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Abstract

Adapting the ideas of L. Keen and C. Series used in their study
of the Riley slice of Schottky groups generated by two parabolics, we
explicitly identify ‘half-space’ neighbourhoods of pleating rays which
lie completely in the Riley slice. This gives a provable method to
determine if a point is in the Riley slice or not. We also discuss the
family of Farey polynomials which determine the rational pleating rays
and their root set which determines the Riley slice; this leads to a
dynamical systems interpretation of the slice.

Adapting these methods to the case of Schottky groups generated
by two elliptic elements in subsequent work facilitates the programme
to identify all the finitely many arithmetic generalised triangle groups
and their kin.

1 Introduction

The usual route to the Riley slice is through the theory of Kleinian groups,
or more precisely Schottky-type groups, generated by two parabolic ele-
ments in PSL(2,C). This problem has a long history begining with Sanov
[53] in 1947, Brenner [10] and Chang, Jennings, and Ree [11], and Lyndon
and Ullman [31]; a detailed literature survey and history of the Riley slice
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together with some explanation of the background material may be found
in our proceedings article [16]. The geometric group theory which is relied
upon relies upon various versions of what are now known as combination
theorems and these are explained in some detail in Maskit’s book [40]; this
book also includes the basic theory of Kleinian groups, which we briefly
discuss now in order to fix notation.

Recall that a Kleinian group may be equivalently defined as (a) a discrete
subgroup of PSL(2,C), or (b) a discrete subgroup of Isom+(H3). The rela-
tionship between these two definitions comes from the fact that isometries of
hyperbolic 3-space are uniquely characterised by their actions on the sphere
at infinity: namely, there is a natural isomorphism of topological groups be-
tween Isom+(H3) and the group of conformal automorphisms of S2. After
identifying S2 with the Riemann sphere Ĉ, we may characterise the con-
formal automorphisms as none other than the Möbius transformations, the
maps of the form z 7→ az+b

cz+d (a, b, c, d ∈ C with ad− bc 6= 0). Performing one

final identification, of Ĉ with PC1, we see that the Möbius transformations
are in natural correspondence with SL(2,C) via the identification(

z 7→ az + b

cz + d

)
↔
(
a b
c d

)
.

Observe finally that SL(2,C)/{±I} = PSL(2,C), but in the world of Möbius
transformations, as long as the transformation is not of order 2, we can
always multiply both the numerator and denominator through by

√
−1 if

necessary to normalise the determinant of any matrix representative to 1
without changing the geometry of the map—in other words, we can always
lift non-involutive elements from PSL(2,C) to SL(2,C) without issue as long
as we are careful to always pick representatives of determinant 1. In fact we
can always lift an entire discrete group, as long as it has no two-torsion [14].

The Riley sliceR is the moduli space parameterising the Kleinian groups,
generated by two parabolic elements, whose domains of discontinuity have
quotient surface a four-times punctured sphere S2

4 . More precisely, define a
family (Γµ)µ∈C\{0} of subgroups of PSL(2,C) by

Γµ :=

〈
X =

(
1 1
0 1

)
, Yµ =

(
1 0
µ 1

)〉
;

The assumption µ 6= 0 implies that Γµ is not abelian and has free subgroups

of all ranks. The group Γµ acts on the Riemann sphere Ĉ and, and there is
a maximal open set Ω(Γµ) ⊂ C (possibly empty) on which this group acts

discontinuously (the ordinary set); the complement of this set in Ĉ is the
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limit set Λ(Γµ) and is the closure of the set of fixed points of elements of
Γµ (so, since ∞ is fixed by f , ∞ ∈ Λ(Γµ)).1 The quotient Ω(Γµ)/Γµ is a
Riemann surface. When Γµ is free and discrete, the Riemann surfaces so
obtained are supported on one of three homeomorphism classes of topological
space: the empty set; a disjoint union of two three-times punctured spheres;
and a four-times punctured sphere [41]. It happens that the first two types
of space may be viewed as geometric deformations of four-times punctured
spheres, and so it is natural to consider the set of all µ such that Γµ is free
and discrete and such that this quotient is a four-times punctured sphere;
the boundary of this set is then the set of µ such that the quotient is one of
the other two types of surface.

Thus, the Riley slice is defined by

R = {µ ∈ C : Ω(Γµ)/Γµ is topologically a four-times punctured sphere}.

Denote the Möbius transformations of Ĉ representing X and Y by f and
g respectively, so

f(z) = z + 1 and g(z) =
z

µz + 1

for z ∈ C. We will abuse notation and write Γµ for 〈f, g〉 as well as for the
matrix group.

Notation. Often we will be working with a fixed Γµ; in this situation we will
often write Γ and Y for Γµ and Yµ without comment.

One can also view the Riley slice as the quotient of the Teichmüller
space T0,4 of genus 0 surfaces with 4 punctures by a group generated by a
Dehn twist τ about a simple closed curve which separates one pair of punc-
tures from another in S2

4 . This is a special case of a more general theorem:
the Riley slice can be equivalently defined as the space of quasiconformal
conjugates of any group which it parameterises [32], and given any finitely
generated non-elementary Kleinian group G the quasiconformal deforma-
tion space is the quotient of the Teichmüller space of S = Ω(G)/G by the
subgroup of the mapping class group of S generated by Dehn twists about
the simple closed curves which bound compression discs in the underlying
3-manifold; this result is attributed by Bers [7, §2.4] to Bers and Greenberg
[8] and Marden [35], and modern expositions can be found in the textbook

1One may also define the ordinary set in the following way, if Γµ is discrete and non-
elementary (true for every group in R): it is the largest domain in C on which the
transformations of Γµ are equicontinuous. In this way the ordinary set is analogous to the
Fatou set of a dynamical system, as in Section 3.2 below.
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of Matsuzaki and Taniguchu [42] and in Chapter 5 of the textbook by Mar-
den [36]. In the Riley slice case, T0,4 = H2 and the relevant subgroup of the
mapping class group is generated by a single parabolic isometry τ , so the
quotient H2/〈τ〉 is a disc with a puncture and admits an intrinsic hyperbolic
metric induced by the Teichmüller metric.

The theory of Keen and Series [26] endows the Riley slice with a foliation
structure. This structure consists of a set of curves parameterised by Q
which radiate out from the boundary of the slice and which are dense in the
slice (the so-called rational pleating rays) together with a natural completion
(in the sense that we may add curves parameterised by R \Q in order to fill
out the entire slice). In Figure 1 we illustrate the Riley slice together with
a selection of rational pleating rays.

The exterior of the Riley slice (the bounded region of Figure 1) is also of
interest: it includes all the groups Γµ which are discrete but not free, among
them are, for instance, all hyperbolic two bridge knot groups. These lie along
or at the endpoint of a rational pleating ray. Recently [2, 3] gave a complete
description of all these discrete groups outside the Riley slice as Heckoid
groups and their near relatives. For each such group there are at most two
Nielsen classes of parabolic generating pairs. The boundary of the Riley
slice is a Jordan curve [49], and it is believed to have outward directed cusps
(this was established for the related Earle and Maskit slices by Miyachi [44]).
The non-discrete groups are generically free, but in every neighbourhood of a
non-discrete group Gµ there is a supergroup of Gµ containing any given two
parabolic groups—discrete or otherwise—and a group with any prescribed
number of distinct Nielsen classes [38].

Our motivation for the study of the Riley slice here is the continuation
of a longstanding programme to identify all the finitely many generalised
arithmetic triangle groups in PSL(2,C) [12, 21, 22, 33, 39]. For this pro-
gramme, one needs quite refined computational descriptions of other one
complex dimensional moduli spaces such as the moduli space of S2

p,q, the 2-
sphere with four cone points (two of order p and two of order q). Arithmetic
criteria developed and described in [23] identify those algebraic integers in
C which give rise to discrete subgroups of arithmetic lattices. Obtaining de-
gree bounds, and numerically identifying these points, is a challenging task,
see [19, 33, 39]. Once an algebraic integer is identified there are further
problems. A priori, the relevant group is discrete, but we need to know if it
is in fact free on the generators (that is, we need to characterise the analogue
of the Riley slice) and if it is not, identify the abstract group and hyperbolic
3-manifold quotient. We illustrate some relevant data in Figure 2.

In order to be able to resolve these issues we need to be able to provably
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Figure 1: The Riley slice is the unbounded region, foliated by ‘rational
pleating rays’ (the coloured curves). The symmetries of this space include
complex conjugation and µ ↔ −µ interchanging g with g−1. Picture cour-
tesy of Y. Yamashita.
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Figure 2: R3,3. The analogue of the Riley slice is the exterior of the grey
region and foliated by rational pleating rays. The 15, 909 algebraic integers
satisfying the arithmetic criteria described found by Flammang and Rhin
[19] above are blue (if, by visual inspection, are outside the grey region)
and red (if, by visual inspection, are inside the grey region). These red
points yield either lattices or rigid groups with circle packing limit sets in
PSL(2,C) that are generated by two elliptic elements of order three. Picture
in collaboration with Y. Yamashita.
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decide if a point in C actually lies in the Riley slice or its analogue. Solving
this problem also has computational applications, including identifying all
the finitely many generalised arithmetic triangle groups in PSL(2,C) [12,
21, 22, 33].

