y ∈ S; then if z ∈ [x, y] there exists � ∈ [0, 1] such that z =
(1 − �)x + �y: this is a convex combination of x, y; so z ∈ S.

Suppose that for all x, y ∈ S,the segment [x, y] lies in S. Let x = �1x1 +⋯ + �rxr be a convexcombination of xi ∈ S; we proceed by induction on r. If r = 1, then �1 = 1 so x = �1x1 ∈ S trivially. If
r > 1, set y = ( �2

1−�1
x2 +⋯

�r
1−�1

xr) and consider x = �1x1 + (1 − �1)y; note that 1
1−�1

(�2 +⋯ + �r) = 1
since �1 +⋯ + �r = 1 by assumption. Further �1 ≤ 1; so �i∕(1 − �1) ≥ 0 for each i > 1. Hence by
induction, y ∈ S; thus x ∈ [y, x1], and x1, y ∈ S, so x ∈ S.Similar arguments work for the other two cases. ▮

2.4 Example. Every open or closed ball B�(0) is convex (easy to see via Lemma 2.3) but not a polytope.
The set X2 + Y 2 = Z2 in ℝ3 is a positive set but not a polyhedral cone. Every linear space is affine; every
additive coset of a linear space is affine (in general every translation or linear transformation of a convex or
affine set is convex or affine, since both these operations preserve linearity).

We formalise the last statement of that example as the following lemma and theorem.
2.5 Lemma. Let X ⊆ ℝn and let f ∶ ℝn → ℝm. If f is linear, then f (X) is (affine/positive/convex) if X
is (affine/positive/convex). If f is a translation, then f (X) is (affine/convex) if X is (affine/convex).

Proof. Suppose f is linear. If P = �1f (x1) +⋯ + �rf (xr) is an (affine/positive/convex) combination of
elements of f (X), then by linearity we have P = f (�1x1+⋯+�rxr) ∈ f (X) (since �1x1+⋯+�rxr ∈ Xby the closure of X under the type of combination of interest).

Now suppose f is a translation, say f ∶ x↦ x+v for fixed v ∈ ℝn. If P = �1f (x1)+⋯+�rf (xr) is aan (affine/convex) combination of elements of f (X) then wemaywriteP = �1x1+⋯+�rxr+(�1+⋯+�r)v;now note that �1 +⋯ + �r = 1 and �1x1 +⋯ + �rxr ∈ X, so P = f (�1x1 +⋯ + �rxr) ∈ f (X). ▮

2.6 Theorem. Let S ⊆ ℝn be affine. We say that a set T ⊆ S is affine dependent if some x ∈ T may be
written as an affine combination of elements of T ⧵ {x}, and that T is affine independent if it is not affine
dependent. If T ⊆ S is affine independent and S = aff T we call T an affine frame for S.

1. For every affine independent set A ⊆ S, there exists an affine independent set B such that S = aff B
and A ⊆ B.

2. For every affine dependent set C ⊆ S, there exists an affine independent set B such that S = aff B
and B ⊆ C .
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3. Let B be an affine frame for S. Then |B| ≤ n + 1, and if C is another affine frame for S then
|B| = |C|.

Finally, suppose � ∈ S is any point, let B = (�, b2, ..., bk) be an affine frame for S containing �. Define Λ
to be the linear subspace of ℝn spanned by (b2 − �, ..., bk − �). Then Λ is independent of the choices of �
and B, S = Λ + �, and dimΛ = k. ▮

By this theorem, every affine set S is an additive coset of some unique linear subspace; we denote by
dimS the dimension of this subspace, and call it the dimension of S. Note also, every affine frame of S
will have size dimS + 1. If X is any subset of ℝn, define the dimension of X to be dimX ≔ dim aff X.

We will also, later on, need some concept of the interior of a convex set (we want the interior of a
convex polygon embedded in ℝ3, for example, to be the interior of that polygon if it were embedded in ℝ2).
2.7 Definition. The relative interior of a set S ⊆ ℝn, relint S, is the interior of S as a subset of aff S with
the induced topology.

Note that by Theorem 2.6 it is obvious that this is just the interior of S when it is embedded in the
smallest Euclidean space containing it.

We now study topological properties.
2.8 Lemma. Let S ⊆ ℝn. Then:

1. aff S is always closed;

2. posS is closed if S is compact and does not contain the origin; it is bounded iff S = ∅ or S = {0}.

3. convS is bounded iff S is bounded; convS is compact if S is compact.

Proof.

Affine hull The set aff S is homeomorphic to a linear subspace (since translations are homeomor-
phisms), and every linear subspace is closed in ℝn (since every linear subspace is the nullspace of a
linear map, i.e. the inverse image of {0} under a continuous function).
Positive hull Suppose S is compact and does not contain the origin. By Lemma 2.3, S = ⋃

x∈S ℝ≥0x.Suppose (xi) is a sequence of points of posS converging to a point x ∈ ℝn. Then each xi = �iyifor �i ∈ ℝ≥0, yi ∈ S. By compactness of S, there is a convergent subsequence (yij ) converging to a
nonzero point y ∈ S. Now the sequence �ijyij∕||

|

yij
|

|

|

converges to x∕|y|; thus (taking absolute values)
�ij converges to|x| ∕|y|; therefore

x = lim
j→∞

xij limj→∞

(

�ijyij
)

= lim
j→∞

�ij limj→∞ yij =
|x|
|y|
y

and since|x| ∕|y| ≥ 0 we have x ∈ posS and posS is closed.
Finally note that if x ∈ S is non-zero then ℝ≥0x is unbounded, and ℝ≥0x ⊆ posS. The converse isevident.
Convex hull Suppose S is bounded, and so there exists a ball B�(0) such that S ⊂ B�(0). By
Example 2.4, B�(0) is an convex set containing S, hence contains the convex hull of S, hence convS
is bounded. The converse is trivial since S ⊆ convS.
Suppose S is compact; it only remains to show that convS is closed. Let (xi) be a sequence in convS,converging to some x ∈ ℝn. For each xi, write xi = �iyi+(1−�i)zi for yi, zi ∈ S (since by Lemma 2.3,
the convex hull is characterised by closure with respect to segments). By compactness of S, there are
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convergent subsequences (yij ) and (zij ) converging to points y and z of S. The sequence (�ij ) in [0, 1]has a convergent subsequence (�ijk ) converging to a point � ∈ [0, 1]. Now, (xijk ) is a subsequence of
(xi), hence converges to x. In particular, the computation

x = lim
k→∞

xijk

= lim
k→∞

(

�ijk yijk + (1 − �ijk )zijk

)

= lim
k→∞

�ijk limk→∞ yijk + (1 − lim
k→∞

�ijk ) limk→∞ zijk
= �y + (1 − �)z

makes sense since all the limits exist; thus x lies on a segment joining points of S; thus x ∈ convS.
Hence convS is closed. ▮

2.9 Example. We cannot really do any better: it is possible for convS to be compact but S be non-compact
(e.g. take S to be the punctured closed disc). The convex hull of a closed set is not necessarily closed: take
S to be the union of the z = 1 plane and the origin in ℝ3, for example (then convS is the set of points with
0 < z ≤ 1 together with the origin, which is not closed). The same S shows that posS is not necessarily
closed either if S is not compact. Further, if S is the closed unit ball centred at (0, 0, 1), then S is compact
but does contain the origin, and posS is not closed as it is the union of the open half-space z > 0 with the
origin.

The important result of Lemma 2.8 is that polyhedral cones are closed, and hence their intersection
with compact sets is compact. This will be important in a few cases where we reduce results about cones
to results about their intersection with polytopes.
2.10 Lemma. The interior of a convex set is convex. The closure of a convex set is convex.

Proof. Let K be convex, and let x, y ∈ intK . Let " > 0 be a real number such that B"(x) and B"(y) bothlie inside K; then the ‘open tube’ S = conv(B"(x) ∪ B"(y)) has the property B"(z) ⊆ S for all z ∈ [x, y].
Indeed, suppose z = (1−�)x+�y for � ∈ [0, 1] and suppose p ∈ B"(z). Then take px ≔ (p−z)+x ∈ B"(x)and py ≔ (p−z)+y ∈ B"(y); and z = (1−�)px+�py so lies in [px, py] hence lies inside S since px, py ∈ S
and S is convex.

To see that K is convex, suppose � ∈ [0, 1] and define f� ∶ ℝn ×ℝn → ℝn by f (x, y) = (1− �)x+ �y.
This map is bilinear, hence continuous. Now note that f (K × K) ⊆ K , so f (K ×K) ⊆ K (using the
closure operator definition of continuity). ▮

2.2 Analytic-algebraic results
Much of the theory we will need to develop will be algebraic in nature; however, it will often be very
useful to view convex sets in both analytic and algebraic settings (indeed, much of the theory above has
an analytic or topological flavour). We have two basic tools to allow us to transform between the two
worlds. The first tool is the Minkowski-Weil theorem, which we do not prove; it will have the consequence
(Corollary 2.15) that polyhedral cones (which we defined algebraically) may be equivalently defined
analytically as being intersections of finitely many halfspaces bounded by hyperplanes through the origin;
this allows us to translate notions of faces and boundary of cones between the two worlds. The second tool
is the Hahn-Banach theorem, and in particular the point separation lemma (Corollary 2.17) which will
allow us to translate notions of inclusion between the analytic and algebraic worlds.

To fix notation we will repeat the standard definitions.
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2.11 Definition. Let x ∈ ℝn ⧵ {0} and � ∈ ℝ. The set ⟨x|⋅⟩ = � is called a hyperplane. The sets
H+ ≔ ⟨x|⋅⟩ ≥ � andH− ≔ ⟨x|⋅⟩ ≤ � are the halfspaces bounded byH . If A and B are subsets of ℝn,
we say that A and B are separated byH if A ⊆ H+ and B ⊆ H− (or vice versa). If, in addition, neither
A nor B intersectsH then the separation is called strict.
Remark. Note that the partition of ℝn as ℝn = H+ ⊎H− is independent of the choice of x and �; on the
other hand, the choice of partity for each halfspace is dependent on these parameters. In the case thatH is
associated with the face of a closed convex set, there is a canonical choice of x which we shall introduce in
Definition 2.23 below.

Note that the dimension of a hyperplane in ℝn is n − 1.

The Minkowski-Weil theorem

2.12 Definition. A polyhedron is a set of the form {x ∈ ℝn ∶ ∀i ⟨x|yi⟩ ≥ �i} (where y1, ..., yk ∈ ℝn and
�1, ..., �k ∈ ℝ).

We will deduce the Minkowski-Weil theorem from the following result; we will in fact use this general
characterisation of polyhedra later on, in Section 7.
2.13 Theorem (Motzkin). Every polyhedron P ⊆ Mℝ may be written as a sum P = Q + C , for Q a
polytope and C a cone.

Proof. A proof may be found as [Zie95, Theorem 1.2] (who in fact deduces it from Corollary 2.15
below). ▮

2.14 Theorem (Minkowski-Weil). Every bounded polyhedron is a polytope. Every polytope is a polyhe-
dron.

Historical remark. It is actually our Corollary 2.15 that historically comes first, and so Theorem 2.14 is
often known as the affineMinkowski-Weil theorem to distinguish it from the conic case. Minkowski proved
in the late 1800s that every intersection of half-spaces through the origin is a polyhedral cone [Min10,
Section19], and later proved a similar result for polyhedra [Min97, p. 210, Lehrsatz II]; Weil proved the
converse in the mid 1930s [Wey35; Wey50, Theorem 1]. According to [Sch86, p. 214], it is almost certain
that Farkas was independently aware of a proof of both directions of this theorem as early as 1902, having
explicitly proved Minkowski’s theorem in a 1896 paper based on work by Gordan, and having essentially
given a proof of the converse in a 1902 paper.
Proof. Let X be a bounded polyhedron. Then by Theorem 2.13 X = Q + C for Q a polytope and C a
cone. But the sum of a bounded and an unbounded set is clearly unbounded; thus C must be the trivial
cone ∅ (by part 2 of Lemma 2.8), and so X = Q. The converse is evident. ▮

2.15 Corollary. A positive set K is a polyhedral cone iff there exist y1, ..., yk ∈ ℝn such that K = {x ∈
ℝn ∶ ∀i ⟨x|yi⟩ ≥ 0}.

Proof. LetK = pos{k1, ..., kr}. The set P = conv{k1, ..., kr} is a polytope. Hence by the Minkowski-Weil
theorem it is of the form P = {x ∈ ℝn ∶ ∀i ⟨x|yi⟩ ≥ �i} for some y1, ..., yk ∈ ℝn, �1, ..., �k ∈ ℝ. Let
k ∈ K (writing k = �1k1+⋯+�rkr for �1, ..., �r ∈ ℝ≥0), and suppose that for some yi we have ⟨k|yi⟩ < 0.Then for some sufficiently large Λ ∈ ℝ≥0 we have ⟨Λk|yi⟩ < �i. Further, by choosing Λ even larger if
necessary we may ensure that Λ > 1∕(�1 +⋯ + �r). Thus

�i > ⟨Λk|yi⟩ = Λ(�1 ⟨k1|yi⟩ +⋯ + �r ⟨kr|yi⟩) ≥ Λ(�1�i +⋯ + �r�i) = Λ(�1 +⋯ + �r)�i > �i
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which is a contradiction. Hence ⟨k|yi⟩ ≥ 0 for each yi, and so K ⊆ {x ∈ ℝn ∶ ∀i ⟨x|yi⟩ ≥ 0}. On the
other hand, suppose ⟨x|yi⟩ ≥ 0 for each i; then for some sufficiently large � ∈ ℝ≥0 we have ⟨�x|yi⟩ ≥ �ifor each i; hence �x ∈ P ; thus x = (1∕�)�x ∈ posP = K .

Conversely, suppose there exist y1, ..., yk ∈ ℝn such that K = {x ∈ ℝn ∶ ∀i ⟨x|yi⟩ ≥ 0}. We must
show that K is finitely generated. Let Π be a polytope surrounding 0; then Π is compact by Lemma 2.8. In
particular since 0 ∈ K and K is closed (it is the intersection of inverse images of a closed subset of ℝ by
the linear, hence continuous, maps of the form ⟨⋅|yi⟩) the set Π ∩K is non-empty and bounded. By the
Minkowski-Weil theorem, Π∩K = conv{k1, ..., kr}. Let k ∈ K . Since K is a positive set (this is trivial to
check), there exists � ∈ ℝ≥0 such that �k ∈ Π∩K . Hence �k = �1k1+⋯+�rkr (where �1+⋯+�r = 1and �1, ..., �r ∈ ℝ≥0). Thus k = �1

� k1 + ⋯ + �r
� kr and so k ∈ pos{k1, ..., kr}. On the other hand if

x ∈ pos{k1, ..., kr} we may find � such that �x ∈ conv{k1, ..., kr} (indeed, take � = 1∕(�1 +⋯ + �r) if
x = �1k1 +⋯ + �rkr). Then �x ∈ K; but K is positive; so x ∈ K . ▮

The Hahn-Banach theorem

2.16 Theorem (Hahn-Banach). Let X ⊆ ℝn be an open non-empty convex set, and let L be an affine
subset of ℝn such thatX ∩L = ∅. Then there exists a hyperplane containing L which does not intersectX.

Historical remark. The classical Hahn-Banach theorem, as proved by Banach [Ban32; Ban87, Theorem
II.1.1], states roughly that given a subspaceM of a vector space X, and given a linear map f ∶M → ℝ
and a map p ∶ X → ℝ satisfying certain properties and bounding f above onM , there is a linear extension
of f to the whole ofX also bounded by p. This can then be used to prove the ‘analytic’ separation theorem,
that is that if A and B are disjoint non-empty convex sets in a topological vector space X with A open then
there is a linear functional positive on A and negative on B; noting that level sets of linear functionals on a
vector space are precisely hyperplanes in that space, we obtain Theorem 2.16 below; this programme is
carried out in detail in [Rud73, Chapter 3].
Proof. The proof is standard, and may be found in [Ber09, Section 11.4] or [Bar02, Theorem II.1.6]. ▮

The Hahn-Banach theorem has many useful corollaries. The one which will play the biggest role for us
is the following.
2.17 Corollary (Point separation lemma). Let � be a cone, and let x ∉ �. Then there exists a point ℎ ∈ ℝn

such that ⟨ℎ|x⟩ < 0 and ⟨ℎ|s⟩ ≥ 0 for all s ∈ �.

Proof. The proof is of the same flavour as that of Corollary 2.15. By [Ber09, Corollary 11.4.6] (a corollary
to Theorem 2.16), since {x} is a compact set and � is non-empty, there exists a hyperplane strictly separating
x and �, say ⟨ℎ|⋅⟩ = � with � ⊆ H+. Since 0 ∈ �, we have that � < 0 and so ⟨ℎ|x⟩ < � < 0. Now we
claim that for every s ∈ �, ⟨ℎ|s⟩ ≥ 0. Indeed, suppose for some s ∈ � we have ⟨ℎ|s⟩ < 0. Then for
sufficiently large � ∈ ℝ≥0 we have ⟨ℎ|�s⟩ < �, so �s ∈ H−; but �s ∈ � since � is closed under positive
scaling. Thus ℎ is the desired point and the proof is complete. ▮

2.3 Faces and vertices
An important object in the study of polytopes in general is the notion of the face lattice of the polytope:
that is, the poset supported on the set of faces, with inclusion as the partial order. When we come to the
study of toric varieties, the global structure of the variety will be determined by the relationships between
face lattices of the local combinatorial objects.
2.18 Definition. Let X ⊆ ℝn be closed convex. A hyperplane H is a supporting hyperplane of X if
X ∩H ≠ ∅ and X ⊆ H+ or X ⊆ H−; we respectively call H+ or H− a supporting halfspace of X
bounded byH .
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2.19 Lemma. IfH is a hyperplane thenH ,H+, andH− are closed sets.
Proof. Each is the inverse image under the linear (hence continuous) map ⟨x|⋅⟩ of a closed subset ofℝ. ▮

2.20 Definition. Let X ⊆ ℝn be closed convex. A face of X is an intersection X ∩ H where H is a
supporting halfplane of X. A face of dimension 0 is a vertex; a face of dimension 1 is an edge; a face
of dimension dimX − 1 is a facet. For convenience we also call X and ∅ faces of X. We denote the set
of d-dimensional faces of X by Fd(X) or X(d), and the set of all faces of X, the face complex or face
lattice of X, by F∙(X). The boundary of X is the union of the proper faces of X.
2.21 Lemma. Let X ⊆ ℝn be closed convex.

1. Every face of X is closed convex.

2. If F and G are faces of X and G ⊆ F then G is a face of F .

3. If F and X are faces of X then F ∩ G is a face of X.
Proof. Part 1 follows from Lemma 2.2 and Lemma 2.19. Now let F ,G be faces of X; write F = X ∩HF ,
G = X ∩HG for supporting halfplanesHF ,HG of X. SupposeHF has equation ⟨xF |⋅⟩ = �F andHGhas equation ⟨XG|⋅⟩ = �G.If G ⊆ F , thenHG is a supporting halfplane of F : indeed, it is a supporting half-plane for X and so
F ⊆ X lies in one of the half-spaces determined byHG, and G ∩HG = G is non-empty and a subset of F .
Hence G is a face of F .

Now consider G ∩ F . We have that F ∩ G = X ∩ (HF ∩HG), and HF ∩HG is an affine subspace
of ℝn. Further, we haveHF ∩HG ⊆ )X; in particular (HF ∩HG) ∩ intX = ∅ and so by Theorem 2.16
there exists a hyperplane P containingHG ∩HG disjoint from intX. Clearly this is a supporting halfplane
for X and has intersection P ∩X = F ∩ G. ▮

2.22 Corollary. The relation ⪯ defined by � ⪯ � iff � is a face of � is a partial order, and so the faces
F∙(X) of a closed convex set form a lattice. ▮

The structure of polytope faces is quite elegant (see [Zie95, Chapter 2]); we primarily shall limit
ourselves in Section 3.2 to studying cones. However, we will need the following general definition in
Section 7, and we introduce it now so that we may state some simple corollaries of our results on cones in
terms of this language.
2.23 Definition. Let H be a supporting hyperplane of X ⊆ ℝn closed convex. The root of the face
F ≔ X ∩H with respect toH is the unique unit vector f such that

1. f is normal toH ;
2. ℝ>0f ∩X = ∅.

ThusH is described by ⟨f |⋅⟩ = � for some � ∈ ℝ, andX ⊆ H− where the parity of the half-spaces is now
chosen with respect to f . For the remainder of these notes, we shall always determine parity of supporting
halfspaces with respect to a root.

If F is a face ofX, we say that a vector y is an outer normal of F if there exists a supporting hyperplane
H of X such that F = X ∩H with the properties

1. y is normal toH ; and
2. y + ℎ ∈ H+ for any (hence all) ℎ ∈ H .

In this case we also say that −y is an inner normal of F . The set of all inner normals of F is denoted by
NX(F ).

Note that our convention for the normal fan parity is opposite to [Ewa96] and [Zie95]: we takeNX(F )to consist of inner rather than outer normals. The reason for this is Corollary 3.26.
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3 Cones and lattice semigroups
In this section, we study particular cases of polyhedral cones: those whose generators lie in a lattice. Our
main result, Corollary 3.33, is that if � is a polyhedral cone whose generators are points of a latticeM
then the intersection S = M ∩ � can be viewed as the set of exponent vectors of the algebra of regular
functions of a certain class of affine varieties. To obtain it we must study the behaviour of the intersection
S and the nature of its dependancy on the way � sits insideM .

For the remainder of the section, letM,N be lattices of rank n, dual under the pairing ⟨m|n⟩. Let
Nℝ = N ⊗ℤ ℝ andMℝ =M ⊗ℤ ℝ.

3.1 Semigroups related to cones
3.1 Definition. A set � ⊆ M⊗ℤℝ is a lattice cone overM if � = pos{m1, ..., mk} for m1, ..., mk ∈M . A
subset ofM is said to be a minimal generating set for � if it is a generating set minimal under inclusion.

There are various adjectives one might associate to a lattice cone; we state them all now, but most will
be useful as they will give us nice properties of associated toric varieties.
3.2 Definition. A lattice cone overM is said to be strongly convex if it does not contain any nontrivial
vector subspace of Mℝ. A strongly convex lattice cone is smooth (or regular or non-singular) if its
minimal generators form a basis for the lattice. It is simplicial if its minimal generators are linearly
independent over ℝ.
3.3 Example. In ℝ3 (with lattice ℤ3), in the plane z = 1 pick four points p, q, r, s; then � ≔ pos{p, q, r, s}
is strongly convex. Further, if p, q, r, s are distinct then {p, q, r, s} is a minimal generating set for �. Suppose
this is the case; if the four points are not collinear, then the cone is smooth. On the other hand, if p, q, r, s
are distinct then � cannot be simplicial.

Consider the halfplane y ≥ 0 in ℤ3. This is a lattice (polyhedral!) cone with generators {±e1, e2}, andany set of generators must include one element each on the positive and negative (y = 0)-rays. Thus no
minimal set of generators can be linearly independent over ℤ or ℝ; it satisfies none of the three properties
of Definition 3.2.

Finally, note that the cone {0} is (by convention) the positive hull of ∅; hence {0} is smooth, as ∅ may
be extended to a ℤ-basis for any lattice.
3.4 Lemma. Let � be a lattice cone overM; then � ∩M is closed under addition and contains zero. ▮

This provides an example of the following definition:
3.5 Definition. A semigroup is a pair (S,+) such that + is an associative, commutative binary operation
on S with identity 0, and the cancellation rule s + x = t + x ⟹ s = t holds for all s, t, x ∈ S. A
semigroup S is finitely generated if there exist s1, ..., sn ∈ S such that S = ℤ≥0s1 +⋯ + ℤ≥0sn. Such a
generating set is minimal if none of the generators is a ℤ≥0-linear combination of the others.

3.6 Lemma (Gordan). If � is a lattice cone overM , then � ∩M is a finitely generated semigroup.

Historical remark. This result was first proved by Gordan [Gor73] (though not stated in this form —
the statement due to Gordan is phrased in terms of Diophantine equations), and the uniqueness result
Lemma 3.8 is due to van der Corput [Cor31].
Proof. Suppose � = pos{x1, ..., xk}. Set

Π ≔ {
k
∑

i=1
�ixi ∶ �i ∈ [0, 1]}; (1)
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Figure 1: The construction of the finite generating set of a cone.

we will show thatΠ∩M is a generating set for �∩M (Fig. 1); and this set is finite since it is the intersection
of a compact set with a discrete set. The idea of the proof is that the parallellopiped Π can be used to tile �.

Suppose s ∈ � ∩M ; then s = �1x1 +⋯ + �kxk for some �i ∈ ℝ≥0. For each i, write �i = �i + �iwhere �i ∈ ℤ≥0 and �i ∈ [0, 1). Then s = ∑

i �ixi +
∑

i �ixi; since
∑

i �ixi is an integral combination of
the xi, it is a lattice member. Hence s −∑

i �ixi =
∑

i �ixi lies in the lattice; and also lies in � since each
�i is non-negative. Further, it lies in Π by construction. ▮

This implies that there is a minimal generating set of � ∩M :
3.7 Definition. A minimal generating set of a semigroup S is called an Hilbert basis for S.

Further, this generating set is unique under some mild conditions:
3.8 Lemma (van der Corput). If � is strongly convex lattice cone, then � ∩M has a unique Hilbert basis.

Proof. Let {x1, ..., xm} and {y1, ..., yn} be minimal generating sets. We will show that x1 ∈ {y1, ..., yn}and thus (since we can permute the xi arbitrarily) {x1, ..., xm} ⊆ {y1, ..., yn}; then by minimality we must
have equality.

We may write x1 as the lattice sum of some subset of the yi; relabelling if necessarily, suppose that

x1 =
r
∑

i=1
�iyi and yi =

m
∑

j=1
�i,jxj for each i;

with each �i ∈ ℤ>0 and each �i,j ∈ ℤ≥0; hence

x1 =
r
∑

i=1

⎛

⎜

⎜

⎝

m
∑

j=1
�i,jxj

⎞

⎟

⎟

⎠

=
m
∑

j=1

( r
∑

i=1
�i�i,j

)

xj .

Write �j for
(

∑r
i=1 �i�i,j

)

; so x1 = ∑m
j=1 �jxj . Since �1 is a sum of non-negative integers and is non-zero

(otherwise xi could be written in terms of x2, ..., xk contradicting minimality) it is at least 1. On the other
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hand, �1 ≤ 1: note that x1 − �1x1 = ∑m
j=2 �jxj and the latter lies in �, so x1 − �1x1 lies in � and so

ℝ≥0x1 + ℝ≥0(1 − �1)x1 ⊆ �; if 1 − �i < 0 then this set is ℝx1, contradicting strong convexity. Hence
�1 = 1. In particular, we have 0 = ∑m

j=2 �jxj and so each �j for j > 1, being a sum of non-negative
integers, must be zero. Since each �i is non-zero and all the coefficients are non-negative, this implies that
�i,j = 0 for all i and all j > 1. In particular, we have

y1 =
m
∑

j=1
�1,jxj = �1,1x1

and since 1 = �1 = ∑r
i=1 �i�i,1, the �i are all non-zero, and �1,1 > 0 since y1 ≠ 0, we must have �1,1 = 1;so y1 = x1 and x1 ∈ {y1, ..., yn} as desired. ▮

3.9 Lemma. Let S be a semigroup, and let R = {x + y ∈ S ∶ x ≠ 0, y ≠ 0}. Then S ⧵ R, the set of
irreducible elements, is a Hilbert basis for S. ▮

3.10 Example. Again consider the half-plane y ≥ 0; then every set of the form {e1, e2,−�e1} where
� ∈ ℕ is a distinct minimal generating set.