Main results. Our first main result, Theorem 3.5 (p.16), sets up a dy-
namical system whose stable region contains R; this gives a system of poly-
nomials which we call Qp/q whose filled Julia sets lie in the exterior of the
Riley slice. As an incidental consequence of the theory used to derive this
result, we characterise the Farey word traces of the discrete groups which
lie on pleating ray extensions (Theorem 3.4).

With the technology of Keen and Series, we may identify whether a point
lies on a rational pleating ray, but the union of these rays has measure 0
so it is not so useful to check whether a point lies in the Riley slice. In
this paper, we show that a well defined open neighbourhood of each rational
pleating ray lies in the Riley slice so that we can ‘capture’ points. This is
the content of our second main theorem, Theorem 4.1 (p.23), which extends
the theory of Keen and Series to give such neighbourhoods.

Structure of the paper. In section 2 we introduce the Farey words,
which represent simple closed curves on the four-times punctured sphere
which are not boundary-parallel; the basis of the theory is the relationship
between the combinatorics and algebra of these words and the deformations
of the curves that they represent. In Section 3 we define the Farey poly-
nomials Pp/q(µ) and give our first main result, Theorem 3.5, together with
some conjectures on the structure of the Farey polynomials and the dynam-
ical system that they generate. In Section 4 we motivate our second main
result, Theorem 4.1, and place it in context with prior work by Lyndon and
Ullman. We conclude the paper in Section 5 with the proof of Theorem 4.1
together with some related estimates.

Our related work. In an upcoming paper [18] we extend the theory of
neighbourhoods of cusp points to the elliptic setting (an example of an
elliptic Riley slice is given in Figure 3); this is more than just a slight
modification of the argument for the parabolic case and it relies on more
accurate estimates like those hinted at in Figure 11 on page 24 below.

We have also recently posted a preprint [17] which gives various combi-
natorial identities involving the Farey words and their trace polynomials, in-
cluding a much more efficient method for determining the Farey polynomials
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Figure 3: Points approximating the slice of Schottky space corresponding to
a sphere with paired cone points, of respective cone angles 2π/6 and 2π/8.

computationally via a recurrence formula, along with some applications to
the geometry of the Riley slice boundary. Closed forms for certain sequences
of Farey polynomials can also be computed, allowing the approximation of
the Riley slice near the cusp point at +4 by a sequence of well-behaved
neighbourhoods of the form described in Section 4 of the current paper. In
Figure 4 we include a picture produced from the first 100 polynomials of
this approximating sequence; it took just under two minutes to compute the
roots symbolically in Mathematica from scratch.

2 Farey words and their traces

A Farey word is a word in x and y representing a simple closed curve on the
four-times punctured sphere which is not homotopic to a cusp (Figure 5).
The definition of these words in terms of rational slopes p/q is explained
in [26, §2.3] with some corrections in [28]. The exact details are not useful
to us here; however, it will be useful to know the broad structure of the
Farey words. The main structural result is the following, which is essentially
immediate from the combinatorial definition given in [26] and is well-known
to experts in any case, see for example [29, Lemma 3.1].

Lemma 2.1. Let p/q be a rational slope and Wp/q a Farey word. Then Wp/q

has word length 2q. Further:

1. If q is even, then there are u, v ∈ 〈x, y〉 such that (up to cyclic permu-
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Figure 4: Inverse images of −2 under a sequence of Farey polynomials ap-
proximating the +4-cusp.

Figure 5: Simple closed curves on a 4-times punctured sphere, from left:
1
1 , 1

2 , 2
3 . One puncture is at ∞, disks bound neighbourhoods of the other

punctures.
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Table 1: Farey words and their corresponding cusp points.

p q Farey word Wp/q Qp/q(µ) = Pp/q(µ)− 2 Approx. cusp point

1 2 xyx−1y−1 µ2 2i

4 7 xyx−1y−1xyx−1yxy−1x−1yxy−1 µ
(
−1 + 2µ− µ2 + µ3

)2
0.427505 + 1.57557i

3 5 xyx−1y−1xy−1x−1yxy−1 −µ(1− µ+ µ2)2 0.773301 + 1.46771i
5 8 xyx−1y−1xy−1x−1yx−1y−1xyx−1yxy−1 µ4(2− 2µ+ µ2)2 1.05642 + 1.30324i

2 3 xyx−1yxy−1 z(z − 1)2 1.5 + (
√

7/2)i
5 7 xyx−1yxy−1xy−1x−1yx−1y−1xy−1 −µ(1 + 2µ− 3µ2 + µ3)2 1.85181 + 0.911292i
3 4 xyx−1yx−1y−1xy−1 µ2(µ− 2)2 2.27202 + 0.786151i
4 5 xyx−1yx−1yxy−1xy−1 µ(1− 3µ+ µ2)2 2.75577 + 0.474477i
1 1 xy−1 −µ 4

tation, which changes neither the trace nor the represented geodesic)

Wp/q = xux−1u−1 = vyv−1y−1.

2. If q is odd, then there are u, v ∈ 〈x, y〉 such that (again up to cyclic
permutation)

Wp/q = xuy(−1)pu−1 = vx(−1)p+1
v−1y−1

In particular if q is even, then Wp/q is a commutator in two different ways.
The word length of Wp/q is 2q.

We can view Wp/q as a word Wp/q(µ) in Γµ by performing the substitu-
tion x 7→ X, y 7→ Yµ:

Wp/q(µ) =

(
ap/q(µ) bp/q(µ)

cp/q(µ) dp/q(µ)

)
ap/qdp/q − bp/qcp/q = 1. (1)

The entries of Wp/q(µ) are polynomials of degree q in the symbol µ. In
particular, the trace trWp/q(µ) is a polynomial of degree q in µ; we call this
polynomial the Farey polynomial of slope p/q and denote it by Pp/q(µ). The
polynomial Qp/q := Pp/q − 2 also turns out to be very useful in the sequel.
In Table 1, we list examples of Farey words with small-denominator slopes,
together with their corresponding polynomials.

Notation. Just as we write f and g for the Möbius transformations associated
to X and Y , we write hp/q(µ) for the Möbius transformation associated to
Wp/q(µ).

Our computational exploration of the matrices suggested the following
result.
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Theorem 2.2. With the notation of (1),

Qp/q(µ) = trWp/q(µ)− 2 = ap/q(µ) + dp/q(µ)− 2 = cp/q(µ).

Proof. Using Lemma 2.1 we will show this reduces to the well known Fricke
identity in PSL(2,C) (see Formula (3.15) of [34]),

tr[A,B] = tr2A+ tr2B + tr2AB − trA trB trAB − 2.

We put A = X−1 and B = Wp/q; in the following we suppress µ since
it is fixed. Note that, by Lemma 2.1 and the conjugacy invariance of trace,
trX−1Wp/q is either tr(X) or tr(Y ) depending on whether q is even or odd.
In our situation both of these traces are 2. Thus, supposing q is odd (the
result if q is even follows with a similar calculation),

c2
p/q = tr[X,Wp/q]− 2 = tr[X−1,Wp/q]− 2

= tr2(X−1) + tr2(Wp/q) + tr2(Y )− tr(X−1) tr(Wp/q) tr(Y )− 4

= 4 + (ap/q + dp/q)
2 − 4 tr(ap/q + dp/q)

= (ap/q + dp/q − 2)2

Thus cp/q = ±(ap/q+dp/q−2). When µ = 1, the positive square root occurs.
Since the identity is continuous in µ, it follows that the positive square root
is the correct choice for all µ.

Remark. We use the Fricke identity above as this identity is quite central
to our explorations of Farey polynomials. However, as pointed out by the
referee there is an easier proof, a quick sketch of which goes as follows. The
(2, 1) component of Wp/q is invariant under conjugations which preserve X.
By Lemma 2.1 Wp/q is the product of the non-commuting parabolic elements
X and X−1Wp/q. Moreover (X,X−1Wp/q) is conjugate to (X,Y ′µ) for some
µ′ ∈ C \ 0. By the above c = µ′ and thus c = tr(Wp/q)− 2 = Qp/q.

The importance of Farey words in this setting is that in order for an
isomorphic family of discrete groups to approach the boundary of a moduli
space, a simple closed curve has to shrink to a cusp. That is, a word in the
reference group has to become parabolic. The limit of a sequence of finitely
generated Kleinian groups (where the number of generators is fixed) with
generators converging is again a Kleinian group by Jørgensen’s algebraic
convergence theorem [51]. Thus we have the following result:

Lemma 2.3. All the points in the Riley slice boundary represent discrete
groups.

11



The groups on the boundary of the Riley slice for which Ω(Γµ)/Γµ is
a disjoint union of triply punctured spheres (the surface that is naturally
obtained by shrinking a simple closed curve on S2

4) are called cusp groups.
A point in ∂R which is not a cusp group has empty ordinary set (since the
quotient cannot support moduli) and is degenerate [6].

Parabolic Möbius transformations are easily identified by the trace con-
dition,

β(f) = tr2(f)− 4 = 0 if and only if f is parabolic.

Here, and in what follows, we have abused notation and written tr(f) for
the trace of the matrix representative of f in SL(2,C). Keen and Series [26]
study the boundary of the Riley slice by considering what happens for a
fixed slope p/q as tr(fp/q)→ −2, tr(fp/q) ∈ R. In fact Keen and Series show
that the Farey polynomial Pp/q has a branch so that the pleating ray

Pp/q = P−1
p/q

(
(−∞,−2]

)
lies entirely in the closure of the Riley slice and meets the boundary at a
point µ corresponding to a cusp group where Pp/q(µ) = −2. These cusp
groups have a limit set consisting of a circle packing; two examples are
depicted in Figure 6 and the approximate positions of low-order cusp points
are given in Table 1. A result of McMullen [43] shows these limits to be
dense in the boundary of the Riley slice.