Finally, note that Gordan’s lemma tells us that the intersection of a lattice cone � = pos{s1, ..., sk} andthe latticeM is a finitely generated sub-semigroup ofM . We have a similar property when it comes to the
intersection of � and theM-rational points of the ambient vector space; here we don’t need to be clever to
find a generating set.

The following definition will be useful in the proof and in similar situations.
3.11 Definition. Suppose n ∈ N ; then √

n ≔ �−1n where � is the largest integer such that �−1n ∈ N .
This quantity is well-defined asN is discrete. We call√n the radical of n, and we call the integer � the
lattice length of n. A point is primitive if it has lattice length 1.
3.12 Example. In ℤ2, the point e1 + e2 is primitive; on the other hand, 4e1 + 2e2 has lattice length 2 so isnot primitive.
3.13 Lemma (Lattice rationality). If � = pos{s1, ..., sk} is a lattice cone overM , then

� ∩Mℚ = ℚ≥0s1 +⋯ +ℚ≥0sk.

Proof. The inclusion �∩Mℚ ⊇
∑k
i=1ℚ≥0si is straightforward, so we only prove the converse. Suppose x ∈

� ∩Nℚ; then there exists A ∈ ℤ≥0 such that Ax ∈ � ∩Nℚ. By the proof of Gordan’s lemma (Lemma 3.6),
� ∩N is generated as a semigroup by the lattice points contained within the closed parallellopiped

Π ≔ {
k
∑

i=1
�ixi ∶ �i ∈ [0, 1]}; (2)

each such element is a sum∑k
i=1 �i

√

si, where (�1, ..., �k) ∈ [0, 1]k.
We may therefore write Ax = ∑l

i=1 �i�i for �1, ..., �l ∈ ℤ≥0, where each �i is of the form �i =
∑k
j=1 �i,j

√

sj and �1, ..., �l are precisely the set of lattice points ofN in Π. Hence,

Ax =
l
∑

i=1
�i
⎛

⎜

⎜

⎝

k
∑

j=1
�i,j�

−1
j sj

⎞

⎟

⎟

⎠

where �i, �i,j , and �j are all non-negative integers for all i, j. In particular, exchanging the summations,
we may write Ax = ∑k

i=1 isi where each i is a non-negative rational number; thus we have that x =
A−1

∑k
i=1 isi lies in

∑k
i=1ℚ≥0si. ▮
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3.2 Cones and the duality pairing
To every cone � (not necessarily even a lattice cone) inNℝ, we may naturally assign a cone �∨ inMℝ.
3.14 Lemma. If � is a cone inNℝ, let

�∨ ≔ {m ∈Mℝ ∶ ∀s∈� ⟨m|s⟩ ≥ 0}.

We call this subset ofMℝ the dual cone of �. Indeed:

1. {0}∨ =Mℝ;

2. if � = pos{s1, ..., sr}, then �∨ = {m ∈Mℝ ∶ ∀i ⟨m|si⟩ ≥ 0};

3. �∨ is a cone;

4. (�∨)∨ = �;

5. if � is a cone such that � ⊆ �, then �∨ ⊆ �∨ (but in general the face relation is not reversed, see e.g.
Fig. 3 on Page 31; there is a more complex face-relation-reversing correspondence between faces of
� and those of �∨, see Corollary 3.21);

6. (−�)∨ = −(�∨);

7. �⟂ = �∨ ∩ (−�∨) ⊆ �∨, with equality iff � is a linear subspace;

8. for any pair �1, �2 of cones,

(a) (�1 + �2)∨ = �∨1 ∩ �
∨
2 and

(b) (�1 ∩ �2)∨ = �∨1 + �
∨
2 .

Proof.

1. Trivial.
2. Indeed, y ∈ �∨ implies ⟨y|si⟩ ≥ 0 for all i; conversely, if ⟨y|si⟩ ≥ 0 for each i, then

⟨y|�1s1 +⋯ + �msm⟩ = �1 ⟨y|s1⟩ +⋯ + �m ⟨y|sm⟩ ≥ 0

for all �1, ..., �m ∈ ℝ≥0.
3. Follows from part 2 and Corollary 2.15.
4. Despite the claim of [Ewa96] this is actually nontrivial (c.f. [Ful93, Chap. 1, endnote 5]); it depends

on one of the consequences of Theorem 2.16. For all n ∈ � and for all m ∈ �∨, we have ⟨m|n⟩ ≥ 0.
This implies that n ∈ (�∨)∨. Conversely, we must show that ⟨m|n⟩ ≥ 0 for all m ∈ �∨ only if n ∈ �;
but this follows directly from Corollary 2.17 since if n ∉ � there exists m ∈Mℝ such that m ∈ �∨
and ⟨m|n⟩ < 0.

5. Let � ⊆ �; if x ∈ �∨ then ⟨x|s⟩ ≥ 0 for all s ∈ �; hence ⟨x|t⟩ ≥ 0 for all t ∈ �; hence x ∈ �∨.
6. Trivial.
7. The statement �⟂ = �∨ ∩ (−�∨) ⊆ �∨ is trivial. Note that all positive sets are closed under vector

sum (since sums of positive coefficients are positive). Thus it will suffice to show that equality holds
iff � = −�. Suppose equality holds; then �∨ = (−�∨); hence � = (−�∨)∨; hence by parts 4 and 6
� = −(�∨)∨ = −�. Conversely, if � = −� then �∨ = −�∨ by part 6 and so equality holds.
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Figure 2: The cone � = pos{e1, e1 + e2} (red area) and its dual cone (combined blue and red area).

8. (a) Let m ∈ �∨1 ∩ �
∨
2 . Then ⟨m|s1⟩ ≥ 0 and ⟨m|s2⟩ ≥ 0 for all s1 ∈ �1, s2 ∈ �2. Hence

⟨m|s1 + s2⟩ = ⟨m|s1⟩ + ⟨m|s2⟩ ≥ 0 and m ∈ (�1 + �2)∨. Conversely, suppose x ∉ �∨1 ∩ �∨2 .Without loss of generality assume x ∉ �∨1 ; then by Corollary 2.17 and part 4 there exists
n ∈ Nℝ such that n ∈ �1 and ⟨x|n⟩ < 0. But n ∈ �1 + �2; so n ∉ (�1 + �2)∨.

(b) By parts 4 and 8a we have (�1 ∩ �2)∨ = (�∨1 + �∨2 )∨ = �∨1 + �∨2 . ▮

3.15 Example. Let e1, ..., en be the standard basis of ℤn, let ℤn be identified with its own dual lattice viataking transposes, and let � = pos{e1, ..., en}. Then �∨ = �: indeed, suppose m ∈ �; then for s ∈ �, ⟨m|s⟩is a sum of products of non-negative numbers, so ⟨m|s⟩ ≥ 0. Hence � ⊆ �∨. The same argument shows
that �∨ ⊆ �.
3.16 Example. If v ∈ ℤn is any point, then pos{v}∨ is the halfspace bounded by v⟂ containing v. Indeed,
v⟂ is the hyperplane ⟨v|⋅⟩ = 0; and so pos{v}∨ = (v⟂)+ which is the halfspace containing v.
3.17 Example. Let f1 = e1 and f2 = e1 + e2 (e1 and e2 the standard basis of ℝ2), and define � =
ℤ≥0f1 + ℤ≥0f2. Then x = �e1 + �e2 ∈ �∨ if and only iff ⟨x|s⟩ ≥ 0 for all s ∈ S. That is, for all � ≥ 0
and � ≥ 0:

0 ≤ ⟨x|s⟩ = ⟨�e1 + �e2|�f1 + �f2⟩
= ⟨�e1 + �e2|(� + �)e1 + �e2⟩
= �(� + �) ⟨e1|e1⟩ + (�(� + �) + ��) ⟨e1|e2⟩ + �� ⟨e2|e2⟩
= �(� + �) + ��.

Hence if �e1 + �e2 ∈ �∨ then (� + �)� ≥ −�� for all �, � ∈ ℝ≥0; in particular for � = 0 and � = 1 we
obtain (� + �) ≥ 0. Similarly we obtain � ≥ 0. It is immediate that if these two inequalities hold then
�e1 + �e2 ∈ �∨, and so the dual cone is the set of all point satisfying both inequalities simultaneously; this
set is pos{e2, e1 − e2} (Fig. 2).

We will show that if � is a lattice cone then �∨ is a lattice cone. We will need some machinery to do
so, primarily involving the relationship between the face lattice of a cone and the dual cone.
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3.18 Definition. If � is a cone and m ∈ �∨, define the set
F�(m) ≔ m⟂ ∩ � = {s ∈ � ∶ ⟨m|s⟩ = 0}

called the face of � determined by m.
3.19 Lemma. A cone � has only finitely many faces, each of which is a cone, and which inherit the property
of being strongly convex if � is strongly convex. Further, the following are equivalent:

1. � is a face of �;

2. � = F�(m) for some m ∈ �∨;

3. if �∨ = posM , then there is a finite subsetM ′ ⊆ M such that � =
⋂

m∈M ′ F�(m).

Proof. Note that from part 3 we obtain that the cone has only finitely many faces, since a finite set has
only finitely many subsets. Suppose F�(m) is the face determined by f1, ..., fl ∈ �∨. Then we may write

F�(m) = {s ∈ � ∶ ∀1≤i≤l ⟨fi|s⟩ ≤ 0 and ⟨fi|s⟩ ≥ 0}

=
{

s ∈ ℝn ∶
(

∀1≤i≤l ⟨fi|s⟩ ≤ 0 and ⟨fi|s⟩ ≥ 0
) and ∀1≤j≤r ⟨ki|s⟩ ≥ 0

}

where the inequalities ⟨ki|s⟩ ≥ 0 are those which define � by one direction of Corollary 2.15; the other
direction of the same result then tells us that F�(m) is also a (finitely generated polyhedral) cone. Finally
strong convexity of the faces is trivial if � is strongly convex since if a face includes a line then � includes
it.

We now prove the equivalent definitions of a face.
1 ⟹ 2 LetH be a supporting halfplane for �, say ⟨ℎ|⋅⟩ = � where ℎ is chosen so that � ⊆ H+. First
note that � = 0; for if � > 0 then ⟨ℎ|s⟩ > 0 for all s ∈ �, which is a contradiction since 0 ∈ �. Further
note that this implies that ℎ ∈ �∨; so every face of � is of the form F�(ℎ).
2 ⟹ 1 Conversely, ifm ∈ �∨ then for all s ∈ �, ⟨m|s⟩ ≥ 0 and so � ⊆ (F�(m))+; since 0 ∈ �∩F�(m)the intersection is non-trivial and so F�(m) is a face of �.
2 ⟺ 3 Suppose �∨ = pos{m1, ..., mk}; then for �1, ..., �k ∈ ℝ≥0 we have F�(�1m1 +⋯ + �kmk) =
{s ∈ � ∶

∑k
i=1 �i ⟨mi|s⟩ = 0}; but ⟨mi|s⟩ ≥ 0 and �i ≥ 0 for all i. LetM ′ be the set of mi such that

�i ≠ 0, so
F�(�1m1 +⋯ + �kmk) = {s ∈ � ∶ ∀1≤i≤k�i ⟨mi|s⟩ = 0} =

⋂

m∈M ′
F�(m);

conversely every such intersection is a face since intersections of faces are faces. Hence every face is
determined uniquely by the choice of some subset of the mi (and setting �i = 0 for all other i). ▮

This previous lemma, and the following corollary, will often be used without reference as they simply
tell us that our intuitive picture of the faces of a polyhedral cone is indeed correct.
3.20 Corollary. Let B = {b1, ..., bk}. If � = posB and � ⪯ � then � = posB′ for some (possibly empty)
subset B′ ⊆ B.

Proof. If � = 0 the result is trivial, so suppose � ≠ 0. Let � = pos{c1, ..., cm} for ci ∈ � ⧵ 0 be the facedetermined by the hyperplane H with equation ⟨m|⋅⟩ ≥ 0. I claim that one of the bi lives in H ; indeed
suppose not, so ⟨m|bi⟩ > 0 for each i. Let t ∈ � be nonzero; so t = ∑k

i=1 �ibi where �i ∈ ℝ≥0 for each
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i, and at least one of the �i > 0. In particular ⟨m|t⟩ = �i∑k
i=1 ⟨m|bi⟩ > 0 which is a contradiction since

t ∈ � ⊆ H . Thus bi ∈ H for some i; let B′ = B ∩H . Clearly then posB′ ⊆ �. Conversely, for each j we
may write

cj =
∑

b∈B′
�bb +

∑

b∈B⧵B′
�bb.

From this we see that∑b∈B⧵B′ �bb lies inH (sinceH is a hyperplane through 0, i.e. a vector subspace).
But this implies

0 = ⟨m|
∑

b∈B⧵B′
�bb⟩ =

∑

b∈B⧵B′
�b ⟨m|b⟩ .

Since each ⟨m|b⟩ > 0 for b ∈ � ⧵H , we must have �b = 0 for each b ∈ B ⧵ B′. In particular, each cj is apositive combination of the members of B′ and so � = pos{c1, ..., cm} ⊆ posB′. ▮

Remark. The converse is not true unless B is minimal: take the cone pos{e1, e2, e1 + e2} ⊆ ℝ2, then
pos{e1 + e2} is clearly not a face! Note also that F�(m) for any m ∈ �⟂ is the trivial face �.
3.21 Corollary. Let � ⊆ Nℝ be a lattice cone.

1. Let s ∈ �. Then s ∈ relint � if and only if �∨ ∩ s⟂ = �⟂.

2. The map � ↦ �∨ ∩ �⟂ is an order reversing bijection between F (�) and F (�∨).

Proof.

1. Suppose s ∈ relint �. It is trivial that �⟂ ⊆ �∨ ∩ s⟂; we prove the opposite inclusion. Since s does
not lie in any nontrivial face of �, by Lemma 3.19 ⟨m|s⟩ > 0 for all m ∈ �∨ ⧵ �⟂; therefore, if
⟨m|s⟩ = 0 for some m ∈ �∨, it must be the case that m ∈ �⟂. Suppose m ∈ �∨ ∩ s⟂ ⧵ �⟂; then
⟨m|s⟩ = 0, so m ∈ �⟂.
Conversely, suppose �∨ ∩ s⟂ = �⟂; if ⟨m|s⟩ = 0 for some m ∈ �∨, then m ∈ �⟂. Thus if s ∈ F�(m),
F�(m) = �; i.e. the only face s lies in is the trivial face �.

2. Clearly �∨ ∩ �⟂ = ∩t∈�F�∨ (t), so the map defined does send faces to faces. Let F�∨ (t) be a face of
�∨; then t ∈ relint � for some � ⪯ �. By part (1), �∨ ∩ t⟂ = �⟂. Thus

�∨ ∩ �⟂ = �∨ ∩ �∨ ∩ t⟂ = �∨ ∩ t⟂

so any map sending faces F�(t) ∈ �∨ to some � ⪯ � with t ∈ relint � is an inverse for the stated
map; thus such a map is unique and we have a bijection.

▮

Some of the techniques in the proof of Lemma 3.19 may be used to form a more concrete view of the
dual cone. More precisely, Proposition 3.22 will tell us how to compute the dual cone of a full-dimensional
cone, and then Lemma 3.27 will tell us how to iteratively compute the dual cones of faces of larger cones.
3.22 Proposition. Let � = pos{a1, ..., ak} be an n-dimensional cone in Nℝ; let b1, ..., br be the inner
normals of the facets of �. Then �∨ is the positive hull of b1, ..., br.

Proof. For each i, letHi be the hyperplane defined by ⟨⋅|bi⟩ = 0; in particular, sinceHi supports � and
bi lies on the same side of Hi as � we have ⟨s|bi⟩ ≥ 0 for all s ∈ �. Hence bi ∈ �∨ for all i and so
pos{b1, ..., br} ⊆ �∨ since �∨ is a cone.

Conversely, suppose x ∈ �∨ ⧵ pos{b1, ..., br}. Because � is full-dimensional, {b1, ..., br} spans ℝn and
in particular we may write x = �1bi1 +⋯ + �kbik where k ≤ n and each �j is nonzero. By assumption,
one of the �j must be negative; assume without loss of generality that �1 < 0. Since {a1, ..., ak} spans
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ℝn by assumption, there must be some al lying in the orthogonal complement of the space spanned by
{bi2 , ..., bik} since the latter is at most (n − 1)-dimensional. In particular ⟨al|bij ⟩ = 0 for all j ≥ 2, and so
⟨al|x⟩ = �1 ⟨al|bi1⟩; by the first paragraph we have ⟨al|bi1⟩ > 0 and so ⟨al|x⟩ < 0 since �1 < 0. But
this contradicts the assumption that x ∈ �∨. ▮

We may immediately deduce the following useful corollary.
3.23 Corollary. A cone � is strongly convex if and only if �∨ is full dimensional.

Proof. Suppose first that � is strongly convex. Note that �⟂ ⊆ �∨. It follows that we need only consider
the case where � is full dimensional inNℝ, as the complement always contributes fully to the dimension
of the dual cone. If � is full dimensional inNℝ, then by Proposition 3.22 we have that �∨ is spanned by
the set of all normal vectors to the facets of �; but the facets of � are spanned by a set which spansNℝ;hence the set of normal vectors is spanning inMℝ.Suppose conversely that � is not strongly convex. Then there exists a nonzero linear subspace Λ ⊆ �.
Now note that Λ⟂ = Λ∨ ⊇ �∨ (the first equality from part 7 of Lemma 3.14); but Λ⟂ is a proper subspace
ofMℝ so �∨ cannot be full dimensional. ▮

3.24 Example. Note that the cone � ⊆ ℝ2 of Example 3.17 is strongly convex, and its dual is 2-dimensional.
On the other hand, the cone consisting of the single ray pos{v} (for some v ∈ ℝn for n ≥ 2) of Example 3.16
is not full-dimensional and its dual cone is not strongly convex (it contains the space {v}⟂ which is (n− 1)-
dimensional and hence is a nontrivial subspace).

As another application of Proposition 3.22, we may deduce:
3.25 Corollary. If a full-dimensional lattice cone � overM is smooth (resp. simplicial) then �∨ is smooth
(resp. simplicial).

Proof. Let � be simplicial, with ℝ-linearly independent generating set {x1, ..., xn}. Then there is an
invertible linear transformation A ∶Mℝ → ℝn sending xi ↦ ei for each i (the ei being the usual basis for
ℝn). We also consider the adjoint transformation A′ ∶ Nℝ → ℝn.

By Proposition 3.22, the dual cone �∨ is generated by the inner normals of �. Further, (A�)∨ = A′�∨
by the properties of the adjoint. Now A� = pos{e1, ..., en} has dual (A�)∨ = pos{e1, ..., en}; the givengenerating set of the latter is linearly independent, so �∨ = pos{(A′)−1e1, ..., (A′)−1en} also has a linearly
independent generating set.

Clearly the above proof also goes through in the case where � is smooth: the relevant observation
needed is that, in this case, the matrix of A must have integer entries. ▮

Finally the following corollary will also be useful in Section 7:
3.26 Corollary. If P is a full-dimensional polyhedron, and x ∈ P is a vertex, the normal coneNP (x) is
the dual cone of pos(P − x). (In particular, the normal cone is a cone.) We have an inclusion-reversing
bijection between the faces F of P containing x and the faces ofNP (x), given by F ↦ NP (F ).

Proof. The statementNP (x) = pos(P − x)∨ follows directly from Proposition 3.22. The face correspon-
dence follows from Corollary 3.21, noting that faces of P containing x correspond exactly to faces of
pos(P − x) by the Minkowski-Weil theorem. ▮

3.27 Lemma. If � ⪯ �, let m ∈ �∨ such that � = F�(m). Then �∨ = �∨ +ℝ≥0(−m).

Proof. It suffices to show that (�∨)∨ = (�∨ + ℝ≥0(−m))∨; but (�∨)∨ = �, and (�∨ + ℝ≥0(−m))∨ =
�∩(ℝ≥0(−m))∨. Now note that n ∈ (ℝ≥0(−m))∨ iff ⟨n| − m⟩ ≥ 0, i.e. ⟨n|m⟩ ≤ 0; butm ∈ �∨, so ⟨n|m⟩ ≥ 0for all n ∈ �; hence if n ∈ �∩(ℝ≥0(−m))∨ iff n ∈ m⟂, and thus �∩(ℝ≥0(−m))∨ = �∩m⟂ = F�(m) = �. ▮
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3.28 Lemma (Farkas’ theorem). If � is a lattice cone overN , then �∨ is a lattice cone overM .

Proof. If � is full dimensional, then by applying Proposition 3.22 we are done. Suppose then that V ≔
span � is a proper subspace ofNℝ. We may writeMℝ = V ∨ ⊕ V ⟂ (V ∨ denoting the usual dual space); if
x ∈Mℝ we may therefore decompose x as xV ∨ + xV ⟂ . Hence (noting that s is orthogonal to anything in
V ⟂):

x ∈ �∨ ⟺ ∀s∈� ⟨s|x⟩ ≥ 0
⟺ ∀s∈� ⟨s|xV ∨⟩ + ⟨s|xV ⟂⟩ ≥ 0
⟺ ∀s∈� ⟨s|xV ∨⟩ ≥ 0

i.e. xV ∨ lies in the dual of � inMℝ∕V ⟂; this reduces the problem to a full-dimensional problem, and we
may take the facet normals of � inMℝ∕V ⟂ and lift those intoMℝ, say as {b1, ..., bk}. Then the dual of �
is the cone generated by {b1, ..., bk} and {±e1, ...,±er} where {e1, ..., er} is a basis for V ⟂. ▮

3.29 Definition. Let S be a semigroup. If K is a field, define the semigroup algebra K[S] to be the
algebra generated overK by the elements {X� ∶ � ∈ S}, modulo the relationsX0 = 1 andX�X� = X�+� .
If � is a lattice cone overN , let S� ≔ �∨ ∩M and let A� = K[S�]. If �∨ is strongly convex, then �∨ ∩M
has a unique Hilbert basis (by Lemma 3.8); we denote this basis byH� .

In other words, we are interested in algebras whose generating sets form a semigroup which can be
embedded into a lattice. This will correspond to varieties whose coordinate functions are generated by the
extension of a lattice of functions to the entire variety. The following remarks follow directly from the
definitions, but it will be convenient to mark them as a lemma so we may refer back to them later.
3.30 Lemma. If S is a finitely generated semigroup, then K[S] is finitely generated as an algebra over
K . Conversely, if K[S] is an algebra generated by a semigroup S and K[S] is finitely generated as an
algebra over K then S is finitely generated.

If S is generated by {�1, ..., �k}, then K[S] is the quotient of the free algebra over K with generators
{X�1 , ..., X�k} by an ideal b finitely generated by elements of the form m− n for monomials m and n in the
X�i (that is, b is a binomial ideal). ▮

3.31 Example. K[ℤn] = K[±e1, ...,±en]. Hence Spec(K[ℤn]) = (K∗)n.
3.32 Proposition. If � is a lattice cone overN , then A� is a finitely generated integral algebra over K .

Proof. By Lemma 3.28, �∨ is a lattice cone over M . By Lemma 3.6, �∨ ∩ M is finitely generared
semigroup. Hence by Lemma 3.30 we are done. ▮

Our main result for this section is now immediate.
3.33 Corollary. If S is a finitely generated semigroup, then SpecK[S] is an affine variety cut out by
binomials. Thus if � is a lattice cone overN , then SpecA� is an affine variety cut out by binomials. ▮

4 Affine toric varieties
Our strategy to prove general statements about toric varieties will be to perform as much work as possible
locally (in affine toric varieties), and then ‘glue’ the pieces together in a manner which respects the toric
structure. Thus, we must spend some time studying this local picture. This section is the most technically
challenging of this dissertation; we shall use freely the results of earlier sections, as well as algebraic
geometry (primarily the theories of normal and smooth varieties; all the results on these that we use, along
with many further examples, may be found in [Sha13, Chapter 2]). We also make a convention for the
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remainder of our discussion that all cones associated with a vector space arising from a lattice will be
implicitly lattice cones.

The primary results of this section are as follows:
• The closed points of a variety arising from a semigroup S are in natural correspondence with the

group of semigroup morphisms S → K (Lemma 4.3). This correspondence also detects toric
structure (Lemma 4.8).

• Lattice cones determine a toric variety (Corollary 4.11). The faces of the cone determine certain
principal open subvarieties of this toric variety in a manner corresponding to the face lattice (Theo-
rem 4.25), and in fact there is a bijection between toric principal open subvarieties and faces of the
original cone (Corollary 4.45).

• We obtain a bijective correspondence (up to isomorphism) between strongly convex lattice cones,
and normal affine toric varieties (Theorem 4.21). The tori of such varieties arise naturally from
the lattice the cones are defined over (Proposition 4.20). These results may be viewed as a toric
Nullstellensatz.

• Affine toric varieties are smooth if and only if they arise from a smooth cone (Theorem 4.30).
• The toric action on a normal affine toric variety has a unique fixed point (Theorem 4.31). The local

properties of this fixed point determine combinatorial properties of the related cone; in particular,
the dimension of the tangent space is precisely the size of a Hilbert basis for the semigroup of the
cone (Lemma 4.33).

• As a generalisation of the fixed point result, all orbits of the torus on an affine toric variety may be
classified and associated with a face of the associated cone (Theorem 4.38); the closures of these
orbits are also classified (Corollary 4.44).

LetM,N be lattices of rank n, dual under the pairing ⟨m|n⟩. LetNℝ = N ⊗ℤ ℝ andMℝ =M⊗ℤ ℝ.
Let K be an algebraically closed field.

We begin by giving our main definition.
4.1 Definition. A toric variety is an inclusion of varieties Φ ∶ T → X, where T is an algebraic torus and
Φ(T ) is open in X, such that there is a continuous group action Φ(T ) ×X ∋ (t, x) ↦ t ⋅ x ∈ X which is
an extension of the induced multiplication within Φ(T ); i.e. Φ(t) ⋅Φ(s) = Φ(ts) for all t, s ∈ T . We will
often refer to Φ(T ) as ‘the’ torus of X, and will often refer to the variety X as the toric variety with the
torus embedding itself carried implicitly.

If X and Y are toric varieties with respective tori TX and TY , then a morphism � ∶ X → Y is a toric
morphism if �(TX) ⊆ TY and �(t ⋅ x) = �(t) ⋅ �(x) (i.e. � is a homomorphism of the tori).
4.2 Example. Kk and (K∗)k are toric varieties; ℙk is a toric variety whose torus is the canonical projection
of (K∗)k+1.

In this section we will be interested only in affine toric varieties; then in Section 5.1 we shall study the
extent to which general toric varieties may be obtained by gluing affine toric varieties together in the usual
way.

There are broadly speaking two ways of developing the local theory of toric varieties: via the characters,
and via the 1-psgs. The character method, studied by Oda, Miyake, and others (c.f. [Oda78]), views affine
toric varieties and their structure through the way their toric characters extend, and is coloured by the lens
of monomial algebra. This viewpoint may be profitably generalised, and indeed is still a fundamental part
of modern combinatorial commutative algebra (c.f. [Sta96], [MS05], or [HH11]). The 1-psg method also
dates back to the 1970s (c.f. [Kem+73]), and studies toric varieties via the extension (through limits) of
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curves in the torus to curves on the variety (this is the primary viewpoint of [CLS11]). For the remainder
of these notes we shall prefer the character method over the 1-psg method as this is the method that will
best enable us to develop the applications of toric varieties given in later sections (which are primarily
commutative-algebraic in flavour), though it may be conceptually more challenging at first.