3 The dynamics of the Farey polynomials

In this section, we prove various algebraic and dynamical results of the Farey
polynomials.

3.1 Discrete groups which lie on pleating ray extensions

We begin with three elementary lemmata.

Lemma 3.1. Let 〈A,B〉 be a subgroup of PSL(2,C) with tr2A = 4, tr2B =
4, tr(AB)− 2 = ν 6= 0, and such that neither A nor B is the identity. Then
〈A,B〉 is conjugate in PSL(2,C) to the group Γν .

Proof. Let f and g be the Möbius transformations of Ĉ representing A and
B. Then f and g are parabolic with fixed points zf and zg. Since µ 6= 0,
the mappings f and g do not commute and zf 6= zg. Choose a Möbius
transformation h so that h(zf ) = ∞, h(zg) = 0, and hfh−1(0) = 1. Then

12



Figure 6: Circle packing limit sets of a cusp group. Top slope 1/2, bottom
slope 2/3.
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hfh−1(z) = z + 1 and hgh−1(z) = z/(αz + 1) for some α ∈ C. We compute
that

2 + α = trhfh−1hgh−1 = tr fg = tr(AB) = 2 + ν

and the result follows.

Lemma 3.2. Let Γµ be discrete and µ 6= 0. Then for all rational slopes
p/q,

|Qp/q(µ)| ≥ 1

unless Pp/q(µ) = 2. This estimate is sharp.

Remark. In fact, the union of all of the inverse images of the unit disc under
the polynomials Qp/q fills the Riley slice complement [32, Lemma 3].

Proof of Lemma 3.2. Write Wp/q =

(
a b
c d

)
. Suppose first that c 6= 0.

Then the Shimitzu–Leutbecher inequality [30] applied to the discrete group
〈f, hp/q〉 gives

1 ≤ tr[f, hp/q]− 2 = |c|2 = |a+ d− 2|2

which is the desired result by Theorem 2.2. If c = 0, then hp/q is parabolic
and also fixes ∞.

The figure-eight knot-complement group is Γµ0 with µ0 = 1
2(1 + i

√
3).

With p/q = 1/1 this shows the inequality to be sharp, while the relator in
this group is the 3/5-Farey word, so h3/5 = Id, and

P3/5(µ)− 2 = −µ(1− µ+ µ2)2

here P3/5(µ0) = 2.

Every two-bridge link is obtained by taking the denominator closure of
some rational tangle [50, Chapter 10]. In this way we obtain a classifica-
tion of two-bridge links by rational numbers; this invariant was defined by
Schubert [54] in the language of knots and Conway [13] in the language of
tangles, and is called the Schubert normal form (q, p) or rational form q/p
of the knot (in either case, q and p are integers with gcd(q, p) = 1). The
rational form of the figure eight knot complement is 5/3. More generally,
the relator in the two bridge knot or link complement with rational form
q/p is the p/q-Farey word.

Next we recall the following elementary result [26, Lemma 3.2].

Lemma 3.3. Let Γµ be discrete. If trhp/q is real, then 〈f, hp/q〉 is Fuchsian.
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Proof. The group 〈f, f−1hp/q〉 is generated by two parabolics whose product
is hyperbolic.

As a consequence of these results, we can characterise the traces of the
Farey words for discrete groups on the pleating ray extensions.

Theorem 3.4. Let Γµ be discrete and µ 6= 0. Let p/q be a rational slope
and Pp/q(µ) ∈ R. Then either

1. Pp/q(µ) ≥ 6 or Pp/q(µ) = 2 + 4 cos2
(
π
r

)
, where r ≥ 3, or

2. Pp/q(µ) ≤ −2 or Pp/q(µ) = 2− 4 cos2
(
π
r

)
= −2 cos

(
2π
r

)
, where r ≥ 3.

In particular, on the extension of the pleating ray Pp/q, that is P−1
p/q((−∞, 0]),

the only allowable values for a discrete group are

Pp/q(µ) = −2 cos(
2π

r
), r ≥ 3

Each of these values occurs.

Proof. The Möbius transformation f−1hp/q is parabolic. There is an invo-
lution Φ conjugating f−1 to f−1hp/q. The group 〈f, hp/q〉 is at most index
two in 〈Φ, f〉 and hence the latter is discrete. If Pp/q(µ) − 2 is real, then
〈f, hp/q〉 is Fuchsian by Lemma 3.3. We have (in the notation of [20])

γ(f,Φ) = tr[f,Φ]− 2 = tr(fΦf−1Φ−1)− 2 = tr(fΦf−1Φ−1)− 2

= tr(ff−1hp/q)− 2 = trhp/q − 2 = Pp/q(µ)− 2.

and also
β(f) = tr2(f)− 4 = 0, β(Φ) = −4.

Then with the assumption that γ(f,Φ) 6= 0 the discussion following (4.9) of
[20, Theorem 4.5] tells us that 〈f,Φ〉 is discrete only if either

• γ(f,Φ) ≥ 4, or γ(f,Φ) = 4 cos2 π
r , r ≥ 3, or

• γ(f,Φ) ≤ −4, or γ(f,Φ) = −4 cos2 π
r , r ≥ 3.

The converse follows from the classification of discrete groups in the
Riley slice complement given by the papers [3, §2] and [2].

Remark. The special case of Theorem 3.4 for Fuchsian groups (that is,
groups lying on the 0/1 and 1/1 pleating rays) was first proved by Knapp
[27].
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3.2 Dynamical properties

We first give a short overview of the dynamical systems terminology which
we shall use (following for example [45]). A dynamical system is a set S (the
stable region) together with a set Φ of functions φ : S → S closed under
iteration; in our case we will actually have an entire semigroup Q of such
functions. If S is a metric space, the Fatou set of a dynamical system is the
maximal open set of S on which the functions of Φ are equicontinuous; the
Julia set is the complement of the Fatou set.2 The Julia set is often ‘thin’
and so we want to ‘thicken’ it by ‘filling in the interior’. This motivates
the definition of the filled Julia set which has the Julia set as boundary:
namely, if S happens to be a field k, with complete metric coming from
some absolute value |·|v, we define the filled Julia set of Φ to be

K(Φ) := {x ∈ k : sup
φ∈Φ
|φ(x)| <∞}.

(Of course in this paper we are working only over C, so all of this makes
sense.) The complement of K(Φ) is the attracting basin of ∞. Finally,
suppose φ is a rational function over C and let x be a fixed point of α. Then
we variously say that x is

• superattracting if φ′(x) = 0,

• attracting if |φ′(x)| < 1,

• neutral if |φ′(x)| = 1, and

• repelling if |φ′(x)| > 1.

With all this in mind, our first main theorem of the paper is the following
result.

Theorem 3.5. For each rational slope p/q we have Qp/q(R) ⊂ R.

Remark. This theorem appears implicitly in Lemma 2 of [32], and we give
a proof along very similar lines but in more modern language.

Proof of Theorem 3.5. Let Γµ = 〈f, g〉 and let hp/q be the transformation
corresponding to the Farey word Wp/q(µ). Consider the group

Γ̃ = 〈f, hp/q〉 = 〈f, f−1hp/q〉
2The Fatou set is analogous to the ordinary set of a Kleinian group, while the Julia set

is analogous to the limit set.
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This group is generated by two parabolics by Lemma 2.1. Thus Γ̃ is a
conjugate of Γν where

ν = tr(ff−1hp/q)− 2 = Pp/q(µ)− 2

by Lemma 3.1. As a conjugate of a subgroup of 〈f, g〉 the group Γν is
discrete. It is also free with nonempty ordinary set, moreover Λ(Γ̃) is a
subset of Λ(Γµ) and the Möbius image of Λ(Γν). Since Γν is discrete and
free, ν ∈ R. By the limit set remarks, ν does not lie on the boundary of R;
so ν ∈ R.

Corollary 3.6. For each rational slope p/q we have that the algebraic set

Z(Qp/q) = {z ∈ C : Qp/q(z) = 0}

is contained within the exterior of the closure of the Riley slice, i.e. within
C \ R.

Of course more is true here.

Corollary 3.7. Let z0 6∈ R. For each rational slope p/q we have

{z ∈ C : Qp/q(z) = z0} ⊂ C \ R.

The semigroup generated by the polynomials

Q = 〈Qp/q : p/q is a rational slope〉

with the operation of functional composition now sets up a dynamical sys-
tem on Ĉ for which R lies in the stable region. No filled Julia set for any
polynomial Qp/q can meet R; for three examples, see Figure 7. Equiva-
lently, R lies in the superattracting basin of ∞ for every polynomial. Every
polynomial Qp/q has zero as a fixed point, Qp/q(0) = 0.

Our computational evidence suggests the following conjecture:

Conjecture 3.8. If p/q is a rational slope, then Qp/q factors as

• Qp/q(z) = ±zu(z)2, u(0) = 1, when q is odd.

• Qp/q(z) = z2[(n+1)/2]v(z)2, where q = 2nr, r odd.

Remark. An anonymous referee kindly provided us with a proof of a version
of this conjecture using the machinery of Markoff triples, which we include
below as Proposition 3.13.
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Figure 7: Filled Julia sets for Q1/2 (left), Q1/3 (middle), and Q1/4 (right).

We wish to explore this a little further. The following lemma is a simple
consequence of the form of a Farey word.

Lemma 3.9. As µ→ 0 we have

• Wp/q(µ)→ X if q is odd.

• Wp/q(µ)→ Id if q is even.

From this lemma, we easily classify the fixed point type of 0.

Theorem 3.10. If q is even, then 0 is a superattracting fixed point for Qp/q.
If q is odd, then 0 is not superattracting.

Proof. By Theorem 2.2 we have a+d−2 = c = Qp/q. Substituting ad−bc = 1
we obtain c(a − b) = (a − 1)2. If q is even, then a(µ) → 1 as µ → 0 so the
right hand side of this equality is a polynomial with a double root at 0. On
the left, a(µ)− b(µ)→ 1 as µ→ 0; in particular, (a− b)(0) 6= 0. Thus both
roots at 0 must come from factors of c(µ), i.e. µ2 | c(µ) and so c′(0) = 0.

For q odd, we have again c(a − b) = (a − 1)2; again the right side has
a double root at 0, but on the left we have a factor (a − b) which becomes
0 at 0; since c also has a root at 0, it follows that both (a − b) and c have
single roots at 0.

Remark. Of course it would follow easily from Conjecture 3.8 that 0 is a
neutral fixed point.

In [38] it is shown that the semigroup generated by all word polynomials
has the complement of the Riley slice as its Julia set. As such, the roots of
the word polynomials are dense in C\R as backward orbits are dense in the
Julia set. In the context of Farey words this suggests that the roots of all
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Figure 8: For all rational slopes with q ≤ 377, Left: Root set of the polyno-
mials Qp/q. This set lies in C\R. Right: Root set of the equation Qp/q = −4.
This latter set lies in C \ R and contains all the cusp groups. Notice the
appearance of clustering around the pleating rays.

compositions of Farey words are dense. However somewhat more appears
true—see Figure 8.

These pictures are quite quickly generated and give a good approxima-
tion to the Riley slice even for much smaller bounds on the denominators
q. Notice that in view of Lemma 3.2 there is an open pre-image of the unit
disk about each point also lying in C \ R.

3.3 Proof of a version of Conjecture 3.8

Remark. The arguments of this section were generously provided to us by
one of the anonymous referees.

It is well-known that the Farey polynomials (and the theories of geodesic
laminations on surfaces lying on the boundary of genus 2 Schottky space) are
heavily related to the theory of the Markoff Diophantine equation X2 +Y 2 +
Z2 = 3XY Z; some entry points into the relevant literature include a paper
by Bowditch [9] (which originated the detailed study of this relationship)
and a pair of papers by Series [55, 56] (which fully work out the theory for
the punctured torus). Essentially the link comes from the Fricke identity
which appeared above in our proof of Theorem 2.2, and we pause to give
the relevant definitions.

Definition 3.11 (Group representations). Let M be a hyperbolic manifold,
with G = π1(M). Of course G does not detect all the hyperbolic structure,
which comes from an action of G on H3 as a discrete group of isomorphisms;
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equivalently, the hyperbolic structure is given by a discrete and faithful
group representation ς : G→ PSL(2,C), where ς(G) is the holonomy group
of M . It is often useful to look at non-faithful representations, but the full
space Homdiscr.(G,PSL(2,C)) is usually too big, in the sense that it includes
representations which kill ‘large parts’ of the manifold—more precisely, send
loxodromic elements to parabolic elements and produce a geometric ‘pinch’.
This leads to the definition of a type-preserving representation: a discrete
representation ς : G → PSL(2,C) such that ς(g) is parabolic only if g is
parabolic, and such that tr2 ς(g) = tr2 g if g is elliptic.

Definition 3.12 (Farey sequences). There is a natural ideal3 triangulation
D of H2, called the Farey triangulation, constructed iteratively via the fol-
lowing process: (1) the triangle spanned by (0/1, 1/1, 1/0) lies in D; (2) for
every triangle (p/q, r/s, t/u) in the triangulation— where all the fractions
are written in simplest form and where p/q < r/s < t/u with the obvious
interpretation when one is ∞—the triangles(

p

q
,
p+ r

q + s
,
r

s

)
,

(
r

s
,
r + t

s+ u
,
t

u

)
, and

(
r

s
,
r − p
s− q

,
p

q

)
,

all lie in D (secretly this definition comes from writing PSL(2,Z) = 〈R,L〉o

〈Q〉 where R =

[
1 1
0 1

]
, L =

[
1 0
1 1

]
, and Q =

[
0 −1
1 0

]
and then allowing

this group to act on H2 as a group of hyperbolic isometries). Two rational
numbers α, β are said to be Farey neighbours if they are joined by an edge
of D.

The Farey triangulation is very important in number theory, in relation
to both classical parts of the subject (e.g. continued fraction representations)
and modern parts (e.g. modular forms). We will not need much about it,
we just remark that the triangles cover H2 without overlap and the set of
vertices is precisely Q̂ = Q∪{∞}. In addition, if (p/q, r/s, t/u) ∈ D (where
we take ordered triples as in the definition, where we gave each triangle in D
a canonical orientation) then (i) p/q < r/s < t/u and (ii) r = p+t, s = q+u.
(It is always guaranteed that new triangles, as produced via the processes
of the definition, already are labeled in simplest form and the triplets are
in the right order.) Conversely, any triplet (p/q, r/s, t/u) of elements of Q̂
satisfying (i) and (ii) is a triangle in D. These results can all be found in
Chapter III of Hardy and Wright [24].

3Ideal : all the vertices lie on the boundary R̂ of H2.
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Let T be a punctured torus. The complex structures on T are parame-
terised by the Maskit slice [25, 46], the set of all µ ∈ C such that〈[

−iµ −i
−i 0

]
,

[
1 2
0 1

]〉
is a discrete group; there is a construction of distinguished words and trace
polynomials parameterised by rational numbers for the punctured torus
which is completely analogous to the Farey polynomial construction, essen-
tially because both families of groups are constructed by taking geometric
limits of genus two Schottky groups; we write βp/q for the word in π1(T )

indexed by p/q ∈ Q̂ (for the detailed construction see e.g. [46, Chapter 9]).
The words and the trace polynomials φ(p/q) = trβp/q(µ) satisfy particularly
nice relations, namely whenever p/q and r/s are Farey neighbours we have
the product identity

φ(
p+ r

q + s
) + φ(

p− r
q − s

) = φ(p/q)φ(r/s) (2)

and the Markoff identity

φ(p/q)2 + φ(r/s)2 + φ(
p+ r

q + s
)2 = φ(p/q)φ(r/s)φ(

p+ r

q + s
)

If ς̃ : π1(T ) → PSL(2,C) is a type-preserving representation, then the map
Q̂ 3 p/q 7→ tr ς̃(βp/q) ∈ C is called the Markoff map associated to ς̃; and the
analogous identities continue to hold even after passing through a represen-
tation. Observe that, given a function φ which satisfies the product identity
then it is defined by its values on the triangle (0/1, 1/1, 1/0); further, if a
function φ : Q̂→ C satisfies both the product and the Markoff identity then
it in fact comes from the trace polynomial of a representation [4, Lemma
2.3.7], and so we may safely use the term Markoff map to refer to any such
function.

Remark. The identity (2) does have an analogous version for the Farey
polynomials, but it is more complicated [17] and the Markoff theory is not
worked out fully in this case; the argument we give below will involve a
reduction from the spherical case to the toric case and then applying the
Markoff theory.

We now state and prove a version of Conjecture 3.8.

Proposition 3.13. Fix some ρ ∈ C, and let x be a square root of −ρ.
Define a Markoff map φ : Q̂→ C by (φ(0), φ(1), φ(∞)) = (x, ix, 0). Then:
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1. Qp/q(ρ) = −φ(p/q)2;

2. there is a family of integer polynomials Gp/q(ρ) such that

Qp/q(ρ) =

{
(−1)pρ(Gp/q(ρ))2 if q is odd;

(−1)p−1ρ2(Gp/q(ρ))2 if q is even.

Part (2) may be found as the combination of Lemma 5.3.12 and Re-
mark 5.3.13 in [4]. We therefore prove only part (1) here.

Proof of part (1) of the proposition. There is a natural covering diagram

R2 \ Z2

T S

O

Z2 G

G̃

Z/2Z Z/2Z⊕Z/2Z

called the Fricke diagram [4, §2.1], where O is an orbifold surface with three
π cone points and one puncture and G and G̃ are generated by rotations
about points in Z2 and (1

2Z)2 respectively.
By usual covering theory, π1(S) is a normal subgroup of π1(O) of index

4; for each rational number p/q the element αp/q ∈ π1(S) represented by
the simple loop of slope p/q has a “square root” in π1(O), i.e. there is an
element βp/q ∈ π1(O) such that αp/q = β2

p/q. Further, the element βp/q is

contained in π1(T ) as a subgroup of π1(O).
Let ςT : π1(T ) → PSL(2,C) be the representation which induces the

Markoff map φ, so φ(p/q) = tr ςTβp/q. This representation extends to a
representation π1(O) → PSL(2,C) and then restricts to a representation
ςS : π1(S) → PSL(2,C) [4, Lemma 2.3.7] (there is a dependence here on
the explicit construction of the extension, which is not canonical). We
have already seen in the introduction that if S is a four-times punctured
sphere which appears as the boundary Riemann surface for a quotient H3/Γρ
then Γρ ' π1(S)/〈γ∞〉; in terms of representation theory, the quotient
group π1(S)/〈γ∞〉 is equal to a free group 〈K0,K1〉 and the representa-
tion ςS decends to a representation ς∗S : 〈K0,K1〉 → PSL(2,C) such that
(ς(K0), ς(K1)) = (X,Yρ). All these representations are defined in terms of
explicit matrix representatives, giving respective lifts to SL(2,C) which we
notate by adding a ˜, allowing us to take traces (not just tr2). With the
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particular matrix representatives chosen, Wp/q(ρ) = −ς̃S(αp/q) (where we
have followed Convention 2.4.3 of [4]).