4.1 Fundamentals of affine toric varieties
In this subsection, we will develop various fundamental algebraic notions underpinning the study of toric
varieties. Chief among these are the correspondences between semigroup homomorphisms and points or
subsets of an affine toric variety.
4.3 Lemma. Let S = ℤ≥0�1+⋯+ℤ≥0�r be a finitely generated semigroup embedded as a sub-semigroup
ofM; then closed points of SpecK[S] are in bijection with semigroup morphisms S → K (where K is a
semigroup under multiplication).

Proof. Closed points of SpecK[S] are in bijective correspondence with morphisms from SpecK to
SpecK[S], which are in turn in bijective correspondence with algebra morphisms K[S] → K . If f ∶
K[S]→ K is an algebra morphism, then it induces a semigroup homomorphism f̃ ∶ S → K defined on
the generators by

f̃ (�i) ≔ �i if f (X�i ) = �i;

this construction obviously reverses, so if f ∶ S → K is a semigroup homomorphism we obtain an algebra
homomorphism. ▮

To fix notation, we shall make some definitions.
4.4 Definition. We denote by x the morphism S → K corresponding to a closed point x ∈ SpecK[S].

If H ⊆ HomSemiGrp(S,K), we define the evaluation set of H to be the set of points that H gives
evaluations of; that is,

E(H) ≔ {x ∈ SpecK[S] ∶ x ∈ H}.

If X ⊆ SpecK[S], we define the homomorphism set of X to be the set of evaluation homomorphisms of
X; that is,

H(X) ≔ {x ∈ HomSemiGrp(S,K) ∶ x ∈ X}.

4.5 Lemma. The pair of maps

E ∶ (HomSemiGrp(S,K))→ (SpecK[S]),
H ∶ (SpecK[S])→ (HomSemiGrp(S,K))

are inclusion-preserving and are inverses.

Proof. This is an immediate consequence of Lemma 4.3. ▮

The next examples should illustrate the ease with which we may actually compute the semigroup
morphisms from points and vice versa.
4.6 Example. Consider the cusped cubic k = SpecK[X, Y ]∕(X3−Y 2) (where S = ℤ≥0f1+ℤ≥0f2 ⊆ ℤ
for f1 = 2 and f2 = 3); the point (0, 0) corresponds to the evaluation morphism eval(0,0) ∶ K[X, Y ]∕(X3−
Y 2) → K which acts on the characters as �m ↦ 0 unless m = 0, and so induces a semigroup morphism
(0,0) ∶ S → K defined by

m↦

{

1 m = 0
0 otherwise.
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To take the general case, consider (x, y) ∈ K; this corresponds to the algebra morphism eval(x,y) ∶
K[X, Y ]∕(X3 − Y 2)→ K , which behaves on the characters as eval(x,y)(X) = x and eval(x,y)(Y ) = y; i.e.it sends f1 = 2↦ x and f2 = 3↦ y, so the semigroup morphism acts on S = {0} ∪ ℤ≥2 as

s = 3a + 2b↦ xayb.

4.7 Example. Let � = pos{e1 + 2e2} ⊆ ℝ2 for e1, e2 ∈ ℤ2 the usual basis vectors. Then S = � ∩ ℤ3 is
generated by the three elements �1 = e1, �2 = e1 + e2, and �3 = e1 + 2e2, with the relation 2e2 = e1 + e3;
so SpecK[S] = Spec K[X,Y ,Z]Y 2−XZ . We may construct a semigroup morphism f ∶ S → K by

�1 ↦ 7, �2 ↦ 4, �3 ↦ 1.

This corresponds to the algebra homomorphism defined on the monomials by
X ↦ 7, Y ↦ 4, Z ↦ 1;

thus the point corresponding to f is the point (7, 4, 1) ∈ Spec K[X,Y ,Z]Y 2−XZ .
4.8 Lemma. If T ≃ (K∗)r is a torus, then H(T ) = HomGrp(X(T ), K∗). Further, if x, y ∈ T then x⋅y is
the map m↦ x(m)y(m).

Proof. To simplify notation, we will identify T with (K∗)r using the given isomorphism. Under this
identification, X(T ) = ℤr. By Lemma 4.3 and Example 3.31 there is a bijection between closed points
x = (x1, ..., xr) ∈ (K∗)r and semigroup homomorphisms x ∶ ℤr → K . Note by the construction in
Lemma 4.3 that such a homomorphism is a map sending (m1, ..., mr) ↦ xm11 ⋯ xmrr ; in particular, since
x ∈ (K∗)r no xi is zero and so the image of x is nonzero: i.e. x(T ) ⊆ K∗ and so the bijection is between
closed points x of T and semigroup homomorphisms x ∶ ℤr → K∗. Further, if y = (y1, ..., yr) is a secondpoint we have x⋅y(n) = (x1y1)m1⋯ (xryr)mr = (x

m1
1 ⋯ xmrr )(y

m1
1 ⋯ ymrr ) = x(m)y(m). ▮

Lemma 4.8 is a special case of a more general phenomenon. LetR be a subsemigroup of a semigroup S
embedded in a latticeM . Then HomGrp(ℤR,K∗) may be viewed as the set of semigroup homomorphisms
which do not vanish on monomials with exponents from ℤR; that is, E(HomGrp(ℤR,K∗)) is the set
{x ∈ SpecK[S] ∶ ∀r∈ℤRx(r) ≠ 0} = {x ∈ SpecK[S] ∶ ∀r∈ℤR�r(x) ≠ 0} = SpecK[S] ⧵ Z(�ℤR)

(where we use �ℤR to denote the set of monomials {�r ∶ r ∈ ℤR}). We therefore make the following
definition:
4.9 Definition. If R ⊆ S is a subsemigroup of a semigroup S embedded inM , we set

D(R) ≔ E(HomGrp(ℤR,K∗)) = SpecK[S] ⧵ Z(�ℤR).

This notion will become very useful in Section 4.4, where we will see that particular choices for the
subsemigroup R correspond to toric orbits and subvarieties; the content of the following theorem is, in
part, that D(S) is the torus of SpecK[S].
4.10 Theorem. If S is a finitely generated semigroup embedded as a sub-semigroup ofM , then SpecK[S]
is a toric variety. If T is the torus of SpecK[S], then X(T ) = ℤS. In particular if S contains a basis for
M then X(T ) =M and Y (T ) = N .

Proof. Suppose S is generated by {�1, ..., �k}; we shall use K[X�1 , ..., X�k ] to denote the free alge-
bra over K in the symbols X�i , and we will denote by b the binomial ideal of relations for K[S] (i.e.
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K[S] = K[X�1 , ..., X�k ]∕�, c.f. Lemma 3.30). Note that the scheme SpecK[X±�1 , ..., X±�k ]∕b is a closed
subscheme of (K∗)k. Suppose b is generated by binomial relations f1, ..., fn of the form

fi =
∏

p∈Pi

X�p −
∏

q∈Qi

X�q

for finite subsets Pi, Qi ⊆ {1, ..., k}. Then if x = (x1, ...., xk) and y = (y1, ..., yk) are closed points of thequotient SpecK[X±�1 , ..., X±�k ]∕b (note, this is not K[S]) which are viewed by canonical inclusion as
members of the k-torus SpecK[X±�1 , ..., X±�k ], we have xy = (x1y1, ..., xkyk) and for each i,

fi(xy) =
∏

p∈Pi

(xpyp)
�p −

∏

q∈Qi

(xqyq)
�q

=
∏

p∈Pi

x
�p
p
∏

p∈Pi

y
�p
p −

∏

q∈Qi

x
�q
q

∏

q∈Qi

y
�q
q

=
∏

p∈Pi

x
�p
p
∏

p∈Pi

y
�p
p −

∏

q∈Qi

x
�q
q

∏

q∈Qi

y
�q
q +

∏

p∈Pi

x
�p
p

∏

q∈Qi

y
�q
q −

∏

p∈Pi

x
�p
p

∏

q∈Qi

y
�q
q

=
∏

p∈Pi

x
�p
p

⎛

⎜

⎜

⎝

∏

p∈Pi

y
�p
p −

∏

q∈Qi

y
�q
q

⎞

⎟

⎟

⎠

+
∏

q∈Qi

y
�q
q

⎛

⎜

⎜

⎝

∏

p∈Pi

x
�p
p −

∏

q∈Qi

x
�q
q

⎞

⎟

⎟

⎠

= 0 − 0

(where the final equality comes since fi(x) = fi(y) = 0 for each i). In particular, SpecK[X±�1 , ..., X±�k ]∕b
forms a subgroup of SpecK[X±�1 , ..., X±�k ]; thus by Theorem 1.4, T ≔ SpecK[X±�1 , ..., X±�k ]∕b is a
torus of rank at most k. Further, T is obtained from SpecK[S] by localising away from the multiplicatively
closed set {(X�

i )
j ∶ 1 ≤ i ≤ k, j ∈ ℤ≥0}, hence it is open in SpecK[S].

We next must show that the action of T on itself extends to the whole variety. We have that the action
is given by multiplying semigroup morphisms in the manner of Lemma 4.8; if x ∈ SpecK[S] and t ∈ T
define �x,t ∶ S → K by

�t,x(s) = t(s)x(s).

Clearly, if �t,x = y for some y ∈ SpecK[S] then setting x ⋅ t = y extends the group operation of T . By
Lemma 4.3 it just suffices to check that �t,x ∶ S → K is a morphism of semigroups. Suppose s, s′ ∈ S;
then

�t,x(s + s′) = t(s + s′)x(s + s′) = t(s)t(s′)x(s)x(s′) = t(s)x(s)t(s′)x(s′) = �t,x(s)�t,x(s′)

which is what we wanted.
Now consider the character group X(T ). By Lemma 1.6, we have that the characters are precisely the

maps given on T by monomials in the generators; that is, f ∈ X(T ) iff f is given by
f (x�1 , ..., x�k ) = x

m1
�1
⋯ xmk�k

and so X(T ) is naturally isomorphic to the free abelian group over the set {�1, ..., �k} modulo the relations
of S, that is X(T ) = ℤS. The remaining claim, that if S contains a basis forM then X(T ) = M and
Y (T ) = N , follows from Lemma 1.6 directly. ▮

In particular, if S is full-dimensional, then rank T = rankN . Thus by Corollary 1.10 we can write
T = N ⊗ℤ K∗ and so we have a very natural relationship between T ,N , andM .
4.11 Corollary. If � is a lattice cone over N , then U� ≔ SpecA� is an affine toric variety. If T is the
torus of U� , the product x ⋅ t for x ∈ U� and t ∈ T is given by the semigroup morphism x⋅t ∶ S� → K
that is the pointwise product of x and t. ▮
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4.12 Example. Affine space Kn is a toric variety arising from a cone. Indeed, An = SpecK[X�1 , ..., X�n ],
where �1, ..., �n are independent members of some semigroup; we may take this semigroup to be the
positive quadrant of ℤn: �∨ = pos{e1, ..., en}. But pos{e1, ..., en} is its own dual cone (Example 3.15), so
An = U� .We also have that the n-torus, (K∗)n, arises from a cone. Indeed, (K∗)n = SpecK[X±�1 , ..., X±�n ];
hence we have a semigroup generated by n independent elements, together with their inverses; thus the
semigroup is ℤn; and the dual cone of ℤn is {0}. Hence (K∗)n = U{0}.
4.13 Lemma. A morphism � ∶ SpecK[S1] → SpecK[S2] is a toric morphism if and only if the cor-
responding map �∗ ∶ K[S2] → K[S1] of coordinate rings restricts to a semigroup homomorphism
�̃∗ ∶ S2 → S1.

Proof. To fix notation, let T1 be the torus of SpecK[S1] and let T2 be the torus of SpecK[S2]; so
X(T1) = ℤS1 and X(T2) = ℤS2 (by Theorem 4.10) and thus A(T1) = K[ℤS1] and A(T2) = K[ℤS2].Suppose � ∶ SpecK[S1] → SpecK[S2] is toric; then �(T1) ⊆ T2 and so we obtain a commutative
diagram

K[S2] K[S1]

K[ℤS2] K[ℤS1].

�∗

�̂∗
(3)

We must show that the map �∗ induces a map S2 → S1, by sending s ∈ S2 to the exponent vector of
�∗(�s) ∈ S1; a priori, the problem is that it might be that �∗(�s) is not monomial and so the exponent
vector is not defined. Let m ∈ ℤS2; observe that the image of �m under the induced map �̂∗ is a regular
map �̂∗(�m) ∶ T1 → K with the property that
[�̂∗(�m)](a ⋅ b) = �m(�(a ⋅ b)) = �m(�(a) ⋅ �(b))

= (�m◦�)(a) ⋅ (�m ⋅ �)(b) = [�̂∗(�m)](a) ⋅ [�̂∗(�m)](b);

i.e. �̂∗(�m) is a character of T1. Thus �̂∗ sends monomials in K[ℤS2] to monomials in K[ℤS1] and so
induces a well-defined homomorphism of semigroups �̃∗ ∶ ℤS2 → ℤS1. Since �̂∗ restricts to the map �∗,
(̃�∗(S2)) ⊆ S1 and so we have obtained the homomorphism desired.

Conversely, suppose � ∶ SpecK[S1] → SpecK[S2] has the property that the induced map �∗ ∶
K[S2] → K[S1] restricts to a semigroup homomorphism �̃∗ ∶ S2 → S1. Since S2 spans X(T2) (bythe preliminary paragraph above), this induces a semigroup homomorphism �̃∗ ∶ ℤS2 → ℤS1 and thisproduces the diagram of Eq. (3) above. The image of the diagram under Spec is

SpecK[S2] SpecK[S1]

SpecK[ℤS2] SpecK[ℤS1].

�

�↾T1

In particular, �(T1) ⊆ T2. We finally must show that the map �↾T1 is a homomorphism of groups.
Indeed, suppose a, b ∈ T1; by Lemma 4.8, we may canonically identify a and b with a pair of maps
a, b ∈ HomSemiGrp(X(T1), K∗). For notational convenience, for all x ∈ T1 let

�x ≔ x◦�̃
∗ ∈ HomSemiGrp(X(T2), K∗);

since �x is the semigroup homomorphism representing �(x) ∈ T2, we wish to prove that �ab = �a�b (sincethen �(ab) = �(a)�(b)). But this is immediate by direct computation, recalling that ab = ab. ▮
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�

�1

�2

(a) The cone � = pos{(−1, 2), (1, 0)} and its faces
�1, �2 and �.

�∨

�∨1

�∨2

N∨
ℝ = (0, 0)

�∨ =Mℝ

�0 �1 �2

(b) The dual cones of �, �1, �2 and �. The generatorsof S� are highlighted in yellow.
Figure 3: A strongly convex cone � and its dual cone.

4.14 Example. Let {x1, ..., xk} ∈ N (for some k ≤ n) be a set of lattice points that may be extended to a
ℤ-basis (x1, ..., xn) of N , and consider � = pos{x1, ..., xk}. We may choose an isomorphism of lattices
N ≃ ℤn such that the image of x1, ..., xn is the standard basis (e1, ..., en); let �̃ be the image of � under this
isomorphism. Then:

�̃∨ = ℝ≥0e1 +⋯ +ℝ≥0ek +ℝek+1 +⋯ +ℝen, so
S�̃ = ℤ≥0e1 +⋯ + ℤ≥0ek + ℤek+1 +⋯ + ℤen and thus

A�̃ = K[X1, ..., Xk,±Xk+1, ...,±Xn] = K[X1, ..., Xk]⊗K K[±Xk+1, ...,±Xn].

It follows immediately that U�̃ = Kk × (K∗)n−k; and by Lemma 4.13 we have U� ≃ Kk × (K∗)n−k.

4.15 Example. Consider the lattice cone � generated over ℤ2 by (1, 0) and (−1, r) (r ∈ ℤ). Then �∨ is the
cone generated by (0, 1) and (r, 1); by the construction in the proof of Lemma 3.6, S� is generated by the
(r + 1) points (0, 1), ..., (r, 1); call these �0, ..., �r. We have relations �i + �j = �k + �l if i + j = k + l.

For the sake of simplicity, suppose r = 2 (Fig. 3); then the three generators have the relations �0 + �2 =
2�1, and so

A� =
K[X�0 , X�1 , X�2 ]

(

(X�1 )2 −X�0X�2
) ;

so the toric variety is the cone U� = Z(Y 2 − XZ) ⊆ K3 (Fig. 4). The torus of the variety is (ℂ∗)2 ≃
U� ⧵ (Z(X) ∪ Z(Z)), with embedding

(ℂ∗)2 ∋ (�, �)↦ (�, �, �2∕�) ∈ U� ⧵ (Z(X) ∪ Z(Z))

(indeed, this is clearly an isomorphism as it is invertible; and the group action of ℂ∗ extends in the obvious
way, since if (x, y, z) ∈ U� and (�, �, �2∕�) is in the embedded torus then the product (�x, �y, �2∕�z) still
lies in U�).
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Figure 4: The toric variety of Example 4.15, with the embedded torus cut out by the white lines.

The converse of Theorem 4.10 is also true: every affine toric variety arises from a semigroup (but the
reader should beware Example 4.17 and the remark following it). The proof indicates a key heuristic about
toric varieties:
Toric varieties are precisely those varieties embedding a torus such that regular maps out of the torus

extend to maps on the whole variety.

4.16 Theorem. If Y is an affine toric variety then there exists a finitely generated semigroup S embedded
in a latticeM such that Y = SpecK[S]; further, ℤS =M .

Historical remark. Theorem 4.16 appears as early as 1973, as proposition 1 of [Kem+73, p. 5]. An even
earlier paper of 1972 includes a result which is a germ of this duality between semigroups and affine toric
varieties [Hoc72, Lemma 3].
Proof. Suppose Y ⊆ Ak, and letM = ℤk. Consider the characters which extend to regular functions on
the whole variety Y ; that is, regular maps f ∶ T → K∗ of the form Xm1

1 ⋯Xmk
k such that mi < 0 only if

X−1
i is regular on Y . Let S ⊆ M be the set of exponent vectors of such characters. Then clearly S is a

sub-semigroup ofM (that is, it is closed under multiplication, has identity, and satisfies a cancellation
law); further, it is finitely generated by Γ = {±ei} ∩ S. Finally note that SpecK[S] = Y by the proof of
Theorem 4.10. Observe also that for all i, Xi is a character of T extending to a regular function on Y ;
hence S contains ei for each i, and so ℤS = ℤe1 +⋯ + ℤek =M . ▮

We now give a word of warning, in the way of an example.
4.17 Example. Consider the following two toric varieties.

1. Affine 1-space, A1K , which arises from the sub-semigroup of ℤ generated by {1} (the torus is K∗);
2. The cusped cubic, k = SpecK[X, Y ]∕(X3 − Y 2), which arises from the sub-semigroup generated

by {2, 3} (the torus is (K∗)2 ∩ k).
Clearly A1K ≄ k (indeed, exactly one of these varieties is smooth). On the other hand, the cones pos{1}
and pos{2, 3} are equal (both being ℤ≥0).
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In particular, we cannot hope for a bijection between arbitrary affine toric varieties and cones. Note
though that the problem is essentially that the semigroup of k is ‘missing some elements’: this is why the
variety has none of the nice properties we would expect: it clearly isn’t smooth, and it is also not normal:
if A = K[X, Y ]∕(X3 − Y 2), the polynomial T 2 −X ∈ A[T ] has two roots in FracA, neither of which are
in A itself (namely, ±Y ∕X since Y 2∕X2 = X3∕X2).
Remark. We shall prove an equivalence in Section 4.2 between a certain class of cones and a certain class
of varieties (i.e. we restrict both the category of cones and the category of varieties). If we forget the
idea of trying to use cones as our dual category and simply consider semigroups, we may obtain a duality
of categories between arbitrary toric varieties and finitely generated sub-semigroups of a lattice which
contain a generating set for that lattice. We have essentially proved this above (note that the problem with
Example 4.17 was at the level of cones, not the level of semigroups); however, to obtain results about
general toric varieties we will need to work on the level of cones (as it will be the cone structure that
determines the gluing properties of the variety), and so we will develop the local theory accordingly. In
any case, the more general situation is ‘difficult to describe’ [Oda78, p. 15].

4.2 A toric Nullstellensatz
We shall now study how combinatorial properties of a cone � over N and the geometric properties of
the toric variety U� interact. Most of these properties will generalise fairly readily to the more general
situations we study in the next section.

We shall begin by making precise the problems with the naïve correspondence which was ruled out by
Example 4.17, in order to actually give the ‘correct’ bijection. The first issue is, in some sense, the same
that which occurs when trying to set up a correspondence between ideals in a polynomial ring and varieties
cut out by polynomials in that ring: if the algebraic objects (ideals in the variety case, semigroups here) do
not include the nth radicals of the objects they contain then the geometric objects (varieties/toric varieties)
are pathological. The relevant definition is as follows.
4.18 Definition. Generalising Definition 3.11, let S ⊆ N be a subsemigroup. We define for s ∈ S the
radical of s with respect to S to be S

√

s ≔ �−1s where � is the largest integer such that �−1s ∈ S.
The semigroup S is called saturated if√s = S

√

s for all s ∈ S (equivalently, S
√

s is primitive for all
s ∈ S).
4.19 Example. Compare Example 4.17: ℤ≥0 is saturated, but S ≔ ℤ≥0{2, 3} is not since it does not
include 1 = S

√

2 ⋅ 1 despite including 2 ⋅ 1.
The second issue that occurs is that, given our cone �, the cone �∨ might not be full-dimensional and

so the characters of the torus of U� do not span the vector space of characters of the ‘ambient torus’ (and
consequently the toric variety will not be of the right dimension). This is an aesthetic consideration more
than a practical one, but it will simplify the theory if we take it seriously (it will enable us to characterise
the torus of a toric variety U� as being simply the torus associated with the latticeN containing �).

These issues are clarified and resolved in Proposition 4.20 and Theorem 4.21 below.
4.20 Proposition (Natural torus theorem). Let U� be the toric variety associated with a lattice cone �
overN (rankN = n). Then the following are equivalent:

1. The torus of U� is naturally isomorphic to TN = N ⊗ℤ K∗, the natural torus ofN;

2. rankℤS� = n;

3. dimU� = n;
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4. �∨ is full-dimensional inMℝ; and

5. � is strongly convex inN .

Proof. By Theorem 4.10, the torus T of U� has character lattice ℤS� . Thus T ≃ TN iffM = X(TN ) =
ℤS� , i.e iff rankℤS� = n. This shows the equivalence of (1) and (2).

Note that dimU� = dim T , since T is a dense open subset of U� ; and dim T = rankX(T ) = rankℤS� .This shows the equivalence of (2) and (3).
Next, observe that rankℤS� = dim spanS� (if B is a free generating set for ℤS� then clearly it spans

spanS� so dim spanS� ≤ rankℤS� ; on the other hand, an ℝ-basis for S� may be found that consists
entirely of elements of S� which gives the opposite inequality) and dim spanS� = dim �∨ since spanS�is the smallest affine subspace containing �∨. This shows that rankℤS� = n iff dim �∨ = n, giving the
equivalence of (2) and (4).

Finally, the equivalence of (4) and (5) was proved as Corollary 3.23. ▮

The natural torus theorem tells us that in order to have an affine toric variety U� whose torus is natural
with respect to the lattice embedding � (i.e. in order to resolve the second issue above), we must require �
to be strongly convex. It turns out that this, in fact, resolves the first issue as well and we finally obtain
a correspondence between some class of semigroup, some class of cone, and some class of affine toric
variety.
4.21 Theorem (Global correspondence theorem, affine case). Let Y be an affine toric variety with torus T .
The following are equivalent:

1. Y is normal (Definition 0.2);

2. Y = SpecK[S] for S a saturated finitely generated semigroup such that ℤS =M;

3. Y = U� where � ⊆ Nℝ is a strongly convex lattice cone overN .

Historical remark. Theorem 4.16 appears in 1973 as theorem 1′ of [Kem+73, p. 8] and independently as
proposition 1 of [OM75].

Before giving the proof of Theorem 4.21, we pause for a few technical lemmata.
4.22 Lemma. Let S1, ..., Sr be sub-semigroups ofN; let S =

⋂r
i=1 Si. In order for K[S] to be integrally

closed, it suffices for each K[Si] to be integrally closed.

Proof. Note first that K[S] may be canonically identified with a subalgebra of K[Si] for each i; so
FracK[S] ⊆ FracK[Si] for each i. Let f be a monic polynomial over K[S] with a root � ∈ FracK[S];
then � ∈ FracK[Si] for each i, so � ∈ K[Si] for each i and thus � ∈ K[S]. ▮

4.23 Lemma. Any unique factorisation domain A is integrally closed.

Proof. Let K = FracA. Let f = ∑r
i=0 fiT

i ∈ A[T ] be monic, so we may assume fr = 1; suppose that
� ∈ K is a root of f . We may write � = p∕q for p, q ∈ A and we may assume that p and q have no common
irreducible factors. Then

0 = qrf (�) = qrf0 + qr−1f1p +⋯ + pr;

in particular pr = −(qrf0+qr−1f1p+⋯+qfr−1pr−1) so q ∣ pr. Since q and p have no common irreducible
factors, it must be the case that q is a unit in A and thus � ∈ A. ▮

4.24 Lemma. Let S be a sub-semigroup ofN , and let U be a multiplicatively closed subset ofK[S]. Then
(K[S])[U−1] is integrally closed if K[S] is integrally closed. In particular, an affine variety Y is normal if
A(Y ) is integrally closed; and a general variety X is normal if it has an affine cover consisting of normal
affine varieties.
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Proof. Note that Frac(K[S])[U−1] = FracK[S]; hence if f is a monic polynomial over (K[S])[U−1]
which has a root in Frac(K[S])[U−1] then that root also lies in FracK[S] and hence in K[S], thus in
(K[S])[U−1]. ▮

Proof of Theorem 4.21. We first show that (2) implies (3). Suppose S is a saturated semigroup of the form
ℤ≥0s1 +⋯ℤ≥0sk (s1, ..., sk ∈M). Note first that S ⊆ posS ∩ℤS = posS ∩M trivially; we proceed to
show the opposite inclusion. Suppose that x ∈ posS ∩M . Note that posS ∩M ⊆ posS ∩Mℚ, and by
Lemma 3.13 we have that posS∩Mℚ = ℚ≥0s1+⋯+ℚ≥0sk; thus we may write x = �1

�1
s1+⋯+

�k
�k
sk and

so (�1⋯�k)x is a ℤ≥0-combination of the generators s1, ..., sk; by saturatedness of S, (�1⋯�k)x ∈ Simplies that x ∈ S, so S = posS ∩ℤS. Since posS is full-dimensional inMℝ, we have by Corollary 3.23that � ≔ (posS)∨ is strongly convex overN with the property that S = �∨ ∩M : i.e. SpecK[S] = U� .The converse implication, that (3) implies (2), is almost by definition; the only thing we must check is
that S = �∨ ∩M is in fact saturated. If �x ∈ S for some x ∈M and � ∈ ℤ>0 then x = 1

� (�x) lies in �∨by positivity of �∨ and lies inM by definition, so lies in S.
We finally must show that (1) and (2) are equivalent. Suppose Y ⊆ An is a normal affine toric

variety. Then by Theorem 4.16 we may write Y = SpecK[S] for some finitely generated sub-semigroup
S ⊆ M = ℤk where ℤS = M . Let s ∈ M and � ∈ ℤ≥0 be such that �s ∈ S. Let �s be the character
of T with exponent vector s (recalling Definition 1.8); since �s ∈ S, (�s)� extends to a regular function
on the entirety of Y , so (�s)� ∈ A(Y ). Consider the polynomial p = T � − (�s)� ∈ A(Y )[T ]. Since p is
monic and �s ∈ K(Y ), we may conclude that �s ∈ A(Y ) and so the exponent vector s of �s lies in S; this
shows that (1) implies (2).