We may now construct the chain of equalities

Qp/q(µ) + 2 = trWp/q(µ) = − tr ς̃S(αp/q) = − tr ς̃T (β2
p/q)

= −(tr2 ς̃T (βp/q)− 2) = −φ(p/q)2 + 2

(the fourth equality coming from the identity trAB + trAB−1 = trA trB
with A = B); this completes the proof of (1).

If both p and q are odd, the polynomial Gp/q(ρ) is equal to Λq,p(−ρ)
where Λq,p is the so-called Riley polynomial introduced by Riley in [52]. It
is immediate from the explicit description of Λ given in Equation 3.10 of that
paper (p. 227) that Λq,p(0) = 1, and so we obtain the statement u(0) = 1
from Conjecture 3.8 as long as p is odd.

4 Neighbourhoods of rational pleating rays

In this section, we give some motivation and intuition for our second main
result. Our first main result gave a method of approximating the Riley slice
exterior using the Farey polynomials and some related Julia sets; our second
result is an approximation of the interior using the Farey polynomials. Here
is the precise statement:

Theorem 4.1 (Existence of open neighbourhoods). Let Pp/q be a Farey

polynomial. Then there is a branch P−1
p/q of the inverse of Pp/q such that

P−1
p/q(H), where H = {Re z < −2},

is an open subset of R.

The bounds given in the theorem are illustrated in Figure 9.

4.1 Motivating remarks

The idea behind Theorem 4.1 is very simple: the Keen–Series theory [26]
depends on the existence of round discs (which they call F-peripheral discs)
in the domains of discontinuity of the groups Γρ which glue up along their
edges to form the quotient surface S2

4 ; the pleating rays are arcs in the
Riley slice such that deforming the groups along these arcs preserves the
‘roundness’ of a given set of these peripheral discs (this is [26, Proposition
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Figure 9: The Riley slice with neighbourhoods for our pleating ray values
illustrated.

3.1]). In order to find neighbourhoods of these rays, we simply allow de-
formations in both dimensions, rather than simply in the direction of the
pleating ray. Of course, deformations off the pleating ray do not preserve
the roundness of the F-peripheral discs; but we claim that the quasidiscs
(that is, quasiconformal images of discs) obtained still ‘glue up’ correctly,
and limits of them continue to be quasidiscs (rather than the boundary be-
coming space-filling)—this last property (Lemma 5.11) allows us to prove
an analogue of the closedness part of [26, Theorem 3.7], which is important
because our proof follows a similar thread to the subsequent arguments of
that paper: we define a certain subset of C, namely the set Np/q of ρ ∈ C
which admit ‘canonical peripheral quasidiscs of slope p/q’ in analogy to the
non-conjugate pairs of F-peripheral discs; we then prove that any group in
some Np/q lies in the Riley slice (this is Lemma 5.10 below, the analogue of
[26, Lemma 3.5]); and then, via an open-closed argument like [26, Theorem
3.7], we see that Np/q is precisely the set of Theorem 4.1.

In order to carry out this procedure, we need some information about
the precise nature of the action of the quasiconformal deformations on the
discs: more precisely, we will need to know that the combinatorial properties
of the round peripheral discs are preserved even when we deform off the
pleating ray and they turn into quasidiscs. Recall that the Riley slice R is
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topologically a punctured disc in the plane, and as such admits a hyperbolic
metric which we denote by distR : R×R → [0,∞).

Theorem 4.2. Let α be a curve in R which lies a bounded hyperbolic dis-
tance from a pleating ray (that is, there exists an M <∞ such that for each
ρ ∈ α there is some ν ∈ Pp/q with distR(ρ, ν) ≤M). Then the quasiconfor-

mal map conjugating Γρ to Γν has distortion no more than eM .

Proof. Let ρ ∈ α and ν ∈ Pp/q and let M := distR(ρ, ν). Let π : D2 → R be
the hyperbolic universal covering map with π(0) = ρ and π(tanh(M/2)) = ν.
The holomorphically parameterised family of discrete groups {ΓΦ(z) : z ∈
D2} induces an equivariant ambient isotopy of Ĉ by the equivariant extended
λ-lemma [15, 47, 48] (the argument is a standard one, see for example the
exposition in [5, §12.2.1]). If we move ρ in R then the motion of the fixed
point set extends to a holomorphically parameterised quasiconformal ambi-
ent isotopy, equivariant with respect to the groups Γρ, of the whole Riemann
sphere. By the fourth assertion of the extended λ-lemma as stated as [5,
Theorem 12.3.2] the distortion of this ambient isotopy is exactly the expo-
nential of the hyperbolic distance between the start (at 0) and finish (at
tanh(M/2)), that is eM .

Consider deforming a point ρ ∈ R towards the Riley slice boundary
along a curve α which lies a bounded distance away from a pleating ray
Pp/q. Theorem 4.2 shows that if ν ∈ Pp/q is the hyperbolic projection of ρ
onto the pleating ray then the combinatorial properties of circles in the limit
set of Γν transfer directly to combinatorial properties of quasicircles in the
limit set of Γρ, since there is a uniformly bounded distortion mapping one
to the other. These quasicircles bound what we will call the F-peripheral
quasidiscs of the group Γρ.

Most of the information that the Keen–Series theory provides is topo-
logical and their arguments could be used almost directly if we knew these
uniform bounds. However, there is no way that we can compute or even
estimate the hyperbolic metric of the Riley slice near the boundary to iden-
tify a curve such as α for every rational pleating ray. What we do is guess
(motivated by examining a lot of examples on the computer) that such a
curve is α = Φ−1

p/q({z = −2 + it : t > 0}), where we take the branch of the
inverse of Φp/q with the correct asymptotic behaviour.

An important point that we need to take into account when we mod-
ify the proof of [26, Theorems 3.7 and 4.1] and the corrected version [28,
Theorem 2.4] is that, as mentioned above, the peripheral quasicircles could
become quite entangled and eventually become space filling curves. We
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avoid this situation by modifying the peripheral quasidiscs as we move, so
they have large scale “bounded geometry” (though the small scale geome-
try is uncontrolled). An important observation is that along the rational
pleating ray the isometric circles of the Farey word Wp/q are disjoint. We
deform in such a way that this property is preserved, and it is for this reason
that we choose the set H in the theorem statement: we will prove that Wp/q

has disjoint isometric discs when its trace lies in this region (Lemma 5.2),
though we believe that this region can even be enlarged (see Section 4.2).
Further, if we do not move too far away from the pleating ray these isometric
circles do not start spinning around one another. This information allows us
to construct a “nice” precisely invariant set stabilised by X and Wp/q—this
turns out to be one of the peripheral quasidiscs which does have bounded
geometry. Existence of this peripheral quasidisc (which we call canonical
peripheral quasidisc) guarantees we have the correct quotient from the ac-
tion of Γρ on the ordinary set; and then the open-closed argument carries
through.

4.2 Lyndon and Ullman’s results

Here, we recall the main result of a paper of Lyndon and Ullman [31] and
examine it in the context of our pleating neighbourhoods. In the process
we will make some conjectures about improvements we think are possible
to make to Theorem 4.1. In particular, we believe that the set H in the
theorem can be enlarged to a cone with angle 5π/3.

Theorem 4.3 (Theorem 3, [31]). Let K denote the Euclidean convex hull
of the set D(2)∪ {±4} (D(2) is the disc of radius 2 about 0). Then C \R ⊆
K.

See Figure 10 for a depiction of this bound; as a consequence, the Riley
slice R is contained within a conic region with apex at −4, bounded by two
rays tangent to the disc D(2). Since the two lines are orthogonal to the radii
of the circle, a simple trigonometric calculation shows that the cone angle is
π/3, and so the interior of the cone is the set

W = {z ∈ C :
−π
6

< arg(z + 4) <
π

6
}.

Let ϕ be the branch of z 7→ −(−z − 4)3/5 − 4 conformally mapping C \ W
to the half-space H = {z : Re z < −4} (here, 3/5 = π/(2π − π/3)). Then
H ⊆ C \W, and ϕ(H) is the sector

{z ∈ C :
7π

10
< arg(z + 4) <

13π

10
}.
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Figure 10: The convex hull of D(2) ∪ {±4} contains C \ R.

Because ϕ is conformal it is now straightforward to see that the distance
in the hyperbolic metric of C \ W between the line `1 = −4 + iR and the
rational pleating ray `2 = (−∞,−4] (which are parallel hyperbolic geodesics
since they meet at the same point at infinity, hence lie a constant distance
apart) is

distC\W(`1, `2) =

∫ π

7π
10

dθ

| cos θ|
=

∫ 3π/10

0

dθ

cos(θ)
=

1

2
ln
[
5 + 2

√
5
]
≈ 1.1241.