Conversely, supposeS is a saturated finitely generated semigroup such thatℤS =M . By Corollary 2.15,
S is the set of lattice points of an intersection of finitely many lattice halfspacesH1, ...,Hr (i.e. halfspacesof the form pos{±x1, ...,±xn−1, xn} for some x1, ..., xn ∈ N). Thus by Lemma 4.22 it will suffice to
show that K[S] is integrally closed in the special case where S is the lattice points of such a halfspace
pos{±e1, ...,±en−1, en}. Because S is saturated, we may assume that each ei is primitive and hence
(e1, e2, ..., en) is a ℤ-basis ofN . By a similar argument to that given in Example 4.14 it is therefore the case
that K[S] ≃ K[X±1

1 , ..., X±1
n−1, Xn]. But this latter set is a localisation of K[X1, ..., Xn]; since the latter is

integrally closed (Lemma 4.23) we may conclude that K[X±1
1 , ..., X±1

n−1, Xn] is integrally closed and hence
K[S] is integrally closed by Lemma 4.24; thus Y = SpecK[S] is normal (since by Lemma 4.24 again
all its local rings, which are of the form K[S]p for primes p, are integrally closed). This proves that (2)
implies (1). ▮

The following proposition will give us (at the very minimum) a method to compute manually the
embedded torus of a toric variety U� based only on the original cone �: one computes the toric variety
corresponding to the minimal face � of the cone, and uses the natural inclusion S� ⊆ S� of the semigroups
to construct an inclusion of varieties.
4.25 Theorem. If � ⪯ � are lattice cones overN , then U� may be canonically identified with a principal
open subvariety of U� . Further, this map � ↦ U� sets up a bijection between faces � ⪯ � and affine open
subvarieties of U� that are invariant under the action of the torus, in such a way that the torus of U�
corresponds to the minimal face of �.

Remark. Corollary 4.45 will furnish us with a converse to this statement.
Proof. If � ⪯ � then by Lemma 3.19 we have � = F�(m) for some m ∈ �⟂; hence by Lemma 3.27,
�∨ = �∨ + ℝ≥0(−m). In particular (taking an intersection withM), S� = S� + ℤ≥0(−m) from whence
it follows immediately that K[S� ] = K[S�]�m and so U� is a principal open subvariety of U� ; in fact,
U� = D(m). It is also clear that if � ⪯ � ⪯ � then U� ⊆ U� ⊆ U� .
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Let T be the torus of U� , and note that H(U� )H(T ) ⊆ H(U� ); thus T ⋅ U� ⊆ U� and U� is invariantunder products. ▮

4.26 Example. Recall (Example 4.12) that affine space Kn is a toric variety arising from the cone
pos{e1, e2}. This cone has two non-trivial faces; namely, pos{e1} and pos{e2}. The dual cones of
these faces are respectively pos{e1,±e2} and pos{e2,±e1}. Hence the principal open subvarieties of
Kn corresponding to the cone faces are SpecK[X, Y ]Y = Kn ⧵ Z(Y ) = D(e2) and SpecK[X, Y ]X =
Kn ⧵ Z(X) = D(e1) respectively.
4.27 Example. Consider the cone of Example 4.15 with r = 2; label the faces as in Fig. 3. Then we have
the following varieties associated to the faces:

• U� = Spec
K[X�0 ,X�1 ,X�2 ]

(

(X�1 )2−X�0X�2
) = Z((X�1 )2 −X�0X�2 )

• U�1 = SpecK[X
�0 , X�1 , X�2 , X−�2 ] = K[X�0 , X�1 , X�2 ][X−�2 ] = Z((X�1 )2−X�0X�2 )⧵Z(X�2 )

• U�2 = SpecK[X
�0 , X�1 , X�2 , X−�0 ] = K[X�0 , X�1 , X�2 ][X−�0 ] = Z((X�1 )2−X�0X�2 )⧵Z(X�0 )

• U� = SpecK[X�0 , X�2 , X−�0 , X−�2 ] = Z((X�1 )2 −X�0X�2 ) ⧵
(

Z(X�0 ) ∪ Z(X�2 )
)

Note that we do not always use Hilbert bases for the semigroups — we need to be able to glue and localise
with respect to the generators of S� . In particular, with the embedding in ℂ3 shown in Fig. 4, we have that
the two principal open subvarieties corresponding to �1 and �2 are obtained by cutting out the Z and X
axes respectively.

4.3 Dimension, fixed points, and smoothness
We continue to study the pathological properties of Example 4.17. Note that the cusped cubic k was neither
normal nor smooth.
4.28 Lemma. Let Y be a scheme; if Y is smooth then Y is normal.

Proof. Let R be a local ring of Y ; so R is regular. By the Auslander-Buchsbaum theorem [Eis95, Theorem
19.19], R is a UFD. Hence by Lemma 4.23, R is integrally closed. ▮

On the other hand, normality does not imply smoothness:
4.29 Example. Consider the affine toric variety of Example 4.15 in the case r = 2; that is, let � =
pos{e1,−e1 + 2e2} be a cone over ℤ2 so U� = Z(Y 2 − XZ) ⊆ A3. Then A(U�) is not a UFD because
Y 2 = XZ, and in fact the local ring A(U�)(X,Y ,Z) has the same factorisation (one must check that X, Y ,
and Z remain irreducible). On the other hand, we show that U� is normal: elements of the field K(U�) areof the form u+ vY for u, v ∈ K(X,Z) (since Y 2 = XZ inK(U�)); similarly, elements of A(U�) are of theform u + vY for u, v ∈ K[X,Z]. In particular, A(U�) is a finitely generated K[X, Y ]-module and is thus
integral1 over K[X, Y ]; so any element � ∈ K(U�) which is integral over A(U�) is in particular integralover K[X,Z]. Suppose � = u + vY (u, v ∈ K(X,Z)) is such an element; then the minimal polynomial
for � over K(X,Z) is

T 2 − 2uT + (u2 − v2XZ);

it is a standard fact that the coefficients of the minimal polynomial of an elemement integral over a ring lie in
that ring, so u ∈ K[X,Z] and v2XZ ∈ K[X,Z]. ButXZ is the product of two coprime irreducibles, and

1Recall, an element � ∈ FracR is integral over R if � lies in the integral closure of R; i.e. if � is a root of a monic polynomial
over R.
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if the denominator of v ∈ K(X, Y ) were nontrivial then v2 would have four irreducibles in the denominator
and cancellation could not occur. Thus v ∈ K[X,Z], and hence u+vY ∈ A(U�). ThusA(U�) is integrallyclosed and U� is normal.

It follows that smoothness is a stronger condition than normality. Further:
4.30 Theorem. An affine toric variety Y is smooth if and only if Y = U� for � a smooth cone (Definition 3.2)
overN .

We prove one direction immediately:
Proof of the easy direction (U� is smooth if � is smooth). By Example 4.14, if � is a smooth cone then
U� ≃

∏k
i=1K

∗ ×
∏n

i=k+1K (for some k ≤ n). ▮

The proof of the converse will require the development of some further theory that will, at the outset,
seem completely unrelated. Thus we present a brief ‘roadmap’ of the next few propositions. The idea of
the proof is to find a distinguished point p� ∈ Y� that will encapsulate the combinatorial properties of �;
more precisely, in Theorem 4.31 we will show that the properties of U� imply the existence of a unique
fixed point for the torus action on the variety. This point will be useful in other circumstances as well, as
the semigroup homomorphism it is represented by is, in some sense, the minimal homomorphism for S� .We shall use this ‘minimality’ property to show that the dimension of the variety (which, by smoothness,
is just the dimension at this distinguished point) is precisely the size of the Hilbert basisH� (this equalitybeing the content of Lemma 4.33). Finally, we may use the combinatorial properties ofH� to show that �
is smooth (Lemma 4.34).
4.31 Theorem. Let � be a strongly convex cone overN . The torus action of U� has a fixed point if and
only if � is full dimensional inNℝ. In this case, the fixed point is unique; it is the point p� corresponding
(c.f. Lemma 4.3) to the semigroup morphism p� ∶ S → K given by

p� (s) =

{

1 s = 0
0 otherwise

(i.e. the ‘most efficient extension’ of the identity morphism 1 ∶ 0 → K to the entirety of M) and the
maximal ideal of K[S�] generated by the set

{�s ∶ s ∈ S� ⧵ 0}.

Proof. Note first that p� as defined above is a semigroup homomorphism if and only if �∨ is strongly
convex: if �∨ is not strongly convex then there exist nonzero x, y ∈ S� such that x + y = 0; but
p� (x) + p� (y) = 0 + 0 ≠ 1 = p� (0) = p� (x + y). Conversely, if p� is not a semigroup homomorphism
then there exist nonzero x, y ∈ S� such that p� (x+y) ≠ p� (x)+p� (y); this can only occur if p� (x+y) = 1and then x + y = 0; but x, y ≠ 0 and so the cone �∨ is not strongly convex.

Define p� as above; then p� is a fixed point iff for all t ∈ H(TN ), p� = p� t; i.e.
p� (s) = p� (s)�

s(t) (4)
for all s ∈ S� , and all t ∈ TN . Since p� (0) = 1, Eq. (4) is satisfied for s = 0. For s ≠ 0, note both sides ofEq. (4) are zero. Hence p� is a fixed point. Further, suppose x is any fixed point; then replacing p� with xin Eq. (4) and substituting s = 0, we see that x(0) = 1. For s ≠ 0, we may find some t such that �s(t) ≠ 1;
then the equality holds only if x(s) = 0. Thus x = p� , and hence the fixed point is unique.

Finally note that p� corresponds to the homomorphismK[S�]→ K sending every nontrivial monomial
to 0; therefore (since the monomials generate K[S�] over K) the point p� corresponds to the maximal
ideal stated above. ▮
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4.32 Example. We computed the semigroup morphisms of the fixed point (0, 0) of the cusped cubic of
Example 4.17 above, as Example 4.6.
4.33 Lemma. Let � be a strongly convex cone overN , full dimensional inNℝ. Let Tp� (U�) be the Zariski
tangent space to U� at p� . Then dim Tp� (U�) =

|

|

H�
|

|

.

Proof. By Theorem 4.31, dim Tp� = dimm∕m2 form the ideal ofK[S�] generated by {�s ∶ s ∈ S� ⧵ 0}.
Note that m =

⨁

s∈S�⧵{0}K�
s; we may split this into two sums, a sum over s irreducible and a sum

over s reducible. Consider the sum over reducible s ∈ S� ⧵ {0}; such an element must be of the form
s = s1 + s2 for nonzero s1, s2 ∈ S� , and so �s = �s1�s2 ∈ m2. Since clearly every monomial inm2 has
a reducible exponent vector in S, we have thatm =

⨁

s∈S�⧵{0}
s reducible

K�s +m2 som∕m2 ≃⨁

s∈S�⧵{0}
s reducible

K�s;
hence the dimension ofm∕m2 is the cardinality of the set of irreducible elements of S� , which is|

|

H�
|

|

by
Lemma 3.9. ▮

Recall that the easy implication of Theorem 4.30 was proved immediately following the theorem
statement, and the difficult implication was postponed pending further theoretical development. The
following lemma completes the proof by providing the difficult implication.
4.34 Lemma. If an affine toric variety Y is smooth then Y = U� for � a smooth cone (Definition 3.2) over
N .

Proof. By Lemma 4.28, if Y is smooth then Y is normal. Thus if Y is toric, by Theorem 4.21 it is of the
form U� for � a strongly convex cone overN . It remains to show that � is smooth.

We have two cases: dim � = n, and dim � < n.
Case I (dim � = n). Since U� is normal, by Proposition 4.20 we have that dimU� = n; thus since U�is smooth, in particular we have dim Tp� (U�) = n. Hence, by Lemma 4.33, |

|

H�
|

|

= n. Observe that
|

|

H�
|

|

≥ |

|

F1(�∨)||: this is because �∨ = posH� (by definition), so each one-dimensional face of �∨ is
generated by a subset ofH� (by Corollary 3.20), hence is generated by exactly one such element (since
H� is a minimal generating set and S� is saturated). On the other hand, |

|

F1(�∨)|| ≥ n since �∨ has
dimension n: a choice of direction vectors for the edge rays of �∨ span the vector space spanned by
�∨. Thus we have n = |

|

H�
|

|

≥ |

|

F1(�∨)|| ≥ n and so|
|

F1(�∨)|| = n. ThusH� consists exactly of n lattice
points generating the edges of �∨. BecauseM = ℤS� , it follows thatH� is a ℤ-basis forM and so
�∨ is smooth; by Corollary 3.25, � is smooth as well.
Case II (dim � < n). LetN1 be the smallest saturated sublattice ofN containing the generators of �.
By the classification of finitely generated modules over a PID, there exists a complement sublatticeN2such thatN = N1 ⊕N2; observe that rankN1 = dim � and rankN2 = n − dim �, and that we obtain
a dual decompositionM =M1 ⊕M2 withM1 = N∨

1 .
Since � is a lattice cone over bothN andN1, we obtain two toric varieties U� = U�,N and U�,N1 with
S�,N ⊆ M and S�,N1 ⊆ M1. We show next that S�,N = S�,N1 ⊕M2; indeed, S�,N = (�∨ ∩M) =
(�∨ ∩M1)⊕ (�∨ ∩M2) = S�,M1

⊕M2 (noting that �∨ ∩M2 =M2 asM2 ⊆ �⟂). This induces anisomorphism K[S�,N ] ≃ K[S�,N1 ]⊗K K[M2]; hence
U� = SpecK[S�,N ] ≃ SpecK[S�,N1 ]⊗K K[M2] = U�,N1 × (ℂ

∗)n−dim � .

Since U� is smooth, U�,N1 is smooth (as the tangent space of a product variety at a point is the product
of the tangent spaces of the components). It follows by case I that � is smooth inN1, hence is smooth
inN (as any basis ofN1 may be extended to a basis ofN). ▮
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4.35 Example. Recall that (ℂ∗)n = U� for � = {0} (Example 3.31); i.e. � = pos ∅, and ∅ can be extended
to a ℤ-basis of ℤn.

As a final note, we consider the case that the cone � is simplicial, not just smooth.
4.36 Example. Let � be a simplicial cone over N , with linearly independent generating set {s1, ..., sk}.
ThenN ′ ≔

⨁k
i=1ℤsi is a full-dimensional sublattice ofN . SetG ≔ N∕N ′. From the inclusionN ′ ↪ N ,

we obtain a toric morphism � ∶ U�,N ′ → U�,N . One can show (c.f. [CLS11, Proposition 1.3.18]) that the
morphism � is in fact constant on G-orbits and so we obtain a bijection U�,N ′∕G ≃ U�,N .

Since � is a smooth cone overN ′, U�,N ′ ≃ Kn (Example 4.14); thus we may write U� = U�,N as the
group quotient U�,N ′∕G. Since G is finite, we say that U� is an orbifold.

4.4 Affine torus orbits
Our final family of local results will be finer versions of Theorem 4.31 and its corollaries. We generalise
the notation of that theorem:
4.37 Definition. If R is a subsemigroup of S and  ∈ HomSemiGrp(R,K∗) we define the skyscraper
extension of  to S, denoted R⤴S ∶ S → K , by

R⤴S (s) =

{

(s) s ∈ R
0 otherwise.

We let HomSemiGrp(R⤴S,K) denote the set of all such extensions.
If � is a lattice cone over N , define p� to be the closed point of U� corresponding to the semigroup

morphism p� (s) ∶ S� → K∗ given by the skyscraper extension toS� of the trivial morphism 1 ∶ �⟂∩M →
K∗.

Note that, by direct application of the definition, p� has the property that the productHomGrp(M,K∗)p�is precisely
HomSemiGrp(�⟂ ∩M⤴S� , K)

and so the orbit of p� under the torus, TN ⋅ p� , is just
E(HomSemiGrp(�⟂ ∩M⤴S� , K)).

If � ⪯ � then it is clear that
HomSemiGrp(�⟂ ∩M⤴S� , K) and HomSemiGrp(�⟂ ∩M⤴S� , K)

are identified under the inclusion U� ⊆ U� .
4.38 Theorem. Let � be a strongly convex cone overN . Then there is a bijection between the set of faces
of � and the orbits of the torus action on U�; this bijection is given by the map orb defined for � ⪯ � by

� ↦ orb � ≔ TN ⋅ p� = E(HomSemiGrp(�⟂ ∩M⤴S� , K)).

A different proof and description of orb dates back to at least [Kem+73], and may be found in [CLS11,
Section 3.2]; it uses limits of 1-psgs to compute the torus orbits. Our proof, which follows [Oda78, p. 16]
but is (according to Oda) due originally to Ramanan, relies primarily on the following technical lemma.
4.39 Lemma. Let � be a lattice cone overN . Call a decomposition of S� as a disjoint union S� = A ∪Bpermissible if it satisfies the following two axioms:
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P-1. B is a subsemigroup of S�;

P-2. S� + A ⊆ A.

A decomposition A ∪ B is permissible if and only if there exists a face � ⪯ �∨ such that B = � ∩M and
A = S� ⧵ B.

Proof. Suppose first that � ⪯ �∨, and let B = � ∩M and A = S� ⧵ B. We show that S� = A ∪ B is
permissible. Indeed, clearly B is a subsemigroup of S� ; we need only show P-2. By By Lemma 3.19, there
exists n ∈ � such that � = n⟂ ∩ �∨. We can therefore write

A = S� ⧵ B = S� ⧵ (� ∩M) = S� ⧵ � = S� ⧵ (n⟂ ∩ �∨) = S� ⧵ n⟂.

Let s ∈ S� , a ∈ A; then ⟨s|n⟩ ≥ 0 by definition of S∨, and ⟨a|n⟩ > 0 by Section 4.4. Hence ⟨s + a|n⟩ =
⟨s|n⟩ + ⟨a|n⟩ > 0; i.e. s + a ∉ n⟂ so s + a ∈ S� ⧵ n⟂ = A; this shows that P-2 holds.

Conversely, suppose S� = A∪B is permissible. Let � be the minimal face of �∨ containingB; we show
that B = � ∩M . Indeed, let x ∈ � ∩M ; it will suffice to show that (S� + x) ∩B is nonempty (since by P-2,
x ∈ S� lies in B if (S� + x) ∩ B ≠ ∅). Pick b ∈ relint � ∩M ⊆ B; if we show that (S� + x) ∩ ℤ≥0b ≠ ∅then we are done. Indeed, since b ∈ relint � (i.e. b does not lie in a face of �), we must have ⟨b|ai⟩ > 0 for
a1, ..., ak a minimal generating set for �∨ (again by Lemma 3.19). Note that every element s ∈ S� + x has
the property ⟨s|ni⟩ ≥ ⟨x|ni⟩; conversely, if s ∈ M has the property that ⟨s|ni⟩ ≥ ⟨x|ni⟩ for each i then
⟨s − x|ni⟩ ≥ 0 for each i and so s ∈ S� + x. Hence

S + x = {s ∈M ∶ ∀i ⟨s|ni⟩ ≥ ⟨x|ni⟩}.

Since ⟨b|ni⟩ > 0 for all i, there exists � ∈ ℤ>0 such that � ⟨b|ni⟩ > ⟨x|ni⟩ for each i. Thus �b ∈ S + x, so
(S� + x) ∩ ℤ≥0b ≠ ∅. ▮

The idea is that a decomposition is ‘permissible’ whenever it is a decomposition into a ‘small’ torus
fixed set (corresponding to B), and ‘the rest’ (corresponding to A).
4.40 Example. Let � = pos{e1, e2} = �∨; then a permissible decomposition of S� is S� = A ∪ B for
B = pos{e1}, A = S� ⧵ B.

The main purpose of Lemma 4.39 is to prove the following result on partitioning subsets of U� intopieces corresponding to the faces of �.
4.41 Lemma. Let � be a lattice cone overN , and let � ⪯ �. Then

HomSemiGrp(S� ∩ �⟂, K) =
⨄

�⪯�⪯�
HomSemiGrp(�⟂ ∩ S�⤴S� , K).

Proof. Let  ∈ HomSemiGrp(S� ∩ �⟂, K). Then S� ∩ �⟂ is the disjoint union of A ≔ −1(0) and B ≔
−1(K∗). This disjoint union S� ∩�⟂ = A∪B satisfies the properties P-1 and P-2 of Lemma 4.39: −1(K∗)
is a semigroup since if s, t ∈ −1(K∗) we have (s + t) = (s)(t) ≠ 0, and if s ∈ S� ∩ �⟂ and t ∈ −1(0)then (s + t) = (s)0 = 0, so S� ∩ �⟂ + −1(0) ⊆ −1(0). Thus by that lemma, B = � ∩M for some
� ⪯ �∨ ∩ �⟂.By part 2 of Corollary 3.21, these � are in correspondence with faces � of � that contain �. Hence
we may partition:

HomSemiGrp(S� ∩ �⟂, K) =
⨄

�⪯�⪯�
HomSemiGrp(�⟂ ∩ S�⤴S� , K),

since every  ∈ HomSemiGrp(S�∩�⟂, K) belongs to a unique set in the partition (namely, that corresponding
to � = � ). ▮
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Proof of Theorem 4.38. By Lemma 4.41 (with � = ∅) we may conclude that
HomSemiGrp(S� , K) ≃

⨄

�⪯�
HomSemiGrp(�⟂ ∩ S�⤴S� , K∗).

Hence (recalling Definition 4.37) we have the following chain of natural bijections:
H(U�) = HomSemiGrp(S� , K) =

⨄

�⪯�
HomSemiGrp(�⟂ ∩ S�⤴S� , K∗)

≃
⨄

�⪯�
HomSemiGrp(�⟂ ∩ S�⤴S� , K∗) =

⨄

�⪯�
Tn ⋅ p� .

(5)

Since the orbits of TN partition U� we must obtain all of them in this disjoint union, and so the defined
map orb is indeed a bijection. ▮

From the proof of Theorem 4.38, we obtain the following equivalent characterisation of orb �:
4.42 Corollary. orb � = D(�⟂ ∩ S�) ∩ Z(�S�⧵�⟂ )

Proof. orb � = E(HomSemiGrp(�⟂ ∩ S�⤴S� , K)); this is the subset of D(�⟂ ∩ S�) which kills S� ⧵ �⟂,and so we obtain the desired result. ▮

Using the same techniques as Theorem 4.38, we may characterise the Zariski closures of the orbits of
the torus. To phrase it simply we will introduce a standard definition from polyhedral geometry.
4.43 Definition. Let � be a cone; for each face � ⪯ � the star of � at �, ⋆F (�)(�), is the subset

⋆F (�)(�) ≔ {� ∈ F (�) ∶ � ⪯ �}.

4.44 Corollary. Let � ⪯ � for � a strongly convex lattice cone overN . Then

orb � =
⨄

�∈⋆F (�)(�)
orb � = E(HomSemiGrp(�⟂ ∩ S� , K)).

In particular, orb � = orb � = {p�} is the unique closed orbit of U�; and orb ∅ = U� .

Proof. Note that for all �, orb � = TNp� = E(HomSemiGrp(�⟂ ∩ S� , K∗)) = D(�⟂ ∩ S�), and hence the
closure of orb � corresponds to the points corresponding to the vanishing ideal of these points: i.e. orb �
corresponds to the ideal generated by the monomials with exponent vectors in S� ⧵ �⟂. To this end, foreach � ⪯ � let p� be the subset of A� defined by

p� ≔ ⟨�
√

f ∶ f ∈ S� ⧵ �⟂⟩ (6)
The set p� is a prime ideal of A� , by the properties of �⟂. Further, A�∕p� is canonically isomorphic
to ⟨�

√

f ∶ f ∈ S� ∩ �⟂⟩; thus the closed subscheme of U� corresponding to p� has closed points
E(HomSemiGrp(S� ∩ �⟂, K)) and by Lemma 4.41 with � = � we have that

HomSemiGrp(S� ∩ �⟂, K) =
⨄

�⪯�⪯�
HomSemiGrp(S� ∩ �⟂, K∗) =

⨄

�⪯�⪯�
orb �. ▮

We now state and prove the promised converse to Theorem 4.25.
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4.45 Corollary. Let � be a strongly convex lattice cone overN; then the mapping � ↦ U� is a bijection
between the faces of � and the affine open subsets of U� closed under the torus action; moreover,

U� =
⨄

�⪯�
orb �

and so the correspondence preserves inclusion.

Proof. We showed that the map � ↦ U� does indeed give torus-fixed affine open subsets of U� , asTheorem 4.25.
Conversely, let SpecB be an affine open subset of U� fixed under the torus action. By Theorem 4.21,

since the torus of SpecB is TN , we may find a cone � ⊆ � such that SpecB = U� . It remains to show
that � ⪯ �. Let �0 be the smallest face of � containing �; then there exists n ∈ relint �0 ∩ � ∩N . Then
F�0 (n) = �

⟂ ∩ n⟂ is a face of �0∨, and by Corollary 3.21 �∨0 ∩ n⟂ = �⟂0 .
In particular, the prime ideal pB where p = ⟨�

√

f ∶ f ∈ S� ⧵ �⟂0 ⟩ is the ideal of U�0 (c.f. Eq. (6)) in
A is a proper ideal of B: pB ⊆ p ∩ B, and p ∩ B is generated by monomials with exponents in

(S� ⧵ �⟂0 ) ∩ �
⟂ = (S� ⧵ n⟂) ∩ �∨;

noting that n ∈ � so n⟂ ⊇ �⟂, p ∩ B has exponents drawn from S� ∩ (�∨ ⧵ �⟂) which is clearly a propersubset of �∨ ∩M , the exponent vector set of B.
This shows that orb �0 = SpecA�∕p (the equality from Corollary 4.44) is contained in SpecB. Since

by Corollary 4.44 the closure of any TN -orbit of U�0 contains orb �0, every TN -orbit of U�0 is containedin SpecB; thus since U�0 is the union of such orbits we have U�0 ⊆ SpecB; but we know SpecB ⊆ U�0by hypothesis, so SpecB = U�0 and thus by Theorem 4.21 we must have � = �0.The final disjoint union decomposition then follows directly from Theorem 4.38. ▮

5 The global theory of toric varieties
The purpose of this section is to obtain global results about toric varieties. In Section 5.1 we shall prove the
global analogues of the main results for affine varieties that were proved in the previous section, and will
classify all normal toric varieties. In Section 7 we will present some examples of projective toric varieties
that arise from lattice polytopes.

5.1 General structure theorems
In order to state a global version of the correspondence theorem for affine toric varieties (Theorem 4.21),
we will need a notion of a global combinatorial object which is locally a strongly convex cone.
5.1 Definition. A strongly convex lattice fan overN (we will normally simply abbreviate this to fan) is
a finite2 set Σ of strongly convex lattice cones overN such that:

1. If � ∈ Σ and � ⪯ � then � ∈ Σ;
2. If �, � ∈ Σ then � ∩ � is a face of � and �.
2We may delete the finiteness restriction if we no longer require our varieties to be of finite type. Compare with [Oda78], where

the ‘finite type’ hypotheses (and separatedness hypotheses) for these theorems are stated in full.
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We turn Σ into a poset by inclusion. Since inclusion in Σ generalises the face relation ⪯ on an individual
cone, we use the same symbol to denote the partial order on Σ.

The support of a fan Σ is the set|Σ| = ⋃

�∈Σ �.If Σ and Σ′ are fans of lattice cones over N and N ′ respectively, a morphism � ∶ Σ → Σ′ is a map
Nℝ → N ′

ℝ which restricts to a morphism of lattices N → N ′ and has the property that for each � ∈ Σ,
there exists �′ ∈ Σ′ such that �(�) ⊆ �′.

We now state the global correspondence theorem.
5.2 Theorem (First structure theorem (global correspondence)). There is an (covariant) equivalence of
categories between the category of normal separated toric varieties with toric morphisms and the category
of fans with fan morphisms.

Historical remark. Theorem 4.16 appears in 1973 as theorem 6(i) and theorem 7 of of [Kem+73, p. 8] and
independently as theorem 6 of [OM75].

We will require the following theorem due to Sumihiro, and which is rather deeper than results we have
needed so far.
5.3 Theorem (Sumihiro). Let Φ ∶ T → X be a normal toric variety. Then for every point3 x ∈ X there
is an affine neighbourhood of x which is stable under the action of T .

References to proof. The proof is lengthy and technical and we shall only need to use it once (in the proof
of Theorem 5.2). The original proof (proceeding via a representation theory approach) appears as [Sum74,
Corollary 2], generalised to group schemes as [Sum75, Corollary 3.11]. Alternative proofs appear in
[Fin93] (which also provides an alternative proof of the part of Theorem 5.2 for which we use Sumihiro’s
theorem), and in [Kno+89]. All of the known proofs appear to use the line bundle structure of X. ▮

Proof of Theorem 5.2. We first show that with every fan we may associate a normal toric variety. Let
Σ be a fan over N ; consider �, � ∈ Σ. By Corollary 4.45, U�∩� is canonically an open subvariety of
both U� and U� , and so we may glue U� and U� along U�∩� (for the details of the gluing process, see
[Har77, example II.2.3.5]). Since normality is a local property, the scheme XΣ which results from gluing
all the cones of Σ in this way is normal; this scheme is actually a variety (it is of finite type since Σ is
finite, and is separated4 since U� ∩ U� = U�∩� is affine open and K[S�∩� ] is generated by S� and S� as
(� ∩ �)∨ = �∨ + �∨). Further, the action of TN on each maximal cone of Σ clearly is compatible with the
gluing (e.g. by Theorem 4.38).

We next consider the relationship between morphisms of fans and toric morphisms. Suppose Σ and Σ′
are fans overN andN ′ respectively, and � ∶ Σ → Σ′ is a morphism of fans. Then for each � ∈ Σ, �↾� isa morphism of cones by Lemma 4.13; since these restrictions are (trivially) compatible with respect to the
face relation we have an induced morphism of toric varieties XΣ → XΣ′ .Conversely, suppose f ∶ XΣ → XΣ′ is a morphism of normal toric varieties, where the varieties in
question arise from fans Σ overN and Σ′ overN ′ (note that we have not yet proved that all normal toric
varieties arise in this way). Since the morphism maps the torus, it induces a map � ∶ N → N ′ of the tori
by successive restrictions XΣ ↩ TN = N ⊗ℤ K∗ ↩ N . Further, by Theorem 4.38 for each � ∈ Σ the
unique TN -orbit orb � is mapped into some TN ′ -orbit, say orb � for some � ∈ Σ′. Thus f (U�) ⊆ U� , andso f↾U� is a toric morphism U� → U� , and so the base extension of � toNℝ restricts to a morphism of
cones � → �.

Finally we describe how an arbitrary normal toric variety Φ ∶ T → X induces a fan. Let N be the
character group of T , and consider the collection of affine open subvarieties of X that are stable under

3The theorem holds for arbitrary points, not just closed points.
4Here we use the condition given as [Sha13, Proposition 5.4]
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Figure 5: A fan Σ, and the variety XΣ it corresponds to.

the torus action. By Theorem 4.21 there exists a collection Σ of cones corresponding to these affine open
subvarieties. By Theorem 5.3, the set {U� ∶ � ∈ Σ} covers X. It remains to see that Σ is indeed a fan.

If � ∈ Σ and � ⪯ �, by Corollary 4.45 U� ⊆ U� and thus � ∈ Σ. Now note that for �, � ∈ Σ the set
U� ∩U� is stable under the torus action; since it is affine by separatedness, it equals U� for some � ∈ Σ (by
Theorem 4.21). Further by separatedness, K[S�] is generated by S� and S� ; i.e. S� = S� + S� and so
� = � ∩ �. Since U� is affine open in U� and U� , by Corollary 4.45 it must be that � is a face of both � and
�. Finally note that Σ is finite as each U� has only a finite number of affine open subvarieties stable under
the torus action. ▮

Having proved this, given a fan Σ we may always construct a normal toric variety XΣ. Conversely,when we write ‘a toric variety XΣ’ we will always implicitly mean a normal variety (whose associated fan
is called Σ).
5.4 Example. Consider the fanΣ inℝ2 with maximal cones �1 = pos{e1, e2} and �2 = {e1,−e2} (depictedon the left of Fig. 7 on Page 49). Then U�1 = K[X1, X2] and U�2 = K[X1, X−1

2 ]; they are glued along the
open subvariety U�1∩�2 = K[X1, X±1

2 ], and so the variety XΣ is the gluing of two copies of A2 but one
‘inverted’ on the other to form a cylinder (Fig. 5).
5.5 Example. It is easy to see that projective space ℙn is a toric variety, with torus

{[x0 ∶ ... ∶ xn] ∈ ℙn ∶ ∀ixi ≠ 0} ≃ (K∗)n

and the obvious action. More precisely, projective space may be obtained as a toric variety by applying the
projectivisation functor ℙ to affine space: ℙ(An+1) = ℙn, with the torus of ℙn exactly the image of the torus
of An+1 under ℙ. (One may formalise this notion by considering the subcategory of toric varieties with
toric morphisms; then this result shows that projectivisation is a well-behaved operation in this category as
it preserves the toric structure.)

One can also construct projective space via a fan. Indeed, let e1, ..., en be the usual basis vectors of
ℝn and set e0 ≔ en+1 =≔ −e1 −⋯ − en; then let Σ be the fan with facets �i ≔ pos{e0, ..., êi, ..., en} forevery 0 ≤ i ≤ n (see Fig. 6 for the case n = 2). Note that �∨0 = pos{e1, ..., en}, and a lengthy but simple
calculation shows that �∨i = pos{−ei, e1 − ei, ..., en − ei} for each i > 0. Then XΣ is covered by the affine
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Figure 6: The fan for ℙ2.

sets SpecK[X1, ..., Xn] and SpecK[X−1
i , X1X−1

i , ..., XnX−1
i ] (0 < i ≤ n) glued in the obvious fashion; it

is clear that these correspond to the standard cover of ℙn by n + 1 affine spaces.

5.6 Theorem (Second structure theorem (orbit correspondence)). Let XΣ be a normal toric variety with
embedded torus TN .

1. Let orb(XΣ) denote the set of orbits of the action of TN , and define a partial order ⪯ on orb(XΣ) by
Y ⪯ Y ′ if Y ′ ⊆ Y . Then, by the map

orb ∶ Σ ∋ � ↦ E(Hom(�⟂ ∩M,K∗)) ≃ (�⟂ ∩M)⊗ℤ K
∗ ∈ orb(X�)

(where we interpret E as giving the set of points in U�̂ , �̂ being the maximal cone of Σ containing �),
the poset (Σ,⪯) is isomorphic to the poset (orb(X�),⪯), and orb(�) is a closed subtorus of TN for
each � ∈ Σ.

2. Let U (XΣ) denote the set of affine open subvarieties of XΣ stable under the action of TN . Then, by
the map

U ∶ Σ ∋ � ↦ U� ≔
⨄

�⪯�
orb � = E(Hom(�∨ ∩M,K∗)) ∈ U (X�),

the poset (Σ,⪯) is isomorphic to the poset (U (X�), ⊆).

Proof.

1. For � ∈ Σ, orb � is the unique closed orbit of U� (Corollary 4.44). On the other hand, each orbit
orb � for � ∈ X� must lie in some affine open subvariety stable under the torus action, and so (since
it lies in U� ) we have the desired bijection.

2. By the construction in Theorem 5.2, XΣ is covered by affine open subvarieties of the form U� stable
under the toric action, with U�∩� = U� ∩ U� . Thus the map U ∶ Σ → U (XΣ) is injective, byCorollary 4.45.
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Conversely, let U be an affine open subvariety ofXΣ closed under the torus action. By Theorem 4.21,
there exists a unique cone � over N with U = U� . Let � ∈ Σ, so U� ∩ U� = U�∩� is an affine
open subvariety of U� and U� . Since it is an affine open subvariety of U� , by Corollary 4.45 it may
be written as a disjoint union U�∩� = ⨄

�⪯(�∩�) U�. On the other hand, since it is an affine open
subvariety of U� this union must (since the decomposition of Corollary 4.45 is unique) be taken
over the faces of U� . Hence for all � ∈ Σ, � ∩ � ∈ Σ and every face of � is of this form. Moreover,
U� =

⨄

�⪯� U�. Hence orb � ⊆ U� for some � ⪯ �; but of course in this case � ⪯ � since U� is thedisjoint union of orb � for � ⪯ � (Corollary 4.45). Thus � = � ∈ Σ, so U = U� for � ∈ Σ. ▮

5.7 Corollary. XΣ is affine iff Σ is the fan consisting of the faces of a single cone.

Proof. XΣ is affine ⟺ U (XΣ) has a unique maximal element ⟺ (Σ,⪯) has a unique maximal element
⟺ Σ is the faces of a single cone. ▮

The most useful result for computing orbits is usually Corollary 4.42:
5.8 Example. Consider again the toric cylinder of Example 5.4. The fan decomposes to give the orbits as
follows:

• We first compute orb �1. We have

orb �1 = D
(

�⟂1 ∩ S�1
)

∩ Z
(

�S�1⧵�
⟂
1
)

;

now D
(

�⟂1 ∩ S�1
)

= D
(

0
)

= U�1 , and

Z
(

�S�1⧵�
⟂
1
)

=
⋂

�1≥0
�2≥0

(�1,�2)≠(0,0)

Z
(

X�1
1 X

�2
2

)

= Z
(

X1
)

∩ Z
(

X2
)

;

therefore orb �1 is the subset of U�1 with
(

x1, s2
)

=
(

0, 0
).

• By essentially the same calculation, orb �2 is the subset of U�2 with
(

x1, x−12
)

=
(

0, 0
).

• To compute orb �1, note that

orb �1 = D
(

�⟂1 ∩ S�1
)

∩ Z
(

�S�1⧵�
⟂
1
)

= D
(

ℤ≥0
)

∩ Z
{

X�1
1 X

�2
2 ∶ �1 ≥ 0, �2 > 0

}

;

noting that
{

X�1
1 X

�2
2 ∶ �1 ≥ 0, �2 > 0

}

has greatest common divisor X2, we find

orb �1 =
(

U�1 ⧵ Z
(

X1
)

)

∩ Z
(

X2
)

;

i.e. orb �1 is the subset of U�1 given by
{

(

x1, x2
)

∶ x1 ≠ 0, x2 = 0
}

.
• By essentially the same calculation, orb �2 is the subset of U�2 given by

{

(

x1, x
−1
2

)

∶ x1 ≠ 0, x−12 = 0
}

.
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• We may compute orb (�1 ∩ �2
) either with respect to U�1 or U�2 ; in either case it is very similar to

the computation for �∙. With respect to �1, we have

D
(

(

�1 ∩ �2
)⟂ ∩ S�1

)

∩ Z
(

�
(

S�1⧵(�1∩�2)
⟂
)

)

=
(

U�1 ⧵ Z
(

X2
)

)

∩ Z
(

X1
)

,

so
orb

(

�1 ∩ �2
)

=
{

(

x1, x2
)

∈ U�1 ∶ x1 = 0, x2 ≠ 0
}

.

Similarly we have (with respect to �2) that

orb
(

�1 ∩ �2
)

=
{

(

x1, x
−1
2

)

∈ U�2 ∶ x1 = 0, x
−1
2 ≠ 0

}

.

As these subsets are identified by the gluing on the cylinder, we have no inconsistency.
• Finally, since " is the only cone remaining we may use the fact that the orbits partitionXΣ to see that

" =
{

(

x1, x2
)

∈ U�1 ∶ x1 ≠ 0, x2 ≠ 0
}

=
{

(

x1, x
−1
2

)

∈ U�2 ∶ x1 ≠ 0, x
−1
2 ≠ 0

}

.

We now move to ‘topological’-type properties.
5.9 Definition. Let Σ be a fan overN . Then Σ is called smooth if every cone in Σ is smooth, and simplicial
if every cone in Σ is simplicial (see Definition 3.2). The fan is complete if|Σ| = Nℝ.
5.10 Theorem (Third structure theorem (local and topological properties)).

1. A morphism f ∶ XΣ → XΠ of normal toric varieties with associated morphism of fans f̃ ∶ Σ→ Π
is proper iff for each � ∈ Π, f̃−1(�) =

⋃

{� ∈ Σ ∶ f̃ (�) ⊆ �}.

2. A toric variety XΣ is smooth iff Σ is smooth. If XΣ is defined over ℂ, it is an orbifold (has an affine
cover such that each open subvariety in the cover is the quotient of affine space by a finite abelian
group) iff Σ is simplicial.

Remark. Recall that a morphism of fans is in actuality a map of the underlying ℝ-vector spaces; thus
f̃−1(�) denotes the inverse image of � under this map of vector spaces, not simply the inverse umage under
the restriction to|Σ|. The theorem says that f is proper iff these inverse images do in fact coincide.

The proof of Theorem 5.10 requires different techniques to those we have used so far: part 1 will be
proved using techniques related to discrete valuation rings, and so we postpone the proof of that part until
Lemma 5.23. The result on orbifolds is relatively recent and requires cohomology theory, so we only give
a reference for the proof.
Sketch of proof of part 2 of Theorem 5.10. The equivalence “XΣ smooth if and only ifΣ is smooth” follows
directly from Theorem 4.30, as smoothness is a local property. We will not prove the orbifold statement
in detail; one direction was sketched (locally) in Example 4.36. For the other direction, the idea is to
consider the singularity properties ofXΣ and indeed one can show (this is done as [CLS11, example 11.4.4
and theorem 11.4.8] essentially using results of Brion [Bri99]) that XΣ is an orbifold iff it is rationally
smooth (we do not give the definition here as it is essentially cohomological), and this result along with a
dimension/lattice counting argument similar in flavour to Lemma 4.34 and its preceeding lemmata gives
the desired conclusion (that U� an orbifold implies � is simplicial). ▮

It is easy to see that the following follows directly from part 1 of Theorem 5.10:
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5.11 Corollary. A morphism f ∶ XΣ → XΠ of normal toric varieties with associated morphism of fans
f̃ ∶ Σ→ Π is proper iff f̃−1(|Π|) = |Σ|. ▮

We also have the following special case:
5.12 Corollary. A toric variety XΣ is complete iff Σ is complete. If XΣ is defined over ℂ, XΣ is compact
in the usual topology iff Σ is complete.

Proof. Recall that XΣ is complete if XΣ is proper over SpecK; let f denote the canonical map XΣ →
SpecK and suppose Σ is defined over the latticeN . Note that SpecK = U� for � = 0, i.e. the trivial conein the zero lattice. Hence f is proper iff f̃ ∶ Σ → SpecK has |Σ| = f̃−1(0) (by Corollary 5.11); but f̃
sends every element ofNℝ to 0. ▮

We give one classical application of Theorem 5.10.
5.13 Example (Toric blowups). We remind the reader briefly about the blowup construction for varieties;
see [Har77, pp. 28–30]. Let X ⊆ An be an affine variety, with x ∈ X. Consider the subvariety U ⊆ An ×
ℙn−1 = SpecK[X1, ..., Xn] × ProjK[Y1, ..., Yn] given by U = ℤ({XiYj −XjYi ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ n}).
Let � ∶ U → An be the projection of U onto the affine factor. Then the blowup of X at x is the closure of
'−1(X−x), whereX−x denotes pointwise vector subtraction. One can show that (up to isomorphism) the
blowup of X at x is independent of the embedding in to affine space; further, the map ' is an isomorphism
on An ⧵ 0 and so we may define the blowup of an arbitrary variety X at a point x ∈ X by choosing an
affine cover {U�} of X such that x lies in a unique U� and then blowing up U� .Now suppose XΣ is a normal toric variety (Σ overN), and let � ∈ Σ be a smooth cone generated by
some basis {e1, ..., en} forN . Set e0 = e1+⋯+ en, and let Σ′ be the refinement of Σ obtained by replacing
� with the the set of all cones of the form posS, where S is a subset of {e0, e1, ..., en} not containing
{e1, ..., en} (see Fig. 7; here � = pos{e1, e2} so the refinement cones are pos{e1 + e2}, pos{e1 + e2, e1},and pos{e1 + e2, e2}). It is clear by part 1 of Theorem 5.10 that the natural map � ∶ Σ′ → Σ induces a
proper morphism XΣ′ → XΣ; we check that XΣ′ is a blowup of XΣ.Since blowing up is local, we need to consider only the relationship betweenU� = SpecK[X1, ..., Xn] ≃
An and the variety Y coming from the fan refining �; further since everything is defined up to isomorphism
we may assumeN = ℤn. Then Y is the gluing of the varieties U�i where �i = pos({e0, ..., en} ⧵ {ei}), so
S�i = ℤ≥0ei + ℤ≥0(e1 − ei) +⋯ + ℤ≥0(en − ei) and so

U�i = SpecK[Xi, X1X
−1
i , ..., XnX

−1
i ].

On the other hand, the blowup B of An is cut out of An × ℙn−1 by the polynomials XiYj −XjYi for
i, j ∈ {1, ..., n}. For each i consider the principal open subvarietyDi = B ⧵ℤ(Yi); then, onDi, points havecoordinates of the form

(x1, ..., xn,
y1
yi
, ...,

yn
yi
) = (xi

y1
yi
, ..., xi, ..., xi

yn
yi
,
y1
yi
, ...,

yn
yi
)

since Xj = XiYjY −1i for each j; thus,
Di = SpecK[Xi, Xi(Y1Y −1i )−1, ..., Xi(YnY −1i )−1] ≃ SpecK[Xi, XiX

−1
1 , ..., XiX

−1
n ] = U�i

for each i; thus B ≃ Y and we have indeed constructed the blowup.
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Figure 7: A fan Σ, and a refinement Σ′ corresponding to a blowup of XΣ.

5.2 Discrete valuation rings
Many of the applications which we shall study will require the notion of a valuation on a field. The
motivation for this concept is as follows:
5.14 Example. If U ⊆ ℂ is open, z0 ∈ U , and f ∶ U → ℂ ∪ {∞} is meromorphic and non-zero then we
may expand f as a Laurent series about z0, say

f (z) =
∞
∑

n=!(f )
an(z − z0)n

where !(f ) ∈ ℤ and a!(f ) ≠ 0. The quantity !(f ) is an integer which tells us the behaviour of f at z0: if
!(f ) < 0 then f has a pole of order −!(f ) at z0, if !(f ) > 0 then f vanishes to order !(f ) at z0, and if
!(f ) = 0 then f (z0) = a!(f ). LetM(U ) denote the field of meromorphic functions on U ; then the map

f ↦

{

!(f ) f ≠ 0
∞ f = 0

is a map ! ∶M(U )→ ℤ ∪ {∞}. Note that the set {f ∈M(U ) ∶ !(f ) ≥ 0} is a ring (namely, the ring of
functions holomorphic on a neighbourhood of z0), and this ring is local: it has a unique maximal ideal,
namely the set of elements of K with positive valuation. (An ad-hoc proof is easy, but we shall prove a
more general statement as Lemma 5.17.)

Axiomatising the properties of !, we obtain the following definition.
5.15 Definition. Let K be a field. A map � ∶ K → ℝ ∪ {∞} is a valuation if, for all f, g ∈ K ,

1. �(f ) = ∞ iff f = 0;
2. �(fg) = �(f ) + �(g);
3. �(f + g) ≥ min{�(f ), �(g)}.
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Because every valuation must send 0 to∞, we often identify valuations with their restriction to K∗.
Note also that every field has at least one valuation: the trivial valuation mapping every nonzero element
to 0 ∈ ℝ. We pause to recall some standard elementary results.
5.16 Lemma. Let f, g ∈ K .

1. �(1) = 0.

2. �(−f ) = �(f ).

3. If �(f ) ≠ f (g) then �(f + g) = min{�(f ), �(g)}. ▮

5.17 Lemma. The image �(K∗) is an additive subgroup of ℝ, known as the value group of �; this is
sometimes denoted Γ� . The set R ≔ {f ∈ K ∶ �(f ) ≥ 0} is a local ring with unique maximal ideal
mK ≔ {f ∈ K ∶ �(f ) > 0}, which we call the local ring of � and which is precisely the set of non-units
of R. Then R∕mK is a field, the residue field of K under �. ▮

5.18 Example.

1. The map ! of Example 5.14 is a valuation on the field of functions meromorphic on U ⊆ ℂ open.
In fact, note that ! depends on the choice of an element z0 ∈ U and we obtain a different valuation
for each such choice.

2. Let p be a prime; then every � ∈ ℚ∗ may uniquely be written in the form p�(�)a∕b where p divides
neither a nor b; then the map � ↦ �(�) gives a valuation on ℚ, the p-adic valuation. The value
group of � is ℤ. The local ring is the localisation of ℚ at the ideal (p); the maximal ideal of the
valuation ring is pℚ; hence the residue field is ℚ∕pℚ = ℤ∕pℤ.

We may view both parts of Example 5.18 as facets of the same general principle, Proposition 5.19. The
general theory of these objects is expounded in detail in [Ser79, Chapter I].
5.19 Proposition. Let A be a ring. The following are equivalent:

1. A is a local principal ideal domain (PID).

2. There exists a field K and a surjective valuation � ∶ K → ℤ ∪ {∞} such that A is the local ring of
K .

3. A is a Noetherian local ring with maximal ideal generated by a non-nilpotent element.

4. A is a Noetherian integral domain which is integrally closed and has a unique non-zero prime ideal.

If any (hence all) of these conditions are satisfied, we call A a discrete valuation ring. ▮

There is a difference, though, between the two situations of Example 5.18: given an open set U ⊆ ℂ,
it is possible for a meromorphic function to have infinitely many zeroes or poles on U . For example,
z ↦ sin z has infinitely many zeros on ℂ. This means that it is possible, having fixed a function f ∈M(U ),
for !z0 (f ) to be non-zero for infinitely many z0 ∈ U (where here !z0 denotes the valuation at z0). Onthe other hand, given a number � ∈ ℚ, it is clearly the case that �p(�) is non-zero for only finitely many
primes p (this is a consequence of the fundamental theorem of arithmetic, of course). The problem is that
rings of holomorphic functions are not Noetherian: Proposition 5.20 guarantees that if our ring which we
are localising in is Noetherian then we obtain a result analogous to a fundamental theorem of arithmetic:
namely, that only finitely many primes divide each function in the ring.
5.20 Proposition. Let A be an integrally closed Noetherian integral domain with field of fractions K . Let
D be the set of non-zero ideals of A of height 1. Then for every p ∈ D the localisation Ap is a discrete
valuation ring with valuation �p. Further, for fixed f ∈ K∗, the set {p ∈ D ∶ �p(f ) ≠ 0} is finite.
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Proof. Every localisation of a Noetherian integrally closed ring is Noetherian and integrally closed. Note
that the maximal idealm of Ap is precisely the set of elements of Ap with numerator lying in p. Since p
has height 1,m contains no nontrivial prime ideals and so Ap satisfies part 4 of Proposition 5.19: Ap is adiscrete valuation ring.

We next show that if f ∈ K∗ is non-zero then only finitely many height 1 prime ideals of A contain f .
If, for all p ∈ D we have �p(f ) = 0, then we are done since 0 < ∞. Let

D ≔
⋂

{p ∈ D ∶ �p(f ) ≠ 0}.

SinceD is an ideal in a Noetherian ring we may writeD = ∩p∈D′D′ for some finite subset D′ ⊆ D. Let
D′′ be the set of height 1 ideals of D′. Now suppose p is an arbitrary prime of A of height 1; if �p(f ) ≠ 0then p ∩D is non-empty, so p (being prime) is contained within one of the ideals in D′. Further, since D
is of height 1 it must be equal to one of the ideals in D′′; thus there are only finitely choices for p. ▮

5.21 Example. Consider as a final example a normal affine variety SpecA; then A is a Noetherian integral
domain by definition. Consider a closed irreducible subvariety of codimension 1 (a prime divisor of
SpecA); such a subvariety is given by a prime ideal p ⊆ A which is of height 1. It follows that the local
ring Ap is a discrete valuation ring. The valuation on this ring, analogously to Example 5.14, counts the
degree of vanishing of rational functions in FracA on the prime divisor.

We shall now prove part 1 of Theorem 5.10. The link with valuation rings comes from the following
standard result (a slight generalisation of [Har77, Exercise II.4.11] and [EGA II, Théorème 7.3.8]; compare
[Ful93, note 10 to chapter 2]):
5.22 Theorem ([Stacks, Tag 0CM1]). Let f ∶ X → Y and ℎ ∶ U → X be morphisms of schemes, with Y
locally Noetherian, f and ℎ of finite type, and ℎ(U ) dense in X. Then f is proper if and only if for each
discrete valuation ringR with fraction fieldK , and every pair of morphisms SpecK → U and SpecR → Y
making the solid square in the following diagram commute:

SpecK U X

SpecR Y

i

ℎ

f∃!

(i being the morphism induced by R ⊆ K), there exists a unique morphism SpecR → X making the entire
diagram commute. ▮

Remark. For our purposes, since all schemes are varieties (more precisely, they are separated), we need
not check uniqueness of ⤏ in Theorem 5.22: the uniqueness follows from the valuative criterion of
separatedness [Har77, Theorem II.4.3].
5.23 Lemma (Part 1 of Theorem 5.10). A morphism f ∶ XΣ → XΠ of normal separated toric varieties
with associated morphism of fans f̃ ∶ Σ→ Π is proper iff

for each � ∈ Π, f̃−1(�) =
⋃

{� ∈ Σ ∶ f̃ (�) ⊆ �}. (F)
The reader should recall the remark following Theorem 5.10: namely, the morphism f̃ ∶ Σ → Π is

supported on a functionNℝ → N ′
ℝ that restricts to a homomorphismN → N ′.

Proof. To fix notation, assume Σ is a fan overN , Π is a fan overN ′, andN andN ′ have respective dual
latticesM andM ′,
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Suppose f satisfies the property (F). We apply Theorem 5.22 with X = XΣ, Y = XΠ, and U = TN ;that is, for some discrete valuation ring (R, �) we wish to find a filler SpecR → XΣ for the diagram
SpecK TN XΣ

SpecR XΠ.

i f

We may assume the closed point of SpecRmaps into some affine open subset U� ⊆ XΠ. Reversing arrows,our goal is to find some � ∈ Σ such that f̃ (�) ⊆ � and providing a filler for the following diagram:
K K[M] K[S�]

R K[S�]

�

f∗

The existence of the map K[S�] → R making the diagram commute is equivalent to the inclusion
(�◦f ∗)(K[S�]) ⊆ R or equivalently (�◦�◦f ∗)(K[S�]) ⊆ ℤ≥0. Note that �◦� restricts to a group mor-
phism M → ℤ, so is identified with a member of the dual lattice N . Similarly, �◦�◦f ∗ ∈ N ′. The
condition (�◦�◦f ∗)(�∨ ∩M ′) ⊆ ℤ≥0 is now equivalent (recalling that the duality pairing ofM ′ andN ′

is given by composition) to the condition �◦�◦f ∗ ∈ (�∨)∨ = �; and (�◦�)(�∨ ∩M ′) ⊆ ℤ≥0 implies
�◦� ∈ �.

Now, note that f̃ gives a morphism of latticesN → N ′ with the property that f̃ (�◦�) = �◦�◦f ∗. In
particular, the existence of ⤏ in the diagram is equivalent to the existence of a cone � over N with the
property that f̃ (�) ⊆ � and �◦� ∈ �.