From Theorem 4.2 we now have the following corollary.

Corollary 4.4. Let ν ∈ −4 + iR. Then there is ρ ∈ (−∞,−4], the rational
pleating ray P1/1, so that Γν and Γρ are K-quasiconformally conjugate for
some deformation K satisfying

K ≤
√

5 + 2
√

5 ≈ 3.077 . . . .

Proof. The only thing left to observe is that the contraction principle for
the hyperbolic metric shows that

distR(ρ, ν) ≤ distC\W̄(ρ, ν) =
1

2
ln
[
5 + 2

√
5
]

for the point ρ closest to ν, and hence by Theorem 4.2

K ≤ edistR(ρ,ν) ≤
√

5 + 2
√

5.

This proves the corollary.
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Figure 11: Preimages of the rays {arg(z + 4) = −π
6 } and {arg(z − 4) = π

6 }.

We believe these estimates for larger neighbourhoods of the (−∞,−4]
pleating ray persist in general in the parabolic case (namely, take preimages
of this cone rather than of H), but proving this adds additional complica-
tions in the construction we give as the isometric circles of Wp/q may no
longer be disjoint. We offer Figure 11, which is a slight modification of Fig-
ure 9, as computational support for this conjecture. Instead of looking at
the branch of the inverse of Pp/q defined on {Re z < −2}, to produce this
image we compute the preimages of the conic region of opening π

3 given by
Theorem 4.3.

In the elliptic case, additional difficulty arises in finding an analogue
for Theorem 4.3 in order to even ‘guess’ the right cone to pull back to a
neighbourhood. We will discuss this further in our upcoming joint paper
[18].

5 Proof of Theorem 4.1

In this section, we carry out the proof sketch that we gave in Section 4.1.
It may be useful to have a reference to a specific example. Figure 12 shows
pictures of the geometric objects we will be interested in for two specific
cusp groups.
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Figure 12: Geometric objects in the limit sets of the 3/4-cusp group (left)
and the 4/5-cusp group (right). The isometric circles of Wp/q are shaded
grey; their images under the involution Φ : z 7→ 1/(ρz) are shaded green.
This involution defines the non-conjugate peripheral disc 〈Y,ΦWp/qΦ

−1〉.
The non-conjugate peripheral discs are shaded in red (one is a lower half
plane). Fixed points of the involution and its action are also illustrated.

5.1 Products of parabolics

As noted earlier (Lemma 2.1), an important property of a Farey word Wp/q

is that it can be written as a product of parabolic elements in two essentially
different ways. For ρ ∈ R there are only two conjugacy classes of parabolics,
those represented by X and Y [40, VI.A]; this is just a reflection of the
fact that the deletion of a non-boundary-parallel curve on the 4-punctured
sphere leaves two doubly punctured discs. To find these parabolics we just
look for a couple of conjugates of X and Y whose product is Wp/q. Keen and
Series studied the set of all such pairs (this is the data encoded in the circle
chain sets Up/q of [26]); in our analysis, we will only look closely at the pair
{X,X−1Wp/q}. The group 〈X,Wp/q〉 = 〈X,X−1Wp/q〉 is generated by two
parabolics, and so can therefore only be discrete and free on its generators
if

tr(XX−1Wp/q)− 2 = tr(Wp/q)− 2 ∈ R

(since a group generated by two parabolics is discrete and free if and only if it
is conjugate to a group in the Riley slice or its boundary; the Riley parameter
ρ of a group generated by two parabolics A and B is just trAB − 2, since
ρ + 2 = trXYρ.). If tr(Wp/q) ∈ R, then the traces of X, X−1Wp/q, and

29



Wp/q are real (the first two are ±2) and so 〈X,Wp/q〉 is Fuchsian (this is
a straightforward but tedious argument, see e.g. Project 6.6 of [46]). It
is groups of this form (and their conjugates) which produce the round F -
peripheral circles of [26].

That it suffices to only look at {X,X−1Wp/q} is a consequence of the
following general result:

Lemma 5.1. Suppose that u1, u2, v1, v2 ∈ PSL(2,C) are parabolics such that
tru1u2 = tr v1v2. Then the two groups 〈u1, u2〉 and 〈v1, v2〉 are conjugate in
PSL(2,C).

The upshot of this lemma is that if we were to pick a different pair
whose product was Wp/q then we get exactly the same geometry, up to a

well-defined conjugation in Ĉ. We give a proof that provides slightly more
information; an elementary proof that proves exactly the statement given is
easy to write down (the groups can be conjugated to Γµ and Γµ′ , then the
indicated traces are 2 + µ and 2 + µ′ respectively so the groups themselves
are conjugate to each other).

Proof of Lemma 5.1. There exist involutions φu, φv ∈ PSL(2,C) such that
φuu1φ

−1
u = u2 and φvv1φ

−1
v = v2.

tr2 φu = tr2 φv = 0 and tr2 u1 = tr2 v1 = 4.

Also,

tr[u1, φu] = tru1φuu
−1
1 φ−1

u = tru1u
−1
2 = tru1 tru2 − tru1u2 and

tr[v1, φv] = tr v1φvv
−1
1 φ−1

v = tr v1v
−1
2 = tr v1 tr v2 − tr v1v2;

the two right-hand sides are equal (since trui = tr vj for all i, j, and the
product traces are equal by assumption) so tr[u1, φu] = tr[v1, φv]. In [22] it
is shown that any pair of two-generator groups with the same trace square
of the generators and the same trace of the commutators are conjugate
in PSL(2,C). Thus 〈v1, φv〉 and 〈u1, φu〉 are conjugate and so are their
subgroups 〈u1, u2〉 and 〈v1, v2〉.

5.2 Rotation angles and isometric discs

Let f ∈ PSL(2,C) with tr f = −2 + ti (t ∈ R). Then f has complex trans-
lation length τf + iθf , where τf and θf are respectively the real translation
length and the rotation angle of f given by the formulae

τf
2

= Re

[
sinh−1

(
i

2

√
t(4i+ t)

)]
and

θf
2

= Im

[
sinh−1

(
i

2

√
t(4i+ t)

)]
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We also have the following asymptotics.

As t→ 0,

{ τf√
2t
→ 1,

θf√
2t
→ −1.

For 0 < t < 1,

{
1 ≤ τf√

2t
≤ 1.03642...,

−1 ≤ θf√
2t
≤ −0.954 . . . .

In addition, θf → −π as t→∞.
Suppose that some (now arbitrary) f ∈ PSL(2,C) is represented by the

matrix

[
a b
c d

]
. Then the isometric discs of f are the two discs D1 and D2

given by

D1 =

{
z ∈ C : |z − a

c
| ≤ 1

|c|

}
, D2 =

{
z ∈ C : |z +

d

c
| ≤ 1

|c|

}
The isometric circles are the boundaries of these two discs. We say that
f has disjoint isometric discs if these discs have disjoint interior. This is
clearly equivalent to the condition |a+ d| ≥ 2.

The mapping f pairs these discs in the sense that

f(D2) = Ĉ \ Int(D1).

Thus Ĉ\(D1∪D2) is a fundamental domain for the action of f on Ĉ. Notice
that when c 6= 0, f(∞) = a

c and that f−1(∞) = −d
c are the centers of the

isometric discs.
We now specialise to the case that f is the Farey word Wp/q. Label the

entries of the matrix representing Wp/q(ρ) as follows:

Wp/q(ρ) =

(
ap/q(ρ) bp/q(ρ)

cp/q(ρ) dp/q(ρ)

)
ap/qdp/q − bp/qcp/q = 1.

The isometric discs of Wp/q are the two discs

D1 = B

(
ap/q(ρ)

cp/q(ρ)
,

1

|cp/q(ρ)|

)
and D2 = B

(−dp/q(ρ)

cp/q(ρ)
,

1

|cp/q(ρ)|

)
, (3)

Lemma 5.2. Let tr(Wp/q) = x + it with x ≤ −2. Then the Farey word
Wp/q(ρ) has disjoint isometric discs.

Proof. This is a simple computation: |ap/q + dp/q| =
√
x2 + t2 ≥

√
x2 =

|x| ≥ 2.
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We now compute with the identity of Theorem 2.2 that

ap/q(ρ)

cp/q(ρ)
+
dp/q(ρ)

cp/q(ρ)
=

2 + cp/q(ρ)

cp/q(ρ)
= 1 +

2

cp/q(ρ)
. (4)

Theorem 2.2 and (4) together have the following consequence.

Corollary 5.3. Let tr(Wp/q) = −x + it for x ≥ 2 and t ∈ R. Then the
group 〈X,Wp/q〉 is discrete and free on the indicated generators.

Proof. For clarity we drop the subscript p/q as it is fixed. Let S be the
vertical strip of width one given by{
z ∈ C :

1

2

(
Re

(
a(ρ)− d(ρ)

c(ρ)

)
− 1

)
< Re(z) <

1

2

(
Re

(
a(ρ)− d(ρ)

c(ρ)

)
+ 1

)}
.