Since f̃ (�◦�) ∈ �, and �◦� ∈ N , it follows that f̃−1(�) ≠ ∅. Hence, since f̃−1(�) = ⋃

{� ∈ Σ ∶
f̃ (�) ⊆ �} and the latter is non-empty, we may find � such that f̃ (�) ⊆ �, so⤏ exists (and is unique by
the remark following Theorem 5.22); in particular, � exists if and only if f is proper. ▮
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Figure 8: The simplicial complex with facets {1, 2, 3, 4} and {5}.

Part II

Cohomology theory and applications
6 Cohomology of sheaves and divisors
In this section, we present basic results on sheaf cohomology and the theory of divisors. The treatment is
essentially elementary; the reader might also refer to [Osb00] and [Eis95, Appendix A] for homological
algebra, [Har77, Chapter III] for cohomology of sheaves and Čech cohomology, and [Har77, Section II.6]
for the theory of divisors.

6.1 Review of homological algebra
Let R be a ring.
6.1 Definition. Recall that a complex of R-modules is a sequence of R-modules and homomorphisms

A∙ ≔⋯ Ai+1 Ai Ai−1 ⋯
)i+1 )i

such that )i◦)i+1 = 0 for each i (i.e. im )i+1 ⊆ ker )i). We call the module Ai the term of degree i of
A∙, and the map )i the ith boundary operator. The elements of im )i are called boundaries, and the
elements of ker )i are called cycles. The ith homology module of A∙ isHiA∙ ≔ ker )i∕ im )i+1.

Intuitively, a complex is a chain of maps, each of which lowers the dimension by 1, which kill higher-
dimensional boundaries at each step.
6.2 Example (Simplicial complexes). A simplicial complex Δ on the vertex set {1, ..., n} is a collection
of subsets called simplices closed under taking subsets (i.e. if � ∈ Δ and � ⊆ � then � ∈ Δ). The
dimension of a face � ∈ Δ is|�| − 1 (note that dim ∅ = −1). The dimension of Δ is max�∈Δ dim �, or isdefined to be −∞ if Δ = ∅. A facet of Δ is a maximal face.

For example, given the vertex set {1, 2, 3, 4, 5} take the facets of Δ5 to be {1, 2, 3, 4}, {5}. Then the
complex has the face structure depicted in Fig. 8, where the tetrahedron has one three-dimensional face,
four two-dimensional faces, and so forth.

For each integer i, let Fi(Δ) be the set of i-dimensional faces of Δ. Let k{Fi(Δ)} be a k-vector spacewith (free) basis {e� ∶ � ∈ Fi(Δ)}. Then the reduced chain complex of Δ (where Δ is supported on
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Figure 9: Boundaries on the simplicial complex T .

{1, ..., n}) is the complex

C̃∙(Δ, k) ≔ 0 k{Fn−1(Δ)} k{Fn−2(Δ)}

k{Fi(Δ)} k{Fi−1(Δ)}

k{F0(Δ)} k{F−1(Δ)} 0

)n−1

)i

)0

where we define )i ∶ k{Fi(Δ)} → k{Fi−1(Δ)} by setting sign(j, �) to be (−1)r−1 if j is the rth element of
the set � ⊆ {1, ..., n} written in ascending order and then defining

)i(e�) =
∑

j∈�
sign(j, �)e�⧵j .

One can formally show that )i)i+1 = 0 for each i by direct computation but it is tedious.
In order to explain what this means consider the tetrahedron T , that is the complex on {1, 2, 3, 4} with

{1, 2, 3, 4} as the only facet. Then:
)3{1, 2, 3, 4} = {2, 3, 4} − {1, 3, 4} + {1, 2, 4} − {1, 2, 3}

and:
)2{2, 3, 4} = {3, 4} − {2, 4} + {2, 3}.

We draw the image of )3{1, 2, 3, 4} as Fig. 9. Intuitively, the boundary map takes the oriented face (the
entire tetrahedron with orientation (1, 2, 3, 4)) and cuts it up into oriented faces such that the sum of the
orientations of those faces is zero. The composition )2)3 is zero since the cutting up of the tetrahedron
into oriented faces by )3 gives (triangular) faces whose orientations mutually cancel at the edges, so when
the triangular faces are cut up again each edge is covered twice in opposing directions. (This explains the
terminology of Definition 6.1; recall that in the integration theory of manifolds a cycle is a union of closed
paths such that the formal sum of all the paths is zero; i.e. it is the image under a homeomorphism of a
simplex with an orientation killed by the boundary operator defined here.)

Now for each i, the ith homology of C̃∙(Δ, k) is the k-vector space
H̃i(Δ, k) = ker )i∕ im )i+1.
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We shall compute the homologies of the tetrahedron T . We have that
F3(T ) = {{1, 2, 3, 4}}
F2(T ) = {{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}}
F1(T ) = {{3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}}
F0(T ) = {{4}, {3}, {2}, {1}}
F−1(T ) = {∅}

and so, taking these as our basis orderings we have the following boundary maps:

[)3] =

⎡

⎢

⎢

⎢

⎢

⎣

1
−1
1
−1

⎤

⎥

⎥

⎥

⎥

⎦

[)2] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0
−1 0 1 0
1 0 0 1
0 −1 −1 0
0 1 0 −1
0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[)1] =

⎡

⎢

⎢

⎢

⎢

⎣

−1 −1 0 −1 0 0
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1

⎤

⎥

⎥

⎥

⎥

⎦

[)0] =
[

1 1 1 1
]

We find after a short computation that these matrices have ranks 1, 3, 3, 1 respectively; so dim im )3 = 1and dim ker )2 = 4 − 3 = 1, allowing us to conclude that H̃3(T , k) ≃ k0. Similarly dim im )2 = 3 and
dim ker )1 = 3 so H̃2(T , k) ≃ k0; and dim im )1 = 3, dim ker )0 = 3 so H̃1(T , k) = k0. Thus all the
homologies are trivial.

On the other hand, the homomlogies are not trivial precisely when some chain is killed by a boundary
operator that is not obtained by cutting higher dimensional faces; for example, in Δ5 above the operator
)0 kills {5} − {1}, but the only possible face with this as boundary would be {1, 5}, which is not a faceof Δ5 since {5} is disconnected from the rest of the simplex. Thus im )1 is a strict subset of ker )0, andso H̃0(Δ, k) = ker )0∕ im )1 detects connectedness. More generally, the ith homology H̃i(Δ, k) detectsexistence of i-dimensional ‘holes’: dim H̃i(Δ, k) is the number of such holes.

Often in algebraic geometry it is the dual notion which appears; consider now a sequence of R-modules
and homomorphisms

A∙ ≔⋯ Ai+1 Ai Ai−1 ⋯
di+1 di

such that di+1◦di = 0 for each i (i.e. ker di+1 ⊇ im di). We call the module Ai the term of degree i of
A∙, and the map di the ith coboundary operator. The elements of im di are called coboundaries, and the
elements of ker di are called cocycles. The ith cohomology of A∙ isH iA∙ ≔ ker di∕ im di+1.
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6.2 Sheaf cohomology
LetX be a scheme. Recall that the functor Γ(X, ⋅) from sheaves onX to abelian groups is left exact [Har77,
Exercise II.1.8]; that is, if

0 → ℱ → G → ℋ → 0

is a short exact sequence, then
0 → Γ(X,ℱ )→ Γ(X,G )→ Γ(X,ℋ ) (7)

is exact. The goal of sheaf cohomology is to study the manner in which the induced morphism Γ(X,G )→
Γ(X,ℋ ) is not surjective; this will allow us in many useful cases to compute properties of one sheaf using
known properties of the other two.

In order to do cohomology we need to extend Eq. (7) to the right somehow. We will do this in a way
analogous to constructing a free resolution of modules (recall that if A is an R-module that is a quotient of
some free module F1 by a relation moduleM , then we obtain an exact sequence 0 →M → F1 → A→ 0;
ifM is not free, we may writeM = F2∕M ′ and extend the exact sequence to the left as 0 →M ′ → F2 →
F2 → A → 0; and so forth). Instead of every element in our resolution being free, we want every element
to make Hom right-exact.

The following theorem is standard [Osb00, Section 2.4]:
6.3 Theorem. For A ∈ ObMod(R) (more generally in any abelian category) the following are equivalent:

1. Hom(⋅, A) is an exact functor from Mod(R) to Ab.

2. For every morphism � ∶ B → A and every monomorphism � ∶ B → C there is a � ∶ C → A such
that the following diagram commutes:

A

0 B C

�

�
�

We call an object satisfying either (hence both) of these conditions injective. ▮

6.4 Definition. Given any sheaf ℱ on X, a injective resolution of ℱ is an exact sequence

ℱ ∙ ≔ 0 ℱ ℱ 0 ℱ 1 ℱ 2 ⋯d0 d1

such that each ℱ i is injective.
6.5 Theorem (Enough injectives). We say that an abelian category C has enough injectives if every object
of C is isomorphic to a subobject of an injective object. Ab has enough injectives. Mod(R) has enough
injectives. If (X,OX) is a ringed space,Mod(X) and Ab(X) (the categories of sheaves of OX-modules
and sheaves of abelian groups on X respectively) have enough injectives.

Proof. The case of Ab is due to Baer (1940) [Eis95, Corollary A3.7]. The case of Mod(R) is ue to
Eckmann and Schöpf (1953) [Eis95, Corollary A3.9]. The cases ofMod(X), Ab(X) may be found as
[Har77, proposition III.2.2 and corollary III.2.3]. ▮

6.6 Corollary. Every sheaf ℱ on X has an injective resolution.

Proof. Embed ℱ in an injective module ℱ 0; embed ℱ 0∕ℱ in an injective module ℱ 1; embed ℱ 1

ℱ 0∕ℱ in
an injective module ℱ 2; and continue inductively in the obvious fashion. ▮
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Injective resolutions are important because (since Γ(X, ∙) is left exact) they induce complexes:

ℱ ∙ = 0 ℱ ℱ 0 ℱ 1 ℱ 2 ⋯

Γ(X,ℱ ∙) = 0 Γ(X,ℱ 0) Γ(X,ℱ 1) Γ(X,ℱ 2) ⋯

d0 d1

d−1≔0 d0 d1

(8)

The pth sheaf cohomology group is thenHp(X,ℱ ) ≔ Hp(X,ℱ ∙) = ker dp∕ im dp−1.5 Every choice of
injective resolution will give the same cohomology groups; this result is not trivial, and may be found as
[Eis95, cor. A3.14].

Note that we start our complex at 0, not at Γ(X,ℱ ). We do not lose any information, as part 1 of the
following straightforward result tells us.
6.7 Proposition. With the same notation as above,

1. H0(X,ℱ ) = Γ(X,ℱ );

2. for all i ≥ 0, ℱ ↦ H i(X,ℱ ) is a functor from Ab(X) to Ab. This is refered to as the ith right
derived functor of Γ.6 ▮

Part 2 of the above proposition tells us that morphisms of sheaves induce individual morphisms of
homology groups. When given a short exact sequence, this can be strengthened to a chain of morphisms of
all the homology groups.
6.8 Theorem (The long exact sequence). Let

0 A∙ B∙ C ∙ 0� � (9)
be a short exact sequence of complexes in an abelian category (that is, each induced 0 → Ai → Bi →
C i → 0 is exact). Then for each i there is a natural map

)i ∶ H i(C ∙)→ H i+1(A∙)

such that the following long exact sequence in cohomology of Eq. (9) is exact:

0 H0(A∙) H0(B∙) H0(C ∙)

H1(A∙) ⋯ H i−1(C ∙)

H i(A∙) H i(B∙) H i(C ∙)

� �

)0

)i−1
� �

)i

References to proof. [Eis95, Secs. A3.7 and A3.8] or [Osb00, Theorem 3.3]. ▮
5[Har77] uses ℎi notH i.
6If F is a covariant left exact functor then [Har77] uses RiF to denote the ith right derived functor of F .
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6.9 Corollary. A short exact sequence of sheaves

0 ℱ G ℋ 0� �

gives rise to a long exact sequence

0 H0(X,ℱ ) H0(X,G ) H0(X,ℋ )

H1(X,ℱ ) ⋯ H i−1(X,ℋ )

H i(X,ℱ ) H i(X,G ) H i(X,ℋ )

� �

)0

)i−1
� �

)i

Proof. A short exact sequence of sheaves lifts to a short exact sequence of injective resolutions. Taking
global sections of this short exact sequence gives a short exact sequence

0→ Γ(X,ℱ ∙)→ Γ(X,G ∙)→ Γ(X,ℋ ∙)→ 0

and then applying Theorem 6.8 finishes the proof. ▮

Toric varieties have nice vanishing properties for their cohomologies, so the long exact sequence
becomes finite and we may compute properties of the sections using standard results like the rank-nullity
theorem and its generalisations. We shall give some exemplary results later; see Theorem 7.12 and
Theorem 7.13.

Sheaf cohomology turns out to be theoretically useful but difficult to compute with. The standard
solution to this (for Noetherian separated schemes, at least) is to turn to a different cohomology theory
which is easier to compute with and that gives the same cohomologies as sheaf cohomology. In fact, this
cohomology will be very similar in style to the homology theory of the reduced chain complex of a simplex,
which we discussed in Example 6.2.
6.10 Definition. LetX be a topological space, and pick an open cover = {U�}�∈A where A is endowed
with some (fixed) well-ordering. For each finite subset {i0, ..., ip} ⊆ A, we write Ui0,...,ip ≔ Ui0 ∩⋯ ∩ Uip .
Let f ∈ AAb(X), and define a complex Č ∙( ,ℱ ) as follows:

• For all p ≥ 0, set
Čp( ,ℱ ) ≔

∏

i0<⋯<ip

ℱ (Ui0,...,ip ).

• Define d ∶ Čp( ,ℱ )→ Čp+1( ,ℱ ) by setting, for � ∈ Čp( ,ℱ ),

(d�)i0,...,ip =
p+1
∏

j=0
(−1)j res

Ui0 ,..., ̂ij ,...,ip+1
Ui0 ,...,ip+1

(�i0,...,îj ,...,ip+1 ).

We define the pth Čech cohomology group of ℱ , with respect to  , to be
Ȟp( ,ℱ ) ≔ HpČ ∙( ,ℱ ).
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The important theorem is the following [Har77, Theorem III.4.5]:
6.11 Theorem. Let X be a Noetherian separated scheme,  an open affine cover of X, and ℱ a quasi-
coherent sheaf on X. Then for all p ≥ 0, there is a natural isomorphism

Ȟp( ,ℱ ) ≃ Hp(X,ℱ ). ▮

6.3 Divisors in general
The subject of divisors on schemes is discussed in [Har77, Section II.6]; we pause to state the definitions
and results we will need. Throughout this section, X is a normal variety.
6.12 Definition. A prime divisor D on X is an irreducible subvariety of codimension 1. The local ring
of D is the ring

OX,D ≔ {f ∈ K(X) ∶ f is regular on some openU with D ∩ U ≠ ∅}

We may restate Example 5.21 as the following:
6.13 Proposition. The ring OX,D is a discrete valuation ring. ▮

Motivated by the discussion surrounding that example and Example 5.14, if f ∈ K(X)∗ has �D(f ) =
n < 0 then we say f has a pole of order −n on D; if �D(f ) = n > 0 we say it vanishes to order n on D.
By Proposition 5.20, if f ∈ K(X)∗ then �D(f ) = 0 for all but finitely many prime divisors D.
6.14 Definition. The Weil divisor group of X, denoted Div(X), is the free abelian group generated by
the prime divisors of X. A member of Div(X) is a Weil divisor. If every coefficient of D ∈ Div(X) is
nonnegative then we say D is effective and write D ≥ 0.

If X is normal and f ∈ K(X)∗ we define the divisor of f to be div f ≔
∑

�D(f )D where the sum is
over all prime divisors D of X; by Proposition 5.20 this sum is finite. Any divisor of this form is called a
principal divisor.
6.15 Theorem. If D is a Weil divisor on X then we may define a coherent sheaf OX(D) of OX-modules as
follows:

Γ(U,OX(D)) ≔ {f ∈ K(X) ∶ div(f ) +D ≥ 0 on U} ∪ {0}

(i.e. the set of functions which are regular on U modulo the poles measured by D).

Proof. For coherence see [CLS11, proposition 4.0.27]; the property of being a sheaf of OX-modules is left
there to the reader and so for completeness we verify it here. WriteD in the formD =

∑

P∈DivX aPP where
all but finitely many of the aP are 0. First we show that each Γ(U,OX(D)) is an OX(U )-module: if f, g ∈
Γ(U,OX(D)) and �, � ∈ OX(U ) then we wish to show that �P (�f + �g) + aP ≥ 0 for each P ∈ DivX.
Now �P (�f + �g) ≥ min{�P (�)�P (f ), �P (�)�P (g)}, and by assumption �P (�), �P (�) ≥ 0 (since � and �are regular on U ) and �P (f ), �P (f ) ≥ −aP (by assumption) so min{�P (�)�P (f ), �P (�)�P (g)} ≥ −aP and
we are done.

It remains to show that OX(D) is a sheaf; this follows easily since K(X) is a sheaf. ▮

Finally, we give a name to the Weil divisors which are locally of the form div f for some f ∈ K(X)∗.
6.16 Definition. AWeil divisor D =

∑

P∈DivX aPP on X is Cartier if there is an open cover {U�}�∈Aof X such that the divisor∑U�∩P≠0 aP (U� ∩ P ) is principal in U� for each � ∈ A.
Remark. We may extend the definition of Cartier divisor to an arbitrary scheme, see [Har77, p. 141].
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7 Quasi-projective toric varieties
It is not true that a toric variety is always quasi-projective. In fact, one can characterise all quasi-projective
toric varieties; we will do this as Theorem 7.18 and Theorem 7.25.

7.1 Divisors on toric varieties
Our goal is to state two vanishing theories for the cohomology groups of a toric variety: Theorem 7.12 and
Theorem 7.13.

We shall first study the properties of torus-invariant prime Weil divisors of XΣ.
7.1 Lemma. The map Σ(1) → Div(XΣ) defined by � ↦ D� ≔ orb � is a bijection between the rays of Σ
and the torus-invariant prime Weil divisors of XΣ.

Proof. This follows immediately from Theorem 5.6 and Corollary 4.44: any � ∈ Σ(1) corresponds to
an (n − 1)-dimensional orbit orb � such that orb � is an irreducible closed subvariety of codimension 1
invariant under the torus action. ▮

We first give a preliminary computational result.
7.2 Proposition. If � ∈ Σ(1) has minimal generator u�, and m ∈M (whereM is the character lattice of
XΣ), then:

��(�m) = ⟨m|u�⟩ ; and

div�m =
∑

�∈Σ(1)
⟨m|u�⟩D�.

Proof. Extend u� to a basis of M . Without loss of generality, we may assume M = ℤn and u� = e1,so � = ℝ≥0e1. Let (fi) be the dual basis of N according to the pairing of characters and 1-psgs. Then
U� = K × (K∗)n−1 by Example 4.14; and one can easily show with the formalism developed above that
orb � = {0} × (K∗)n−1 = Z(Xf1 ), and

D(�) ∩ U� = {0} × (K∗)n−1 ∩ (K × (K∗)n−1) = {0} × (K∗)n−1.

Hence the relevant local ring is K[Xf1 , X±f2 , ..., X±fn ](Xf1 ) and the valuation �� is defined by ��(f ) = k
for f = (Xf1 )k(g∕ℎ) (g, ℎ ∈ K[Xf1 , X±f2 , ..., X±fn ](Xf1 ) ⧵ (X

f1 )). Now finally note that
�m = (xf1 )m1⋯ (xfn )mn = (xf1 )⟨m|e1⟩⋯ (xfn )⟨m|en⟩

so �D(�m) = ⟨m|e1⟩ = ⟨m|u�⟩.For the second part, note that theD(�) are the irreducible components ofXΣ ⧵TN ; since �m is non-zero
on T , div�m is supported on XΣ ⧵ T = ⋃

�∈Σ(1)D(�). Hence div�m =
∑

�∈Σ(1) �D� (�
m)D(�). The result

then follows from the first part. ▮

7.3 Definition. Given a Weil divisor D =
∑

�∈Σ(1) a�D�, we may define a related polyhedron by
PD = {m ∈Mℝ ∶ ∀�∈Σ(1) ⟨m|u�⟩ ≥ −a�} (10)

where u� denotes the minimal generator of �.
In this language, we see that the global sections of OXΣ (D) are determined by the characters given by

the lattice points of PD.
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7.4 Theorem. If D is a torus-invariant Weil divisor of XΣ, then

Γ(XΣ,OXΣ (D)) =
⨁

div(�m)+D≥0
K�m =

⨁

m∈PD∩M
K�m. (11)

Proof. Let f ∈ Γ(XΣ,OXΣ (D)). Let � ∈ Σ(1); note that orb � ∩ TN = ∅, since orb � is the union of orbits
of cones containing �, and 0  �. In particular, each prime divisor of XΣ restricts to the zero divisor on
TN and so D↾TN = 0. By definition of OXΣ (D), we have div f +D ≥ 0; restricting to TN , we thereforeobtain (div f )Tn ≥ 0, so f is regular on TN and Γ(XΣ,OXΣ (D)) is a subring of A(TN ) = K[M]. Note that
K[M] is generated as a vector space over K by the characters on TN ; hence Γ(XΣ,OXΣ (D)) is generatedby the set of characters of TN which lie inside it, i.e.

Γ(XΣ,OXΣ (D)) =
⨁

�m∈Γ(XΣ),OXΣ (D)
K�m =

⨁

div(�m)+D≥0
K�m.

It is easy to see that the second equality in Eq. (11) holds: div(�m) +D ≥ 0 iff ��(�m) + a� ≥ 0 for all
� ∈ Σ(1), and by Proposition 7.2 we have ��(�m) = ⟨m|u�⟩. The result is now immediate by comparison
with Eq. (10). ▮

7.5 Definition. A variety V is a vector bundle of rank r over a varietyX if there is a morphism � ∶ V → X
and an open cover {Ui}i∈I of X such that (i) for every i, there is an isomorphism �i ∶ �−1(Ui)→ Ui ×ℂr
such that �i followed by projection onto Ui is just � restricted to �−1(Ui); and (ii) for every i, j ∈ I there
is gi,j ∈ GLr(Γ(Ui ∩ Uj ,OX))7 such that the following diagram commutes:

�−1(Ui ∩ Uj)

Ui ∩ Uj × ℂr Ui ∩ Uj × ℂr
�i

�j

gi,j

A section of V over an open U ⊆ X is a morphism s ∶ U → V such that �s = 1.
Recall that for a scheme X, a sheaf of OX-modules ℱ is locally free if there is an open cover {Ui}i∈Iof X such that for each Ui, Γ(ℱ , Ui) is a free OUi -module.
The following result is standard [Har77, exercise II.5.18]:

7.6 Proposition. With the notation of Definition 7.5, for each open subset U ofX letℱ (U ) be the set of all
sections of V over U . Then ℱ with the obvious restriction maps is a locally free sheaf of OX-modules. ▮

A vector bundle of rank 1 is a line bundle. We have that ([Har77, propositions II.6.13 and II.6.15]):
7.7 Proposition. If ℒ is an locally free sheaf of rank 1 on a normal variety X, then there is a Cartier
divisor D on X such thatℒ ≃ OX(D) and there is a line bundle Vℒ → X whose sheaf of sections isℒ .
Further, this line bundle is unique up to isomorphism. ▮

7.8 Definition. Let ℱ be a sheaf, and letℒ be a locally free sheaf of rank 1 (both on a normal variety X).
1. We say that ℱ is generated by its global sections if there is a set S ⊆ Γ(X,ℱ ) such that at any
x ∈ X the images of S under the canonical map generate the stalk ℱx.

2. We say that a subspaceW ⊆ ΓX,ℒ is basepoint free if for every x ∈ X there exists s ∈ W with
s(x) ≠ 0. Thenℒ is basepoint free ifW = ΓX,ℒ is basepoint free.

7i.e. invertible linear maps in r variables over Γ(Ui ∩ Uj ,OX )
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The primary motivation for the definition of basepoint free is the following trivial remark (compare
[Har77, Remark II.7.8.1]).
7.9 Lemma. Ifℒ is a basepoint-free sheaf on a normal varietyX, and Γ(X,ℒ ) has a finite basis (e0, ..., en),
then the map

X ∋ x→ (a0(x), ..., an(x)) ∈ Kn+1

induces a well-defined function X → ℙnK . ▮

7.10 Definition. LetD be a basepoint free torus-invariant divisor onXΣ. By Theorem 7.4, Γ(XΣ,OXΣ (D))is finite-dimensional. We denote by �D the map of Lemma 7.9.
We say that D and OXΣ (D) are very ample if �D is a closed embedding. We say that D and OXΣ (D)are ample if kD is very ample for some k ∈ ℤ>0.
It is a standard result that (when ℱ = ℒ ) the two concepts of Definition 7.8 are equivalent. More

formally,
7.11 Lemma ([Har77, Lemma II.7.8]). Let ℒ be a locally free sheaf of rank 1 on a normal variety X.
Thenℒ is generated by its global sections iff it is basepoint free. ▮

We now state the promised vanishing theorems. The proofs are not too involved, but are fairly
lengthy and so we omit them; the idea is to use the combinatorics of the divisors of XΣ to compute Čech
cohomologies via the enumeration of lattice points.
7.12 Theorem (Demazure vanishing [CLS11, Theorem 9.2.3]). Let D be a divisor on XΣ such that nD
is Cartier for some n ∈ ℕ. If |Σ| is convex as a subset of ℝn and if OXΣ (nD) is generated by its global
sections, then

i > 0 ⟹ H i(XΣ,OXΣ (D)) = 0. ▮

and
i = 0 ⟹ H i(XΣ,OXΣ (D)) =

⨁

m∈PD∩M
K�m.

(Note that the second part of this follows immediately from Theorem 7.4.)
The second vanishing theorem will state that the cohomology of a negated divisor vanishes everywhere

except in a single degree, which may be determined combinatorially.
7.13 Theorem (Batyrev-Borisov vanishing [CLS11, Theorem 9.2.7]). Let D be a divisor on XΣ such that
nD is Cartier for some n ∈ ℕ. If XΣ is complete and if OXΣ (nD) is generated by its global sections, then

i ≠ dimPD ⟹ H i(XΣ,OXΣ (−D)) = 0.

and
i = dimPD ⟹ H i(XΣ,OXΣ (−D)) =

⨁

m∈relint(PD)∩M
K�−m. ▮

The similarity between Theorem 7.12 and Theorem 7.13 is the first sign we see of the Ehrhart duality
which appears in Theorem 8.8.

62



7.2 A cohomology computation
We will now compute some Čech cohomology groups for projective space, filling in some of the details
of [CLS11, Example 9.1.1]. In fact, we will prove Theorem 7.12 and Theorem 7.13 for the special case
XΣ = ℙ2 and a particularly natural choice of D.

Recall that a Čech cohomology complex depends on a choice of ordered open cover; our discussion of
divisors above, as well as our classification theorems, provide us with a canonical open cover for a toric
variety XΣ (where dimΣ = n), namely

XΣ =
⋃

�∈Σ(n)
U� .

We shall fix some arbitrary ordering for this cover, and write  = {U1, ..., Uk} for it.Let D be a torus-invariant Weil divisor on XΣ. By definition, we may write the pth Čech complex
module as

Čp( ,OX(D)) =
∏

i0<⋯<ip

Γ(Ui0,...,ip ,OX(D)) =
∏

i0<⋯<ip

H0(Ui0,...,ip ,OX(D));

using Theorem 7.4, we have
H0(Ui0,...,ip ,OX(D)) =

⨁

m∈PD(Ui0 ,...,ip )∩M
K�m

(where we write PD(V ) for the polyhedron corresponding to the restriction of D to an open subvariety V )
and so we may set up a grading on Čp( ,OX(D)) by writing

Čp( ,OX(D)) =
⨁

i0<⋯<ip

⎛

⎜

⎜

⎜

⎝

⨁

m∈PD(Ui0 ,...,ip )∩M
K�m

⎞

⎟

⎟

⎟

⎠

=
⨁

i0<⋯<ip

(

⨁

m∈M
A(Ui1,...,ip )m

)

where A(Ui1,...,ip )m is defined to be K�m for m ∈ PD(Ui0,...,ip ) ∩M and 0 otherwise. Note that now the
dummy variable of the inner sum is independent of the outer sum and so we may swap them; that is, we
may grade each Čp( ,OX(D)) byM and hence obtain a grading of each Čech cohomology module.

The cohomology of ℙ2. Specialising to the fan Σ ⊆ ℝ2 with facets U0 = pos{e1, e2}, U1 = {e0, e2},and U2 = {e0, e1} (where e0 = −e1 − e2) we obtain (with M = ℤ2) the toric variety X ≔ XΣ = ℙ2
(compare Example 5.5 and Fig. 6 on Page 45). Set aD0 ≔ aDe0 , for some a ∈ ℤ.

The case a < 0. By our discussion above, Č0(X,OX(aD0)) = Γ(U0,OX(aD0))⊕Γ(U1,OX(aD0))⊕
Γ(U2,OX(aD0)). Now note that PD(U0) ∩ ℤ2 = {m ∈ ℤ2 ∶ ⟨m|e1⟩ ≥ 0, ⟨m|e2⟩ ≥ 0} and so by
Theorem 7.4 we have Γ(U0,OX(aD0)) =⨁

m∈ℤ2≥0
K�m.

Similarly, Γ(U1,OX(D1)) is generated by the characters of {m ∈ ℤ2 ∶ ⟨m|e0⟩ ≥ −a, ⟨m|e2⟩ ≥ 0},
and this set is precisely the set of lattice points ℤ2 ∩ {(x, y) ∶ x + y ≤ a, y ≥ 0}; i.e. Γ(U1,OX(D1)) =
⨁

m∈ℤ≤0×ℤ≥0
K�ae1�m. Finally, Γ(U2,OX(D2)) =⨁

m∈ℤ≥0×ℤ≤0
K�−ae2�m.

Motivated by these computations, and to simplify notation, we set up the chamber complex  displayed
in Fig. 10a. Here, the cell C−−− is the set of points m ∈ ℤ2 with ⟨m|e0⟩ < a, ⟨m|e1⟩ < 0, and ⟨m|e2⟩ < 0;
C+−− is the set of points m with ⟨m|e0⟩ ≥ a, ⟨m|e1⟩ < 0, and ⟨m|e2⟩ < 0; and in general a +∕− in the ith
place (i ∈ {0, 1, 2}) denotes a respective ≥/< in the eith inequality. Then the computations above show
that A(U0)m ≠ 0 ⟺ m ∈ C−++; A(U1)m ≠ 0 ⟺ m ∈ C+−+; and A(U2)m ≠ 0 ⟺ m ∈ C++−.
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(a) The case a < 0 (reproduced from [CLS11,
p. 400]).

a

a

+ + +
+ − +

+ − −

+ + −

− + +

− + −

− − +

(b) The case a > 0.

Figure 10: The cohomology chamber complex of ℙ2

This figure simplifies the higher order computations in the following way. Consider U0,1 = U0 ∩ U1;this is the subvariety Upos e1 , so we have the inequality ⟨m|e1⟩ ≥ 0: thus A(U0,1)m ≠ 0 when m lies in the
union of C⋯ with a + in the second position, i.e. A(U0,1)m ≠ 0 ⟺ m ∈ C++−∪C−+−∪C−++. Similarly,
A(U0,2)m ≠ 0 ⟺ m ∈ C−++ ∪ C−−+ ∪ C+−+ and A(U1,2)m ≠ 0 ⟺ m ∈ C+−+ ∪ C+−− ∪ C++−.Finally for the single third order intersection, we have U0,1,2 = Upos 0 and so we have no inequalities:
A(U0,1,2)m ≠ 0 for all m ∈ ℤ2.

By definition of the gradings on the Čech complex components, we have the following:
Č0(X,OX(aD0)) =

⨁

m∈M
A(U0)m ⊕

⨁

m∈M
A(U2)m ⊕

⨁

m∈M
A(U2)m

=
⨁

m∈C−++

K�m ⊕
⨁

m∈C+−+

K�m ⊕
⨁

m∈C++−

K�m

Č1(X,OX(aD0)) =
⨁

m∈M
A(U0,1)m ⊕

⨁

m∈M
A(U0,2)m ⊕

⨁

m∈M
A(U1,2)m

=
⨁

m∈C++−∪C−+−∪C−++

K�m ⊕
⨁

m∈C−++∪C−−+∪C+−+

K�m ⊕
⨁

m∈C+−+∪C+−−∪C++−

K�m

Č2(X,OX(aD0)) =
⨁

m∈M
A(U0,1,2)m =

⨁

m∈M
K�m.

Let us now fix some m ∈ ℤ2; from the equations just above we can read off the dimension of the mth
graded part of each Čp(X,OX(aD0)), and the results are given in Table 1.
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Table 1: Dimension of Čp(ℙ2,Oℙ2 (aD0)) for a < 0.
m ∈ ... dim Č0(ℙ2,Oℙ2 (aD0)) dim Č1(ℙ2,Oℙ2 (aD0)) dim Č2(ℙ2,Oℙ2 (aD0))

C−++ ∪ C+−+ ∪ C++− 1 2 1
C−−+ ∪ C−+− ∪ C+−− 0 1 1

C−−− 0 0 1

The graded Čech complex, for m ∈ ℤ2, is given by the following diagram (c.f. Example 6.2):

0 Č0(ℙ2,Oℙ2 (aD0))m Č1(ℙ2,Oℙ2 (aD0))m Č2(ℙ2,Oℙ2 (aD0))m 0

0
⨁2

i=0 Γ(Ui,Oℙ2 (aD0))m
⨁

0≤i<j≤2 Γ(Ui,j ,Oℙ2 (aD0))m Γ(U0,1,2,Oℙ2 (aD0))m 0
[

1 −1 0
1 0 −1
0 1 −1

] [ 1 −1 1 ]

Suppose for the sake of argument that m ∈ C−++. Then, specialising the diagram above, we have

0 K�m ⊕ 0⊕ 0 K�m ⊕K�m ⊕ 0 K�m 0

[

1 −1 0
1 0 −1
0 1 −1

]

d1

[ 1 −1 1 ]

d2

We have d1(x, 0, 0) = (x, x, 0) and so im d1 = {(x, y, 0) ∶ x = y}, ker d1 = 0. Note d2(x, y, 0) = (x − y),so ker d2 = {(x, y, 0) ∶ x = y} and im d2 = K�m; this exhibits the exactness of the sequence in this case,
and by almost the exact same computation the sequence is exact for every other m lying in some cell listed
in the first column of Table 1.

In particular, since taking cohomology is compatible with the grading, we haveHp(ℙ2,Oℙ2 (aD0))m = 0if m ∉ int C−−− = int conv{(0, 0), (a, 0), (0, a)}. Conversely, if m ∈ int C−−− thenH2(ℙ2,Oℙ2 (aD0))m ≠
0 (clearly the sequence is exact everywhere that p ≠ 2 by rank considerations).

That is (setting Δ2 ≔ conv{0, e1, e2}, so C−−− = aΔ2),

dimHp(ℙ2,Oℙ2 (aD0)) =

⎧

⎪

⎨

⎪

⎩

0 p ≠ 2
|

|

|

int aΔ2 ∩ ℤ2||
|

p = 2.

The case a > 0. When a > 0, much the same argument as the previous case will work. We
now obtain the chamber complex of Fig. 10b; and using the combinatorial methods above, we see that
Hp(ℙ2,Oℙ2 (aD0))m = 0 if m ∉ C+++ = conv{(0, 0), (a, 0), (0, a)}. Conversely, if m ∈ C+++ then
Hp(ℙ2,Oℙ2 (aD0))m ≠ 0 iff p = 0. In particular,

dimHp(ℙ2,Oℙ2 (aD0)) =

⎧

⎪

⎨

⎪

⎩

0 p ≠ 0
|

|

|

aΔ2 ∩ ℤ2||
|

p = 0.

The main theorem. We have a simple combinatorial identity for counting the lattice points inside
the n-simplex:
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7.14 Lemma. Let Δn = conv{0, e1, ..., en}. Then, for a ∈ ℤ:

1. |
|

aΔn ∩ ℤn|
|

=
(

|a|+n
n

)

; and

2. |
|

int aΔn ∩ ℤn|
|

=
(

|a|−1
n

)

. ▮

Using this, and the results above, we obtain the following theorem.
7.15 Theorem. Let D0 be the divisor of ℙ2 associated to pos{−e1 − e2}, and let a ∈ ℤ. Then, if a < 0 we
have

dimHp(ℙ2,Oℙ2 (aD0)) =

⎧

⎪

⎨

⎪

⎩

0 p ≠ 2
|

|

|

int aΔ2 ∩ ℤ2||
|

=
(−a−1

2

)

p = 2;

and if a > 0 then we have

dimHp(ℙ2,Oℙ2 (aD0)) =

⎧

⎪

⎨

⎪

⎩

0 p ≠ 0
|

|

|

aΔ2 ∩ ℤ2||
|

=
(a+2
2

)

p = 0.
▮

We shall prove a more general version of this statement as Theorem 8.4.

7.3 The classification theorems
7.16 Definition. Let P ⊆ Mℝ be a polyhedron. We say that the cone C of Theorem 2.13 is the recession
cone of P . The polyhedron P is a lattice polyhedron overM if F0(P ) ⊆ M and C is a strongly convex
lattice cone overM .

Note that if P is a lattice polyhedron overM , we may refine Corollary 3.26 by replacing pos(P − x)
by pos(P ∩M − x) as each vertex x ∈ F0(P ) is the intersection of defining hyperspaces and the pos is
computed by intersecting some subset of translates of these hyperplanes by a lattice point.
7.17 Lemma. If P is a full-dimensional lattice polyhedron overM with recession cone C , and F is a face
of P , thenNP (F ) ⊆ Nℝ is a lattice cone overN . Let Σ(P ) ≔ {NP (F ) ∶ F ⪯ P }; then Σ(P ) is a fan (the
normal fan of P ) with|

|

Σ(P )|
|

= C∨. In particular, if P is a polytope, Σ(P ) is complete.

Proof. By Corollary 3.26 and Lemma 3.28,NP (F ) is a lattice cone overN . It is explicit in the construction
that if � ∈ Σ(P ) and if � ⪯ � then � ∈ Σ(P ). Finally, letNP (F ), NP (G) ∈ Σ(P ). Consider the intersection
I ≔ NP (F )∩NP (G); for each y ∈ I there exists a pair of hyperplanesH , L with F = P ∩H , G = P ∩L,
and:

1. y ∈ H⟂ ∩ L⟂;
2. y + ℎ ∈ H−, y + l ∈ L− for each ℎ ∈ H , l ∈ L.

SupposeH = L. Then clearly I = NP (H ∩ P ), which is a face of both NP (F ) and NP (G). IfH ≠ L,
we have two cases: if H and L are not parallel, H⟂ ∩ L⟂ = 0 and so y = 0; i.e. I is the zero face. On
the other hand, ifH and L are parallel but not equal then let x be a vector perpendicular toH such that
L = H + x; note that P ⊆ H− ∩ L−. If y ≠ 0, then ℝ≥0y is unbounded and perpendicular to bothH and
L (i.e. it lies in the direction of x) so cannot lie entirely inH− ∩ L−; but y ∈ I ⊆ H− ∩ L−, which is a
contradiction and so y = 0; thus I = 0. In each of the three cases, I is a face of a cone in Σ(P ) and lies in
Σ(P ).
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For each v ∈ F0(P ), let �v be the maximal cone ofNP (v). To prove that||Σ(P )|| = C∨, it will suffice to
see that ∪v∈F0(P )�v = C∨. By Corollary 3.26, we have �v = pos(P −v)∨. If c ∈ C , then (v+c)−v ∈ C−vso C ⊆ pos(P − v) and thus �v = pos(P − v)∨ ⊆ C∨. Conversely, suppose n ∈ �v and pick v ∈ F0(P )minimising ⟨⋅|n⟩ ∶ F0(P ) → ℝ (this exists since F0(P ) is finite). We claim that n ∈ �v. Indeed, by the
remark following Definition 7.16 it suffices to show that ⟨m − v|n⟩ ≥ 0 for all m ∈ P ∩M . Note that if
m ∈ P ∩M wemay write it (since P is convex and generated by its vertices) in the formm = ∑

w∈V �ww+cfor �w ∈ ℝ≥0,∑w∈W �1 = 1, and c ∈ C . Then:
⟨m|n⟩ = ⟨

∑

w∈V
�ww + c|n⟩ =

∑

w∈V
�w ⟨w|n⟩ + ⟨c|n⟩ ≥

∑

w∈V
�w ⟨v|n⟩ = ⟨v|n⟩

and by subtraction we have ⟨m − v|n⟩ ≥ 0.
The final claim follows since, if P is a polytope (hence bounded), C = 0. ▮

We wish to show that the variety XΣ(P ) is quasi-projective, and that every quasi-projective variety
arises in this way. More precisely, we will prove one direction of the following:
7.18 Theorem (Classification of quasi-projective toric varieties, I). Let P be a full-dimensional lattice
polyhedron overM . Then XΣ(P ) is quasi-projective. Conversely, if XΣ is quasi-projective where |Σ| is
full-dimensional and convex then Σ = Σ(P ) for some full-dimensional lattice polyhedron P overM .

The implication ‘P full dimensional lattice polyhedron ⟹ XΣ(P ) is quasiprojective’ is proved below
as Lemma 7.23. The converse is more involved, and may be found as [CLS11, Proposition 7.2.9].

We shall develop the relevant theory first, following [CLS11, Sections 6.1, 7.1].
7.19 Definition. Let P be a full-dimensional lattice polyhedron overM , written as P = ∩ki=1(⟨⋅|fi⟩ ≥ �i)for f1, ..., fk ∈ Nℝ and �1, ..., �k ∈ ℝ. Then P is very ample if for every v ∈ F0(P ), the semigroup
ℤ≥0(P ∩M − v) is saturated.

The following result in convex geometry is non-trivial but essentially elementary (we neglect the proof
as it requires Carathéodory’s theorem, which we do not need at any other point: the idea is to do the proof
for simplices with empty lattice interior first, and then to use an argument based on Carathéodory’s theorem
to decompose kP for some kinto such polytopes).
7.20 Theorem ([BGT97, Theorem 1.3.1],[CLS11, Proposition 7.1.9]). Suppose dimM ≥ 2, and let P be
a full-dimensional lattice polyhedron overM . Then kP is very ample for all k ≥ n − 1. ▮

Wemay now define a ‘natural’ divisor onXΣ(P ). Note that by Corollary 3.26 the rays ofΣ(P ) correspondto the facets of P . Thus, comparing Lemma 7.1, torus-invariant prime divisors of XΣ(P ) are given by
DF ≔ orbNP (F ).
7.21 Definition. Let P be a full-dimensional lattice polyhedron overM , written in intersection form as
P = ∩F∈Fn−1(P )(⟨⋅|fF ⟩ ≥ �F ) where �F ∈ ℝ for all F . Define DP , the divisor of P , by

DP ≔
∑

�∈Fn−1(P )
�FDF

We now prove some properties of the divisor of a polyhedron; part 2 of the following proposition shows
that DP is locally determined by the vertices of P , and part 3 and the proof of part 4 of the following
proposition indicate how the properties of DP relate to possible projective embeddings of XΣ(P ).
7.22 Proposition. Let P be a full-dimensional lattice polyhedron overM . Set X ≔ XΣ(P ). Then:

1. PDP = P .
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2. DP is Cartier; more precisely, if � ∈ Fn(Σ(P )) then DP ↾U� = div�
m� for some m� ∈ F0(P ).

3. OX(DP ) is basepoint free.

4. DP is very ample iff P is very ample.

5. DP is ample.

Proof.

1. This follows immediately from the definitions, Definition 7.3 and Definition 7.21.
2. We show that DP is principal on each open subset U� (� ∈ Σ maximal). Fix such a �. There exists
m� ∈M such that ⟨m� , u�⟩ = −a� for all � ∈ �(1) (where u� is the minimal generator of �): since
� is maximal, it corresponds to a vertex v ∈ F0(P ) and a ray � lies in �(1) iff v is a face of the facet
F of P corresponding to �; i.e. ⟨v|u�⟩ = −a�; and v ∈ M since P is a lattice polytope. We may
now apply Proposition 7.2 to see that DP = div�m� on U� .

3. Let � ∈ Σ(n). In particular, Theorem 7.4 applies and thus we may view �m� as identified with an ele-
ment of Γ(X,OX(PD)). But on U� , �m� is non-zero (in fact, U� = D(m�)) (again by Proposition 7.2)and so we may choose s = �m� in Definition 7.8.

4. Observe that by part 3 applied to Lemma 7.9 we have a well-defined map �D ∶ X → ℙkK induced
by an affine morphism �̃Dx ↦ (�m0 (x), ..., �mk (x)) where m0, ..., mk ∈ P ∩M and (�m0 , ..., �mk )
is a K-basis for Γ(X,OX(DP )); and DP is very ample iff this map is a closed embedding. Moreover,
note that �D(X) is a projective toric variety: the image of the map �̃D is an affine toric variety
(i.e. a closed subset of Ak+1K ) with torus T̃ = ((�m0 (t), ..., �mk (t)) ∶ t ∈ TN ), and the quotient is
again a toric variety as the image of an affine toric variety under ℙ is a projective toric variety
(c.f. Example 5.5). In particular, �D(X) is closed in ℙk, and thus it suffices to show that �D is an
isomorphism onto its image (the half of ‘closed embedding’ that is not always true) iff P is very
ample.
Let  ⊆ {0, ..., k} be the set of indices such that F0(P ) = {mv ∶ v ∈ }, and let U�v = D(mv) be thetoric open subvariety of X given by the cone of mv. Note that �D(U�v ) ⊆ Uv ≔ {[x0 ∶ ... ∶ xk] ∈
ℙk ∶ xv ≠ 0}. Now note that {U�v}v∈ is an affine open cover of X and {Uv}v∈ is an affine open
cover of ℙk, so it will suffice to show that the affine restrictions �vD ≔ �D↾U�v ∶ U�v → �D ∩ Uv
are all isomorphisms.
We may now apply our theory of affine toric varieties. Fix some v ∈  . Then �vD is an isomorphism
iff the dual semigroup map �⟂v ∩ M → ℤ≥0(P ∩ M − mv) is an isomorphism; but recall that
�⟂v = NP (v)⟂ = pos(P ∩M − mv) (by Corollary 3.26), and so taking an intersection with M
equality between �⟂v ∩M and ℤ≥0(P ∩M − mv) holds if and only if ℤ≥0(P ∩M − v) is saturated.

5. By the previous part, it suffices to show that kP is very ample for some k ≥ 0 (indeed, then
DkP = kDP is very ample, so DP is ample); by Theorem 7.20, this is true if dimM ≥ 2, and if
dimM = 1 then dimP is a closed segment or a ray and so P is obviously very ample. ▮

The proof of the direction of Theorem 7.18 which we do prove uses very similar ideas to those developed
in the proof of Proposition 7.22""
7.23 Lemma. If P is a full-dimensional lattice polyhedron, then XΣ(P ) is quasiprojective.

Proof. Suppose that P is very ample, and let �DP ∶ XΣ(P ) → ℙk be the induced morphism of DP . As inthe proof of part 3 of Proposition 7.22, we have:
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Figure 11: Sections of C(P ) for P the Minkowski sum of a square and a cone.

• A subset  ⊆ {0, ..., k};
• An affine open cover {Uv}v∈ ; and
• An affine open cover {U�v}v∈

such that
�DP ↾U�v ∶ U�v → Ui ∩ �DP (XΣP )

is an isomorphism onto its image. Further, we showed that �DP (XΣP ) is projective. Hence we may write
�DP as

�DP ∶ XΣ(P ) =
⋃

U�v
∼
←←←←←←←→

⋃

Ui ∩ �DP (XΣP ) ⊆ ℙk

which exhibits an isomorphism ofXΣ(P ) with an open subset of a projective variety: XΣ(P ) is quasiprojective.
▮

Given a full-dimensional lattice polyhedron P , we wish to describe a semigroup SP such that XΣ(P ) ≃
ProjK[SP ]. Recall that we will need a grading on K[SP ] for this to make sense.
7.24 Definition. Let P be a full-dimensional lattice polyhedron overM . Let C(P ) be the convex set

C(P ) ≔
⎧

⎪

⎨

⎪

⎩

(m, �) ∈Mℝ ×ℝ≥0 ∶ m ∈

{

�P � > 0
C � = 0

⎫

⎪

⎬

⎪

⎭

(see Fig. 11) where C is the recession cone of P ; note that if P = Q+C then �P = �Q+C for � > 0 and so
as �→ 0 we have continuity in the definition. With this defined, we set SP ≔ C(P ) ∩ (M ×ℤ), and define
the graded semigroup algebra K[SP ] to be the semigroup algebra K[SP ] with grading deg�mtk ≔ k (t
the algebra generator corresponding to the ℤ-component).

7.25 Theorem (Classification of quasi-projective toric varieties, II). Let P be a full-dimensional lattice
polyhedron overM . There is a natural isomorphism XΣ(P ) ≃ ProjK[SP ].

Proof. Set A ≔ K[SP ]. The strategy is to show that ProjA has affine open cover
{

SpecA�vt ∶ v ∈ F0(P )
}

,
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and that this corresponds to the usual affine open cover of XΣ(P ) with the same gluing data.
It is a standard result (e.g. [Har77, Proposition II.2.5]) that ProjA is covered by

 =
{

SpecAf ∶ f ∈ A+
}

;

it is easy to show that (since ProjA is a variety) if A+ = rad a for an ideal a ⊆ A then we may throw away
all elements of A+ which do not lie in a. In particular, if a = (�vt ∶ v ∈ F0(P )) then it suffices to show
that A+ = rad a to see that ProjA has the claimed open cover. To do this, it suffices ([Har77, Exercise
I.2.2]) to show that rad a ≠ A (which is obvious: 1 ∉ rad a) and a ⊇ Ad for some d > 0 (again obvious:
a ⊇ A1).Now note that A�vt = K[�∨v ∩M] where �v is the cone of Σ(P ) corresponding to v: this follows from
the fact that the degree 1 component of A is P combined with the usual theory of normal toric varieties.
Further, it is easy to see that for higher-dimensional faces of P we obtain open sets of ProjA corresponding
in the usual way to the intersections of cones of Σ(P ), such that the gluing data between the K[�∨v ∩M] in
XΣ(P ) corresponds exactly to the gluing of the elements of  . ▮

7.26 Corollary. If P is a polytope, XΣ(P ) is projective over K .

Proof. Recall that ProjK[SP ] is projective over K[SP ]0 (c.f. [Har77, Example II.4.8.1]); in addition,
K[SP ]0 = {�mtk ∈ K[SP ] ∶ k = 0} = K[C]; but since P is a polytope, C is trivial; i.e. ProjK[SP ] isprojective over K . ▮

8 Classical applications of the theory
In this section we present two well-known applications of the cohomology theory of toric varieties: the
proof of Pick’s formula (Corollary 8.14), and Stanley’s proof of the necessity portion of McMullen’s
g-theorem (Theorem 8.23).

All varieties in this section are taken to be over ℂ.

8.1 The Ehrhart polynomial of a polytope
We shall now show that the cohomology of toric varieties may be applied to geometry. Essentially the
kinds of cohomology theorems that will be useful here are vanishing theorems like Theorem 7.12 and
Theorem 7.13 above.

Recall that a sheaf ℱ on X is quasicoherent if X has an affine open cover {U� = SpecR�} such
that for each �, Γ(U� ,ℱ ) ≃ M̃� for some R� moduleM� (recall that the squiggled module is a sheaf of
OX-modules which restricts at principal open subsets to localisations of the module being hit). If eachM�may be chosen to be finitely generated then ℱ is coherent.
8.1 Definition. If ℱ is a coherent sheaf on a complete variety X, define the Euler characteristic �(ℱ )
by

�(ℱ ) =
∑

i≥0
(−1)i dimH i(X,ℱ ).

By results of Grothendieck and Serre [Har77, thm. III.2.7 and thm. III.5.2] this is well-defined (i.e. a
finite integer).
8.2 Example (Euler characteristic is analogue of simplicial definition). Let Δ be a simplicial complex.
We shall write fd(Δ) for||Fd(Δ)||. The standard definition of Euler characteristic of a complex is

�(Δ) =
∑

i≥0
(−1)ifi(Δ).

70



While this does look similar to the definition for coherent sheaves, it is not true that dim H̃i(Δ, k) = fi(Δ):e.g. for the tetrahedron each H̃i is trivial but it has faces! But note that by the rank-nullity theorem
dim H̃i(Δ, k) = fi(Δ) − rank )i − rank )i+1 and so (since rank )0 = 0, and rank )k = 0 for all k > dimΔ)we have

∑

i≥0
(−1)i dim H̃i(Δ, k) = (−1)i

∑

i≥0
fi(Δ) − rank )i − rank )i+1

= (f0 − 0 − rank )1) − (f1 − rank )1 − rank )2) +⋯

⋯ +
(

(−1)dimΔfdimΔ − rank )dimΔ − 0
)

+ (0 − 0 − 0) +⋯

=
∑

i≥0
(−1)ifi(Δ).

8.3 Theorem (Snapper). The Euler characteristic is intimately related to line bundles on the variety. Let
X be a complete variety over ℂ, let ℱ be coherent. Recall that for integers n we define the nth twist of ℱ
by a Cartier divisor D by

ℱ (nD) ≔ ℱ ⊗OX
OX(nD).

Then there is some polynomial Pℎ(z) ∈ ℚ[z] such that for all n ∈ ℤ,

Pℎ(n) = �(ℱ (nD)) = �(ℱ ⊗OX
OX(nD)) = �(ℱ ⊗OX

OX(D)⊗n);

this is called the Hilbert polynomial of ℱ with respect to D.

References to proof. This theoremwas proved for projective varieties as [Sna59, Theorem 9.1], and Snapper
conjectured that it should extend to arbitrary varieties; for a general proof for schemes of finite type over a
field, see [Kle66, Section 1]. Compare [Har77, Exercise III.5.2] which is a special case (where the divisor is
the divisor associated with OX(1), in which case the Hilbert polynomial obtained is the classical one). ▮

In the special case of toric varieties, computing the Hilbert polynomial turns into an exercise in
the combinatorics of the lattice. This is because computing with divisors can be done by using the
vanishing theorems, Theorem 7.12 and Theorem 7.13, to convert dimension computations into lattice point
enumerations of polytopes.

We first give a useful generalisation of Theorem 7.15.
8.4 Theorem. LetD0 be the divisor of ℙn associated to pos{−e1 −⋯− en}, and let a ∈ ℤ. Then, if a < 0
we have

dimHp(ℙn,Oℙn (aD0)) =

{

0 p ≠ n
|

|

int aΔn ∩ ℤn|
|

=
(−a−1

n

)

p = n;

and if a > 0 then we have

dimHp(ℙn,Oℙn (aD0)) =

{

0 p ≠ 0
|

|

aΔn ∩ ℤn|
|

=
(a+n
n

)

p = 0.