Using the notation of Lemma 5.2 for the isometric discs of Wp/q, set D̃1 =

D1 − 1 and D̃2 = D2 + 1 so each D̃i is a translate of the respective Di

(to the left and right respectively; see Figure 13). Essentially following the
construction on pp.1392–1393 of [31], define S̃ by

S̃ = (S ∪D1 ∪D2) \
(
D̃1 ∪ D̃2

)
. (5)

Theorem 2.2 implies that the discs D̃1 and D2 are tangent. Two things
now follow. Firstly, the translates of S̃ by n ∈ Z fill the plane. Secondly,
S̃ contains the isometric circles of Wp/q. The Klein combination theorem

[40, Theorem VII.A.13] now implies the result since Ĉ \ (D1 ∪ D2) is a
fundamental domain for the action of Wp/q.

There is one further piece of information we would like out of Corol-
lary 5.3: that the point of tangency of the isometric discs D̃1 and D2 and
their translates is a parabolic fixed point. To save space, write h = hp/q
for the function on Ĉ corresponding to the action of Wp/q. The point of
tangency can be calculated to be

z∞ :=
a− d

2c
− 1

2
=
a− d− c

2c
=

1− d
c

.

(where we continue to use a, b, c, d for the entries of a matrix representing
Wp/q). Then

h(z∞) =
az∞ + b

cz∞ + d
=
a1−d

c + b

c1−d
c + d

=
1 + c− d

c
= z∞ + 1
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Figure 13: The isometric circles of W3/4 when trW3/4 = −2 + i (in grey)
and their translates (in red).

and so with f representing X we have shown f−1h(z∞) = z∞ so z∞ is a
fixed point of f−1h. Since X−1Wp/q is parabolic as previously observed we
have proved the following lemma.

Lemma 5.4. The point z∞ = 1−d
c ∈ ∂S̃ (with S̃ defined by (5)), a point

of tangency of the isometric discs of Wp/q and their unit translates, is a
parabolic fixed point.

5.3 Canonical peripheral quasidisks

In this section we show that the geometry of the peripheral quasicircles
is controlled by the pairing of the isometric circles of Wp/q. We begin by
studying the geometry for ρ ∈ Pp/q, and then we allow ρ to move holomor-
phically off the pleating ray, inducing a quasiconformal deformation of the
Riemann sphere commuting with the associated group actions (the equiv-
ariant λ-lemma) and hence the peripheral discs. This motion is uniquely
defined on the limit sets. However we cannot a priori control the distortion
of this motion as we do not know the size of a disk about ρ in the Riley
slice. We therefore cannot control the distortion of the induced peripheral
quasicircles and so we do not know how far we can move before we hit
the boundary. What we do instead is replace these peripheral circles and
quasicircles with canonical piecewise curvilinear curves whose large scale ge-
ometry we can control along certain paths. We know that if we run into
the boundary of the Riley slice as we move ρ, then the limit set has become
either the Riemann sphere, or a circle packing. If this is not the case, then
we can continue along our path. Roughly the path we follow will be defined
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by the peripheral subgroups having disjoint isometric circles.
Thus for ρ ∈ Pp/q, and as above we write hp/q(ρ) for the Möbius trans-

formation represented by Wp/q(ρ) which maps ∂D2 onto ∂D1 (c.f. (3)). Let
z0 ∈ ∂D2 be the unique closest point of ∂D2 to ∂D1. Since hp/q(ρ) is hyper-
bolic (its trace is real and less than −2, since ρ is on the p/q-pleating ray)
it maps z0 to the point of ∂D1 which is closest to ∂D2. Let L(ρ) be the
Euclidean line segment joining z0 to hp/q(ρ)(z0). As ρ moves off the pleating
ray to a point ρ̃ we define L(ρ̃) to be the line segment joining the endpoints
of L(ρ) under the quasi-conformal deformation, which lie on the boundaries
of ∂D1(ρ̃) and ∂D2(ρ̃) such that the endpoint z0(ρ̃) on ∂D2(ρ̃) (the image
of z0 under the deformation) is mapped by hp/q(ρ̃) onto the other endpoint
of L(ρ̃); but now the line segment itself does not form the projection of the
axis of hp/q(ρ̃) (though the projection of the axis has rotational symmetry
around the midpoint of L(ρ̃)) and z0(ρ̃) and hp/q(ρ̃)(z0(ρ̃)) are not the clos-
est points of the two circles. This process is clearly continuous, but it is not
a holomorphic motion as such things cannot preserve linearity in general.

The line segment Lp/q(ρ̃) will lie entirely in S̃ provided that ρ̃ is close
enough to ρ that the isometric discs of Wp/q have not twisted too far around.
In particular, it is enough if the absolute value of the difference between the
real parts of the centers of the isometric discs exceeds twice the radius of
the isometric discs. That is, if∣∣∣Re

ap/q(ρ̃) + dp/q(ρ̃)

cp/q(ρ̃)

∣∣∣ ≥ 2

|cp/q(ρ̃)|
.

Using Theorem 2.2, we calculate that

Re
ap/q(ρ̃) + dp/q(ρ̃)

cp/q(ρ̃)
= Re

cp/q(ρ̃) + 2

cp/q(ρ̃)
= 1 + Re

2

cp/q(ρ̃)

= 1 +
2

|cp/q(ρ̃)|2
Re cp/q(ρ̃);

which is implied by

||cp/q(ρ̃)|2 + 2 Re cp/q(ρ̃)| ≥ 2|cp/q(ρ̃)|.

This is true if Re cp/q(ρ̃) ≤ −4—and in particular if Re trWp/q < −2, by
Theorem 2.2—so under these conditions the line segment Lp/q(ρ̃) has the

property that it lies entirely in S̃ with its endpoints on ∂S̃; and as we
mentioned above the endpoints of Lp/q(ρ̃) are identified by hp/q(ρ̃).

For convenience, introduce now the notation Γp/q(ρ̃) = 〈f, hp/q(ρ̃)〉 where
f and hp/q(ρ̃) are the Möbius transformations with respective matrices X
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and Wp/q(ρ̃). We have identified a fundamental domain S̃ for the action of
Γp/q(ρ̃) on Ω(Γp/q(ρ̃)). The quotient

Ω(Γp/q(ρ̃))/Γp/q(ρ̃)

is the four-times punctured sphere S0,4, since

Γp/q(ρ̃) =
〈
f, hp/q(ρ̃)

〉
=
〈
f, f−1hp/q(ρ̃)

〉
is a circle-pairing group generated by two parabolics. The line segment
Lp/q(ρ̃) projects to a simple closed curve (though not a geodesic in general)
in the homotopy class of hp/q(ρ̃) and separates one pair of punctures from
another. We remark that the projection of Lp/q(ρ̃) is smooth away from one
corner (namely, the point of projection of the segment endpoints) and the
angle at that corner tends to π as Im ρ̃→ 0.

By construction the lift through the cover Ω(Gρ̃)→ S2
4 of the projection

of Lp/q(ρ̃) into S2
4 is a Jordan curve (by the lifting property) through ∞.

We set
Lp/q(ρ̃) =

⋃
g∈〈f,hp/q〉

g(Lp/q(ρ̃)). (6)

(Formally, we take the closure of this union to be Lp/q(ρ̃) since the com-
ponents of

⋃
g∈〈f,hp/q〉 g(Lp/q(ρ̃)) are open segments.) This curve consists of

(the closure of) the translates of Lp/q(ρ̃) by fn, n ∈ Z, together with images
which lie in the union of the two isometric disks of hp/q(ρ̃) and their integer
translates.

In fact the curve Lp/q(ρ̃) is a quasiline—the image of a line under an
entire quasiconformal mapping. Unfortunately we have no control on the
distortion here even though we expect that we are a bounded hyperbolic
distance from a Fuchsian group on the rational pleating ray Pp/q, so the
easiest way to see that Lp/q(ρ̃) is indeed a quasiline is to use Ahlfors’ “three
point criterion” [1]. Since Lp/q(ρ̃) is invariant under a translation it will
be a quasiline provided the Ahlfors criterion holds at smaller scales—say
after only a few translates. At smaller scales the criterion holds simply by
compactness, Lp/q(ρ̃) is a piecewise smooth Jordan arc and at the connecting
points the angle is not zero so the curve has no cusps.

We note that

hp/q(ρ̃)(∞) =
ap/q(ρ̃)

cp/q(ρ̃)
and hp/q(ρ̃)−1(∞) = −

dp/q(ρ̃)

cp/q(ρ̃)

and these are parabolic fixed points on Lp/q(ρ̃) (conjugates of the fixed points
of f) as well as being the centers of the isometric circles. The parabolic
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Figure 14: A log-spiral connecting the fixed points of h3/4(ρ̃), the Möbius
transformation representing W3/4(ρ̃). Red lines connect the isometric circle
centers, and the spirals connect the fixed points of h3/4(ρ̃). Here, ρ̃ is chosen
such that tr(W3/4) = −2 + it where the values of t shown from left to right
are t = 2, t = 0.5, and t = 0.1.

fixed point we earlier identified in Lemma 5.4, z∞ = 1−d
c , also lies in Lp/q(ρ̃)

and is not the parabolic fixed point of a conjugate of f (since it is not
conjugate in the abstract group 〈X,Y 〉 from which the rational words come,
a consequence of the fact that they represent simple closed curves on the
four-times punctured sphere.) The translates of the endpoints of Lp/q(ρ̃)
under 〈hp/q(ρ̃)〉 lie on a log-spiral connecting the fixed points of hp/q(ρ̃).
This is illustrated in the examples of Figure 14.