Proof. Suppose a < 0. Note that |a|D0 is basepoint free with P|a|D0 = aΔn (by Proposition 7.22) and
so Oℙn (aD0) is generated by its global sections (by Lemma 7.11); hence we may apply Theorem 7.13 to
obtain (since n = dim aΔn)

dimHp(ℙn,Oℙn (−|a|D0)) =

{

0 p ≠ n
dim

⨁

m∈relint(aΔn)∩ℤn K�
−m = |

|

aΔn ∩ ℤn|
|

p = n
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which is one of the desired results.
If a > 0, by similar arguments to the previous case we may apply Theorem 7.12 to conclude

dimHp(ℙn,Oℙn (aD0)) =

{

0 p ≠ 0
dim

⨁

m∈aΔn∩ℤn K�
m = |

|

aΔn ∩ ℤn|
|

p = 0,

the second desired result. ▮

8.5 Example. We shall now compute �(OP n (aD0)). For a > 0, we have by Theorem 8.4 that

�(Oℙn (aD0)) = dimH0(ℙn,Oℙn (aD0)) = ||aΔn ∩ ℤn|
|

=
(

a + n
n

)

;

and for a < 0 we have

�(Oℙn (aD0)) = (−1)n dimHn(ℙn,Oℙn (aD0)) = (−1)n||int aΔn ∩ ℤn|
|

= (−1)n
(

−a − 1
n

)

.

Finally note that if p(x) = (x+n)(x+n−1)⋯(x+1)n!
n! then p(a) agrees with these two values for all a ∈ ℤ:

for a > 0 we have p(a) = |
|

aΔn ∩ ℤn|
|

and p(−a) = (−1)n|
|

int aΔn ∩ ℤn|
|

.
With this as motivation, we make the following definition.

8.6 Definition. Let P ⊆ ℝr be an full-dimensional lattice polytope. The function taking m ∈ ℤ≥0 to thenumber ℰP (m) = |mP ∩ ℤr| of lattice points of mP is the Ehrhart polynomial of P .
8.7 Example. Consider the cube C = [0, 1]3 ⊆ ℤn. If m ∈ ℤ≥0 then the number of lattice points in mC is
(m + 1)3; that is, ℰC (m) = m3 + 3m2 + 3m + 1.
8.8 Theorem (Ehrhart reciprocity). The function ℰP (m) ∶ ℤ≥0 → ℤ agrees with a polynomial function of
degree r, and so can be extended to a polynomial function on ℝ (which we will denote by ℰP without any
loss of clarity). Further, we have the following Ehrhart reciprocity:

• For all m ∈ ℤ≥0, ℰP (m) = |mP ∩ ℤr|.

• For all m ∈ ℤ≥0, ℰP (−m) = (−1)r||int mP ∩ ℤr|
|

.

Historical remark. Ehrhart polynomials were introduced by Ehrhart in the 1960s; see [Ehr67] as well as
the papers cited at [MS05, p. 246]. The reciprocity result was independently given by Macdonald, see
[Mac71].
Proof. The proof is exactly the argument of Theorem 8.4 and Example 8.5. We will first show that
ℰP (m) = �(OXP (mDP )) for all m ≥ 0 (and thus ℰP (m) is polynomial by Theorem 8.3). Indeed, for m ≥ 0,
mDP is basepoint free by Proposition 7.22 and so by Theorem 7.12,

�(OX(DP )) = H0(XΣ(P ),OXΣ(P ) (DP )) = ||mDP ∩ ℤr|
|

= ℰP (m).

By the theorem, we define ℰP (−m) for m ≥ 0 to be the value of the polynomial that the positive arguments
satisfy; thus we may apply Theorem 7.13 to �(OX(DP )) to see that ℰP (−m) = (−1)r||int mP ∩ ℤr|

|

. ▮

Remark. 1. In fact, one may show that if P is very ample then the Ehrhart polynomial of P is the usual
Hilbert polynomial) of XΣ(P ) under the projective embedding induced as in Lemma 7.9. The proof
uses the famous ‘Serre vanishing’ result, and is given as [CLS11, Proposition 9.4.3].
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2. An alternative proof of Ehrhart reciprocity proceeds via Brion’s formula:
∑

p∈mP∩ℤr
tp =

∑

v∈F0(P )

(

tmv
Kv(t)
Dv(t)

)

where we use multinomial notation for t; here, Kv and Dv are polynomials depending on the Hilbert
basis of ℤ≥0(P − v). This approach is detailed in [MS05, Section 12.3].

We will use the Ehrhart polynomial of a polytope P to compute some geometric information. We shall
need the notion of a lattice volume.
8.9 Definition. LetM be a lattice with basis (e1, ..., en); then the covolume ofM is d(M) ≔ det(e1, ..., en).The normalised volume measure on Mℝ is the usual Lebesgue measure divided by d(M). We write
VolE for the measure of E ⊆ Mℝ.
8.10 Lemma. If X ⊆ ℝd is full-dimensional, then

Vol(X) = lim
n→∞

1
nd

|

|

|

nX ∩ ℤd||
|

.

Proof. We have, approximating X by boxes of size n−1 (hence volume n−d); these boxes span the lattice
n−1ℤ)d , so

Vol(X) = ∫
X

1 = lim
n→∞

n−d ⋅||
|

X ∩ n−1ℤ)d||
|

= lim
n→∞

n−d ⋅||
|

nX ∩ ℤd||
|

. ▮

The following general remark will also be useful. The proof is easy.
8.11 Lemma. Let p ∈ ℚ[z] be a polynomial so that L ≔ limz→∞ z−np(z) exists and is nonzero for some
n ∈ ℤ. Then )p = n and L = [zn]p. ▮

8.12 Theorem. Let P ⊆ ℝn be a full-dimensional lattice polygon, and for notational convenience let
f ∈ K[X] be the Ehrhart polynomial of P . Then:

1. )f = n;

2. [Xn]f = Vol(P );

3. [Xn−1]f = 1
2
∑

F∈Fn−1(P ) Vol(F ) (where Vol(F ) is normalised with respect to (aff F ) ∩M);

4. [X0]f = 1.

Proof. Parts 1 and 2 follow easily from Lemma 8.10 and Lemma 8.11. Part 4 is trivial: f (0) = |
|

0P ∩ ℤr|
|

=
|

|

{0}|
|

= 1. Finally we show part 3, which is more difficult. Note that|P ∩ ℤn| −|
|

int P ∩ ℤn|
|

is the number
of lattice points on )P . By the other parts of this theorem, we may write

f (x) = Vol(P )xn + �n−1xn−1 +⋯ + �1x + 1

where each �i is rational. By Theorem 8.8, we have
|

|

xP ∩ ℤn|
|

−|
|

int xP ∩ ℤn|
|

= f (x) − (−1)nf (−x)

= Vol(P )xn + �n−1xn−1 +⋯ + �1x + 1

− Vol(P )xn + �n−1xn−1 −⋯ − (−1)n�n−ixn−i −⋯ − (−1)n

= 2�n−1xn−1 + 2�n−3xn−1 +⋯ + 2�n−⌊n∕2⌋xn−⌊n∕2⌋.
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On the other hand, we may compute the number of boundary points by direct enumeration:

|

|

xP ∩ ℤn|
|

−|
|

int xP ∩ ℤn|
|

=
d−1
∑

j=0

∑

F∈Fj (P )

|

|

int xF ∩ ℤn|
|

=
d−1
∑

j=0

∑

F∈Fj (P )
(−1)jℰF (−x).

Hence we obtain the equality

�n−1x
n−1 + �n−3xn−3 +⋯ + �n−⌊n∕2⌋xn−⌊n∕2⌋ =

1
2

d−1
∑

j=0
(−1)j

∑

F∈Fj (P )
ℰF (−x); (12)

observe that (using part 1)

[xd−1]
⎛

⎜

⎜

⎝

1
2

d−1
∑

j=0
(−1)j

∑

F∈Fj (P )
ℰF (−x)

⎞

⎟

⎟

⎠

= 1
2
(−1)d−1

∑

F∈Fd−1(P )
(−1)d−1[xd−1]ℰP (x) =

1
2

∑

F∈Fd−1(P )
Vol(F )

and comparing coefficients in Eq. (12) the claim is proved. ▮

8.13 Example. Take P = [0, 1]2; then ℰP (m) = (m + 1)2 = m2 + 2m + 1 and it is easy to see that the
coefficients are as claimed.
Remark. For some results on the other coefficients of ℰP , which are in general less well-understood, seethe elementary reference [BR15, Chapter 5] or the papers [Bec+04] and [RS17] and the references therein.
8.14 Corollary (Pick’s formula). Let P ⊆ ℝ2 be a lattice polygon. Then Vol(P ) = |

|

|

int P ∩ ℤ2||
|

+
1
2
|

|

|

)P ∩ ℤ2||
|

− 1.

Historical remark. This theorem was first proved in [Pic99]; an induction based on a triangulation of P
suffices to prove the theorem (the argument is an easy exercise, see [BR15, Theorem 2.8] for example).
Proof. In Theorem 8.12, take n = 2; then ℰP (1) = Vol(P ) + 1

2
|

|

|

)P ∩ ℤ2||
|

+ 1 and so Vol(P ) = ||
|

P ∩ ℤ2||
|

−
1
2
|

|

|

)P ∩ ℤ2||
|

− 1; using Ehrhart reciprocity this is equal to the claimed formula. ▮

Remark. There is a generalisation of the Ehrhart polynomials which simultaneously generalises the Dehn-
Sommerville relations (i.e. the symmetry relations in the face complex of a polytope which are in turn a
generalisation of Euler’s identity f0−f1+f2 = 2). The idea is that instead of counting the lattice points of apolytope we count the lattice points of i-dimensional faces and relate them to sheaves of p-forms, obtaining
the so-called p-Ehrhart polynomials. The theory relies on cohomology (in particular Serre duality, which
is not surprising as Serre duality gives us a symmetry result reminiscent of the Dehn-Sommerville relations).

A second direction for generalisation is to extend the class of convex objects we enumerate within: we
may extend Ehrhart reciprocity to rational polytopes (i.e. polytopes with vertices inMℚ), though the Ehrhartfunction ceases to be polynomial (in general it will be only piecewise polynomial); see for example [CLS11,
Section 9.4 (exercises)], or [MS05, Chapter 12], or [BR15, Chapter 4].[Ehrhart reciprocity!rational]

8.2 McMullen’s g-theorem
In this section we present the proof of the necessity of McMullen’s conditions for the f -vector of a simplicial
polytope: that is, the half of McMullen’s theorem which uses the theory of toric varieties for the proof. We
note that, in addition to the references included below, [Sta96, Section II.2] may be of interest.
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We say that a polytope P of dimension d is simplicial if each facet of P is a simplex. The f -vector of
P is the vector (f0(P ), ..., fd−1(P )). It is usual also to define the ℎ-vector, by setting

ℎi(P ) ≔
i

∑

j=0

(

d − j
d − i

)

(−1)i−jfi−1(P ); (13)

here (as is the convention) we set f−1(P ) = 1 as there is a single face of dimension −1, namely ∅. The
most elementary relationship between the fi is then the following relation most conveniently stated in
terms of the ℎ-vector:
8.15 Theorem (Dehn-Sommerville relations). IfP is a simplicial d-polytope, we have for each i (0 ≤ i ≤ d)
the relation

ℎi = ℎd−i.

Historical remark. According to [Grü03, Section 9.8], the relations for d ∈ {4, 5} were found by Dehn
in 1905, and the general case was proved in 1927 by Sommerville. The Dehn-Sommerville relations are
essentially a duality result and are a version of Poincaré duality for simplicial complexes.
Proof. The proof is standard, see for example [Ewa96, pp. 82–83] or [Zie95, p. 252]. ▮

We naturally ask ourselves, what other relations hold between the face numbers? Further, we ask for
the ‘maximal’ such relation: that is,

which possible vectors f ∈ ℕd have the property f = f (P ) for some simplial polytope P?

This is answered by McMullen’s famous g-theorem for simplicial polytopes (conjectured in [McM71]),
which was proved in the 1980s: sufficiency was proved by Billera and Lee in [BL80], and we shall prove
the necessity result (following Stanley) as Theorem 8.23 below.
8.16 Theorem. A vector ℎ = (ℎ0, ..., ℎd) ∈ ℕd+1 is the ℎ-vector of some simplicial d-polytope if and only
if:

1. ℎ0 = 1;

2. ℎi = ℎd−i for all i (that is, ℎ satisfies the Dehn-Sommerville relations); and

3. (ℎ0, ℎ1 − ℎ0, ℎ2 − ℎ1, ..., ℎ⌊d∕2⌋ − ℎ⌊d∕2⌋−1) is an M-vector, in the sense of Definition 8.17 below.

8.17 Definition. A vector (k0, ..., kd) ∈ ℤd+1 is anM-vector8 if there exists a graded algebra R = R0 ⊕
⋯⊕Rd , generated as an algebra over K = R0 by R1, such that the Hilbert functionH(R, n) ≔ dimK Rnis given byH(R, n) = kn.
Remark. 1. The terminology ‘g-theorem’ comes from the original paper of McMullen, who wrote gifor ℎi+1 − ℎi.

2. Classically, following [Kru63], one would define M-vectors in terms of so-called r-canonical forms,
which have a more obvious combinatorial meaning and are more easily computable. It is difficult,
however, to prove that the two definitions are equivalent: the original proof of equivalence may be
found in [Mac27]; according to that author, “the proof of [equivalence]... is too long and complicated
to provide any but the most tedious reading” (see also the discussion surrounding Theorem II.2.2 of
[Sta96]). In addition, the definition of the r-canonical form is incredibly technical and so we do not
include the details of that approach. We are therefore essentially giving the version of the theorem
discussed in [Oda91].

8Following [Sta80] the M is for F. S. Macaulay.
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We shall need some properties of the singular cohomology of XΣ to write the proof of necessity.
8.18 Definition. Let X be a topological space, and let R be a ring. If S ⊆ {1, ..., n}, we may identify S
with ΔS ≔ conv{s ∈ S ∶ es}, a copy of the ‘usual’|S|-simplex embedded in ℝn. We may therefore set
up a chain complex C∙(X,R) as follows: we define Cp(X,R) to be the free R-module defined on the set of
continuous maps Δp → X, with boundary maps )p ∶ Cp(X,R)→ Cp−1(X,R) defined in the same way as
Example 6.2 under the identification. More precisely, given some S ⊆ {1, ..., n} we define a basis element
of C

|S|(X,R) to be a composition S → ΔS → X (the second map continuous and the first the standard
identification), and we define boundary maps to be precisely the boundary maps )p of Example 6.2.

For each each Cp(X,R) we define Cp(X,R) ≔ C∗P (X,R) = HomR(CP (X,R), R), and define dp ∶
Cp(X,R) → Cp+1(X,R). The singular cochain complex of X is then (C ∙(X,R), d∙(X,R)), and the
associated cohomologyHp(X,R) = ker di∕ im di−1 is the singular cohomology of X. As is usual, we
set ℎp(X,R) ≔ dimRHp(X,R).
8.19 Theorem. If XΣ (defined over ℂ) is complete and an orbifold, then:

ℎp(XΣ,ℚ) =

{

∑n
i=k(−1)

i−k( i
k

)

Σ(n − i) p = 2k,
0 p = 2k + 1.

Proof. The proof uses spectral sequences and so we omit it. A modern exposition may be found as [CLS11,
Theorem 12.3.11]; alternative and historical perspectives may be found in [Dan78, Section 10] and as
[Oda91, Theorem 4.1]. ▮

The graded singular cohomology module C ∙(X,R) may be turned into a ring by the following standard
construction (see [Hat01, Section 3.2]).
8.20 Definition. We define the cohomology ring of X to be the ring supported on

C ∙(X,R) =
∞
⨁

p=0
Hp(X,R)

with addition induced by the addition in each free moduleHp(X,R), and multiplication the cup product
defined by

Ck(X,R) × C l(X,R) ∋ (f, g)→ f ⌣ g ∈ Ck+l(X,R)

where f ⌣ g ∈ C∗k+l(X,R) is the coelement
HomSet(Δk+l, X) = Ck+l(X,R) ∋ � ↦ f (�↾{0,...,k})g(�↾{k,...,k+l}) ∈ R.

We will need to see that a particular cohomology ring is commutative; the standard result on commuta-
tivity of the cup product is the following.
8.21 Lemma ([Hat01, Theorem 3.11]). The identity f ⌣ g = (−1)klg ⌣ f holds for f ∈ Hk(X,R) and
g ∈ H l(X,R). ▮

Finally, we will need a version of the famous hard Lefschetz theorem.
8.22 Theorem (Théorème de Lefschetz vache [Ste76, Theorem 1.13]). If L ∈ H2(X,ℚ) is the class of an
ample divisor on a normal orbifold projective toric variety X of dimension n, then for all q ∈ ℕ the map
!↦ Lq ⌣ ! induces an isomorphism betweenHn−q(X,ℂ) andHn+q(X,ℂ). ▮

With these preliminaries out of the way, we prove the necessity of the conditions of Theorem 8.16.
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8.23 Theorem (Necessity of McMullen’s conditions [Sta80]). The conditions of Theorem 8.16 are neces-
sary for a vector ℎ = (ℎ0, ..., ℎd) ∈ ℕd+1 to be the ℎ-vector of some d-polytope.

Proof. A simple computation shows that ℎ0(P ) = 1 and by Theorem 8.15 the Dehn-Sommerville relations
hold. Hence it suffices to check only the third condition.

Let P ⊆ Nℝ be a d-polytope. By small pertubations of the vertices, which do not change the
combinatorial structure of P , we may assume that F0(P ) ⊆ Nℚ; by refining the latticeN , we may in fact
assume that F0(P ) ⊆ N . In addition we may assume that 0 ∈ int P .

Let Σ ≔ Σ(P ). By Lemma 7.17 and Theorem 5.10, XΣ(P ) (defined over ℂ) is complete and orbifold.
Since the odd singular cohomologies of XΣ(P ) vanish by Theorem 8.19, an application of Lemma 8.21
shows that the cohomology ring C ∙(XΣ(P ),ℚ) is commutative. We may then regrade it to form a ring
A∙ ≔

⨁∞
k=0

⨁∞
p=0H

2p(X,R), and write ap ≔ ℎ2p(X,R) for each p. Observe, comparing Theorem 8.19
and Eq. (13), that ap = ℎp for each p.By Corollary 7.26, XΣ(P ) is projective; and since Σ(P ) is simplicial, XΣ(P ) is orbifold. Thus by
Theorem 8.22 and Proposition 7.22 we may conclude that there exists some L ∈ A1 such that for 0 ≤
i ≤ ⌊d∕2⌋, the map gi ∶ Ai → Ad−i given by ! ↦ Ld−2i ⌣ ! is a bijection. Define for every j
(0 ≤ j ≤ ⌊d∕2⌋) a map fj ∶ Aj → Aj+1 given by ! ↦ L ⌣ !; then gi = fd−i−1◦⋯◦fi+1◦fi, and since
gi is bijective each fi in this composition is injective. Let a ⊆ A∙ be the ideal generated by L and A

⌊d∕2⌋+1.We claim that
H(A∙∕a, n) =

{

ℎn − ℎn−1 1 ≤ n ≤ ⌊d∕r⌋
0 n > ⌊d∕2⌋,

and this claim will prove the theorem.
Indeed, note that H(A∙∕a, n) = dimK An∕a ∩ An; for n ≤ ⌊d∕2⌋, a ∩ An = LAn−1 since each fiis injective, and for n > ⌊d∕2⌋, a ∩ An = An since An = Ln−⌊d∕2⌋−1A⌊d∕2⌋+1 = A⌊d∕2⌋+1 ⊆ a. Thus

for n > A⌊d∕2⌋+1, dimK An∕a ∩ An = 0; and for n ≤ dimK An∕a ∩ An, dimK An∕a ∩ An = dimAn −
dimAn−1 = ℎn − ℎn−1. ▮

Remark. In the papers [Sta80; McM71], a generalisation of Theorem 8.16 where the d-polytope of P
is replaced with an arbitrary triangulation of the (d − 1)-sphere is given as an open problem. The fully
general version of this conjecture was proved only recently [Adi19]; the main ingredients for the proof are
similar to those of Stanley’s proof above, including a more general version of the hard Lefschetz theorem
for toric varieties and a more general version of the Dehn-Sommerville relations (via Poincaré duality). A
new ingredient needed is the introduction of the so-called Hall-Laman relations. Some idea of the general
direction of the proof and the related concepts and conjectures is given in a blog post by Gil Kalai, [Kal18].
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Index of symbols
⟨⋅|⋅⟩— inner product between torus lattices, 8
A[S−1]— localisation of A at by adjoining

inverses of S, 6
Ap — localisation of A at p, 6
Af — localisation of A away from f , 6
D(f )— principal open subvariety

corresponding to f , 6
DF — torus-invariant prime divisor of a facet of

a polyhedron F ⪯ P , 67
DP — divisor of the polyhedron P , 67
D� — divisor associated to a ray �, 60
F∙(X)— face complex of X, 16
F�(m)— face of � determined by m ∈ �∨, 22
Fd(X)— set of d-dimensional faces of X, 16
H+,H− — hyperspaces bounded by a

hyperplaneH , 14
H� —Hilbert basis of �∨ ∩M , 25
MR′ — base extension of an R-moduleM to

R′, 9
N∨ — dual lattice toN , 7
NX(F )— set of inner normals to F ⪯ X, 16
PD — polyhedron of a divisor D, 60
S� — semigroup associated to a cone, �∨ ∩M ,

25
U� — affine toric variety associated to �, 29
V ∨ — dual space of V , 6
X(G)— character group of G, 7
X⟂ — orthogonal complement of a set X, 6
XΣ — normal toric variety associated to Σ, 44
Y (G)— 1-parameter subgroups of G, 7
[x, y]— line segment joining x and y, 11

Γ� — value group of �, 50
VolE — normalised volume measure of E, 73
aff S — affine hull of S, 11
�� —monomial with exponent vector � ∈ ℤn, 9
convS — convex hull of S, 11
R⤴S — skyscraper extension of  from R to S,

39
x — semigroup morphism corresponding to

closed point x, 27
A(Y )— affine coordinate ring of Y , 6
D(R)— principal open subset of SpecK[S]

corresponding to S ⊆ R, 28
E(H)— points of SpecK[S] corresponding to

H ⊆ Hom(S,K), 27
H(X)— homomorphisms of Hom(S,K)

corresponding to points of SpecK[S],
27

K(Y )— function field of Y , 6
⟨⋅|⋅⟩— duality pairing between dual modules, 6
x, y— line through x and y, 11
�D — projective morphism defined by a divisor,

62
posS — positive hull of S, 11
relint S — relative interior of S, 12
�∨ — dual cone to �, 20
√

n— radical of lattice point n, 19
� ⪯ � — face relation, 16
p� — unique fixed point of U� for � strongly

convex and full dimensional, 37
p� — distinguished point of �, 39
⋆F (�)(�)— star of a cone � at �, 41
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Index of terms
1-psg, 7
affine combination, 11
affine dependent, 11
affine frame, 11
affine independent, 11
affine set, 11
affine variety, 4
algebraic torus, 7
ample, 62
base extension lemma, 9
basepoint free

line bundle, 61
subspace, 61

binomial ideal, 25
blowup

of affine variety, 48
boundary, 16, 53
boundary operator, 53
Brion’s formula, 73
Cartier divisor, 59
Čech cohomology group, 58
character, 7
coherent, 70
cohomology, 55
cohomology ring, 76
complete, 47
complex, 53
cone, 11
convex combination, 11
convex polytope, 11
convex set, 11
covolume of a lattice, 73
cup product, 76
cusped cubic, 8, 27, 32
cycle, 53
dimension, 12, 53
discrete valuation ring, 50
divisor, 59
divisor associated to a ray, 60
divisor of a polyhedron, 67
dual cone, 20
dual lattice, 7
duality pairings, 8

edge, 16
effective, 59
Ehrhart polynomial, 72
Ehrhart reciprocity, 72
enough injectives, 56
Euler characteristic, 70
evaluation set, 27
exponent vector, 9
f -vector, 75
face, 16

determined by dual
vector, 22

face complex, 16
face lattice, 16
facet, 16, 53
fan, 42
Farkas’ theorem, 25
finitely generated

semigroup, 17
fixed point theorem, 37
Gordan’s lemma, 17
graded semigroup algebra, 69
group variety, 7
ℎ-vector, 75
Hahn-Banach theorem, 15
halfspace, 14
hard Lefschetz theorem, 76
Hilbert basis, 18
Hilbert polynomial, 71
homology module, 53
homomorphism set, 27
hull, 11
hyperplane, 14
injective, 56
injective resolution, 56
inner normal, 16
integral closure, 4
integral over R, 36
integrally closed ring, 4
irreducible elements of a

semigroup, 19
lattice, 7
lattice cone, 17

lattice length, 19
lattice polyhedron, 66
line bundle, 61

generated by its global
sections, 61

local ring, 49, 50, 59
locally free, 61
long exact sequence in

cohomology, 57
M-vector, 75
McMullen g-theorem, 75
minimal

generating set for a
cone, 17

generating set for a
semigroup, 17

Minkowski-Weil theorem, 14
morphism, 43
natural torus theorem, 33
non-singular, see smooth

cone
normal, 4
normal fan of a polyhedron,

66
normalised volume measure,

73
one-parameter subgroup, 7
orbifold, 39, 47
outer normal, 16
p-adic valuation, 50
p-Ehrhart polynomials, 74
Pick’s formula, 74
Poincaré duality, 75
pole of order n, 59
polyhedral cone, 11
polyhedron, 14
polyhedron of a divisor, 60
polytope, see convex

polytope
positive combination, 11
positive set, 11
prime divisor, 51, 59
primitive, 19
principal divisor, 59
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projective space, 44
quasicoherent, 70
r-canonical forms, 75
radical, 19, 33
rationally smooth, 47
recession cone, 66
reduced chain complex, 53
regular cone, see smooth

cone
residue field, 50
right derived functor, 57
root, 16
saturated, 33
section, 61
semigroup, 17
semigroup algebra, 25
separated by hyperplane, 14

strictly, 14
sheaf cohomology group, 57
simplex, 53
simplicial

cone, 17

fan, 47
polytope, 75

simplicial complex, 53
singular cochain complex, 76
singular cohomology, 76
skyscraper extension, 39
smooth

cone, 17
fan, 47

star of � at �, 41
strongly convex, 17
strongly convex lattice fan,

42
structure theorems

global correspondence
affine case, 34
general case, 43

local properties
general case, 47

orbit correspondence
general case, 45

sub-semigroups, 10
Sumihiro’s theorem, 43
support, 43

supporting halfspace, 15
supporting hyperplane, 15
term of degree i, 53
toric cylinder, 44
toric morphism, 26
toric variety, 26
torus, 4
torus classification theorem,

7
trivial valuation, 50
twist, 71
valuation, 49
value group, 50
vanishes to order n, 59
variety, 4
vector bundle, 61
vertex, 16
vertex set, 53
very ample, 62

polytope, 67
Weil divisor, 59
Weil divisor group, 59

84


	List of Figures
	Introduction
	Outline and novel elements
	Required background
	References
	Terminology
	Acknowledgements

	I Basic theory
	Algebraic tori and lattices
	Convexity in  Rn 
	Types of convex set
	Analytic-algebraic results
	Faces and vertices

	Cones and lattice semigroups
	Semigroups related to cones
	Cones and the duality pairing

	Affine toric varieties
	Fundamentals of affine toric varieties
	A toric Nullstellensatz
	Dimension, fixed points, and smoothness
	Affine torus orbits

	The global theory of toric varieties
	General structure theorems
	Discrete valuation rings


	II Cohomology theory and applications
	Cohomology of sheaves and divisors
	Review of homological algebra
	Sheaf cohomology
	Divisors in general

	Quasi-projective toric varieties
	Divisors on toric varieties
	A cohomology computation
	The classification theorems

	Classical applications of the theory
	The Ehrhart polynomial of a polytope
	McMullen's g-theorem


	References
	Index of symbols
	Index of terms