If we denote by H±p/q(ρ̃) the components of C \ Lp/q(ρ̃), then

H±p/q(ρ̃)/Γp/q(ρ̃)

is a twice punctured disc with boundary given by a projection of Lp/q(ρ̃).
We can give some bounds on the position of the invariant quasiline;

in particular, this shows that it has bounded large-scale geometry (as we
discussed in Section 4.1). In various places below we omit ρ̃ in the notation.

Lemma 5.5. The invariant quasiline Lp/q lies in the smallest horizontal
strip containing the isometric circles of Wp/q.

Proof. By construction Lp/q lies in, and separates S̃. Its translates together
with the translates of the isometric discs of Wp/q separate both the ordinary
set of 〈f, hp/q〉 and the plane into two parts. The strip is the smallest
horizontal strip containing the isometric circles of Wp/q.

Our computational investigations suggest that in fact the width of this
strip can be improved to where the spiral “turns over”. This appears pro-
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portional to the difference of the imaginary parts of the fixed points. A
consequence would be that as Im ρ̃ → 0 the strip turns into a line and the
quasilines Lp/q(ρ̃) converge to the line through the fixed points of hp/q(ρ̃),
which is a line in the limit set of the cusp group.

Definition 5.6. By analogy with Keen and Series, we call the component
Hp/q(ρ̃) of C \ Lp/q(ρ̃) which does not contain 0 a canonical peripheral qua-
sidisc if

1. Λ(Γp/q(ρ̃)) = Hp/q(ρ̃) ∩ Λ(Γρ̃), and

2. tr(Wp/q((ρ̃))) ∈ {z = x+ iy ∈ C : x < −2}.

Notice that if ρ̃ ∈ R, then there is some slope p/q such that Γρ̃ ad-
mits the canonical peripheral quasidisc Hp/q(ρ̃), since each such group is
quasiconformally conjugate to one on a pleating ray where there is such a
peripheral circle. There seems to be no way of guaranteeing that the large
scale geometry of the boundary quasiline is bounded, but we do know that
the geometry is bounded for the special case of Lp/q(ρ̃).

5.4 Completing the proof

We now give a series of lemmata imitating the proofs given for the case
of a pleating ray by Keen and Series [26]. Set S∗p/q = S̃ ∩ Hp/q; this is a
fundamental domain of Γp/q defined by the isometric circles of hp/q and the
line segment Lp/q. Recall the parabolic cusp point given by 5.4 in ∂Hp/q (and
also in S∗p/q). The following lemma is immediately clear from construction.

Lemma 5.7. An F -peripheral disc in the sense of Keen and Series is a
canonical peripheral quasidisc.

In fact, in this case hp/q is hyperbolic, with disjoint isometric discs and
Lp/q is a segment of the line through its fixed points (and also through
isometric circles) and orthogonal to them.

Recall that in the Keen–Series theory it was important that the F-
peripheral discs moved continuously with ρ; since the defining points of
Lp/q move continuously with ρ, the analogous result is true:

Lemma 5.8. Fix a rational slope p/q. The quasiline Lp/q moves contin-
uously with ρ and the data ap/q, bp/q, cp/q and dp/q, as does the associated
fundamental domain S∗p/q.

Remark. In fact, the defining points (vertices of S∗p/q) move holomorphically,
but as a set S∗p/q does not.
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Next the analogue of [26, Proposition 3.1].

Lemma 5.9. Fix a rational slope p/q. The set

{ρ : Γρ admits the canonical peripheral quasidisc Hp/q}

is open.

Proof. By definition tr(Wp/q) ∈ {Re z < −2}. Choose a small neighbour-
hood of ρ so that this remains true. That is, tr(Wp/q(ρ

′)) ∈ {Re z < −2}
for ρ′ close to ρ. Each Γρ is geometrically finite [41], and therefore each
parabolic fixed point is doubly cusped (see e.g. [40] and [37]). Let U be a
horodisc neighbourhood of the parabolic fixed point in ∂S∗p/q (not ∞). As
Lp/q ⊂ ∂Hp/q is in the ordinary set for Γp/q it is in the ordinary set of Γρ
and projects to a loop bounding a doubly punctured disc in S2

4 . It follows
that S∗p/q \U is compactly supported away from Λ(Γρ). This limit set moves

holomorphically and so for small time t the varying (S∗p/q)t \Ut lie in the or-

dinary set of Γρt . The images of (S∗p/q)t \Ut under (Γp/q)t tessellate (Hp/q)t,
apart from the deleted cusp neighbourhoods which we now put back to find
a canonical peripheral quasidisc (Hp/q)t.

For p/q ∈ Q, let Np/q be the set defined by

Np/q := {ρ ∈ C : Γρ admits a canonical peripheral quasidisc Hp/q}.

We prove a version of [26, Lemma 3.5], for Np/q rather than the pleating
ray Pp/q.

Lemma 5.10. Fix a rational slope p/q. If ρ ∈ Np/q, then ρ ∈ R.

Proof. We have Γp/q = 〈f, hp/q〉 = 〈f, f−1hp/q〉. As described earlier there
is another group Γ′p/q generated by two parabolics in Γρ whose product is
also hp/q. These groups are not conjugate in Γρ but are conjugate when the
Z/2Z symmetry that conjugates X to Y is added. This symmetry leaves
the limit set set-wise invariant. Hence both groups are quasi-Fuchsian with
canonical peripheral quasidiscs. The remainder of the argument is as in [26,
Lemma 3.5]. Briefly, both of the sets

Hp/q/Γp/q = Hp/q/Γρ and H ′p/q/Γ
′
p/q = H ′p/q/Γρ

are two different twice punctured discs in the quotient glued along a common
boundary (a translation arc of hp/q which lies in Hp/q ∩ H ′p/q). Then the

quotient is S2
4 and hence ρ ∈ R by definition.
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It is in the proof of the next lemma (the analogue of the closedness half
of [26, Theorem 3.7]) where we use the fact that the quasidiscs Hp/q have
bounded geometry. Without this, the invariant quasicircles for the periph-
eral discs could either become space-filling curves or collapse entirely. This
indeed happens in general with the formation of B-groups, or the geometri-
cally infinite groups on the boundary of R.

Lemma 5.11. Fix a rational slope p/q. Suppose that Γρj admits canonical

peripheral quasidiscs Hj
p/q, and that tr(W j

p/q)→ z0 with Re(z0) < −2. Then
there is a subsequence ρjk which converges to some ρ ∈ R such that Γρ
admits a canonical peripheral quasidisc of the same slope.

Proof. That tr(W j
p/q) → z0 where Re(z0) < −2 means that ap/q, bp/q, cp/q

and dp,q all have finite limits and that cp/q 6→ 0 by Lemma 3.2 and Theo-
rem 2.2; therefore we can apply Lemma 5.5 to conclude that the invariant
lines bounding Lp/q also have a limiting height above and below. It follows
that there is a non-empty open set U such that, for j sufficiently large,
U ⊂ Hj

p/q. Each of the groups Γρj is discrete (and free) and, after pass-

ing to a subsequence if necessary, the limit group Γρ is also discrete (and
free). Thus the ordinary set of Γρ must contain U . By Lemma 5.10 we have
ρj ∈ R and hence ρ ∈ R. If ρ ∈ R we are done. Otherwise ρ ∈ ∂R, and

Γρ has nonempty ordinary set Ωρ = Ĉ \Λ(Γρ). Since ρ lies in the boundary
of R the quotient surface Ω/Γρ can support no moduli. The group Γρ is
torsion-free with non-empty ordinary set (it contains U), so the quotient is
a union of triply punctured spheres and the point ρ must be a cusp group
(these results are all found in the paper [41]). Notice that hp/q will have its
fixed points in the boundary of a component of the ordinary set, which are
now round circles. Thus Γp/q is Fuchsian (since it is a priori quasi-Fuchsian
and has limit set dense in a round circle), tr(hp/q) is real and therefore
tr(hp/q) ∈ (−∞,−2). But these groups lie on the pleating ray in R and so
have F -peripheral discs. This completes the proof.

We now complete the proof of Theorem 4.1. Consider the set Zp/q defined
by

Zp/q = {ρ ∈ R : RePp/q(ρ) < −2}.

We show that Np/q is a connected component of Zp/q, by showing (as in the
proof of [26, Theorems 3.7] and [28, Theorem 2.4]) that Np/q is a non-empty
clopen subset of Zp/q.

By Lemma 5.10, Np/q ⊆ R.
We make four observations.
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1. Np/q ⊆ Zp/q since, by Definition 5.6, Re trWp/q(ρ) < −2 for ρ ∈ Np/q;

2. Note that Np/q is closed in Zp/q by Lemma 5.11.

3. By definition, Zp/q is open in C (it is the inverse image of an open
set); since Np/q is also open in C (Lemma 5.9) it is open in Zp/q.

4. Finally, Np/q 6= ∅ since (by Lemma 5.7) it contains the (non-empty)
p/q pleating ray.

Thus Np/q is a union of non-empty connected components of Zp/q contained
in R. By the Keen–Series theory, there are at most two such connected
components, namely the components corresponding to the pleating rays of
asymptotic slopes ±πp/q ([26, Theorem 4.1] and [28, Theorem 2.4]); and
clearly we hit both of these components. In any case, picking a branch of
the inverse of Pp/q corresponding to these arguments will give a connected
component of Np/q, and such a component is the desired neighbourhood of
the cusp lying inside the Riley slice.
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